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In order to efficiently and accurately adjust the shearer traction speed, a novel approach based on Takagi-Sugeno (T-S) cloud
inference network (CIN) and improved particle swarm optimization (IPSO) is proposed. The T-S CIN is built through the
combination of cloud model and T-S fuzzy neural network. Moreover, the IPSO algorithm employs parameter automation
adjustment strategy and velocity resetting to significantly improve the performance of basic PSO algorithm in global search and
fine-tuning of the solutions, and the flowchart of proposed approach is designed. Furthermore, some simulation examples are
carried out and comparison results indicate that the proposed method is feasible, efficient, and is outperforming others. Finally, an
industrial application example of coal mining face is demonstrated to specify the effect of proposed system.

1. Introduction

Currently, the cooperative control of coal mining machines
(shearer, scraper conveyers, and hydraulic supports) is
becoming a development trend in fully mechanized mining
face. As a key factor of cooperative control, the traction speed
of shearer has a great influence on the mining efficiency and
the working states of other coal mining machines. There-
fore, the traction speed should be precisely and reasonably
adjusted in a reliable way. However, due to the poor working
conditions of coal mining such as narrow space, high coal
dust, low visibility, and large noise, shearer operator does
not have accurate and timely manner to adjust the traction
speed only depending on the vibration noise of shearer
mining and manual visualization [1, 2]. This phenomenon
cannot ensure shearer work in cooperation with other coal
mining machines reasonably and may lead to the problem
of low mining efficiency. Moreover, many safe accidents
in collieries occurred increasingly frequently. Under this
kind of background, the researches on adjustment methods
for shearer traction speed have become a challenging and
significant research subject.

Due to the randomicity and complexity of underground
geological conditions, adjusting traction speed would present
the characteristics of complexity, fuzziness, uncertainty, and
high risk, and this may affect the coal production or even
endanger the operator’s life. Therefore, it is necessary to
handle the speed accurately and effectively. In the real
mining condition, some key index parameters have a strong
relationship with shearer traction speed and the relationship
is highly nonlinear in nature so that it is hard to develop
a comprehensive mathematic model. To deal with this kind
of problem, the commonly used methods are fuzzy theory
and neural networks [3–5]. Fuzzy neural network (FNN) can
combine the advantages of both fuzzy logic in processing
vague information and neural network in good learning
abilities [6]. It can also handle imprecise information through
linguistic expressions. For several decades, FNNhas attracted
much attention and has been applied in many domains [7].

As a typical type of FNN, Takagi-Sugeno (T-S) type
model [8, 9] has been commonly and widely used. However,
FNN adopts traditional membership functions (such as
trigonometric function, trapezoidal function, and normal
function) to describe the subordinate relations [10]. It is
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difficult to completely reflect the uncertainty only through
the precise membership functions. Li et al. proposed a new
model, namely, the cloud model on the basis of random
mathematics and fuzzy mathematics [11]. Cloud model uses
linguistic values to represent the transformation between
qualitative concepts and their quantitative representation.
Thus, the cloud model can be introduced to replace the
membership functions in conventional T-S FNN and then
the T-S cloud inference network (T-S CIN) is constituted [12].
However, there are many drawbacks of T-S CIN by common
back propagation (BP) algorithm with gradient descent for
training, such as being easy to trap into local minimum point
and poor ability on global search [13, 14]. In addition, the
performance of BP training depends on the initial values of
the system parameters, and for different network topologies it
has to derive newmathematical expressions for each network
layer. Based on the pastwork on artificial intelligent optimiza-
tion algorithms, this paper tries to tackle the problem.

Bearing the above observation in mind, we propose
an integrated approach based on T-S CIN and improved
particle swarm optimization (IPSO) to adjust the shearer
traction speed. The remainder of this paper is organized as
follows. In Section 2, some related works are outlined based
on literatures. Section 3 describes the integrated approach
based on T-S CIN and IPSO algorithm and designs the
flowchart of proposed algorithm. Section 4 provides some
simulation examples and carries out the comparison with
other methods to verify the feasibility, efficiency, and outper-
forming of others. An industrial example of mine automation
production based on proposed system is demonstrated to
specify the application effect in Section 5. Our conclusions
are summarized in Section 6.

2. Literature Review

Recent publications relevant to this paper are mainly con-
cerned with the streams of learning algorithms for T-S
models. In this section, we try to summarize the relevant
literatures.

In recent years, many researches have used genetic
algorithms (GAs) for the learning of T-S models and attain
better performance than BP algorithm [15]. In [16], a hybrid
algorithm, combining the advantages of genetic algorithm’s
strong search capacity and Kalman filter’s fast convergence
merit, was proposed to construct a “parsimonious” fuzzy
model with high generalization ability. Wang et al. proposed
a new scheme based on multiobjective hierarchical genetic
algorithm extract interpretable rule-based knowledge from
data and this method was derived from the use of multiple
objective genetic algorithms [17]. In [18], a hybrid system
combining a fuzzy inference system and genetic algorithms
was proposed to tune the parameters in the Takagi-Sugeno-
Kang fuzzy neural network. Lin and Xu proposed a self-
adaptive neural fuzzy network with group-based symbiotic
evolutionmethod and genetic algorithms were used to adjust
the parameters for the desired outputs [19]. In [20], a fuzzy
controller design method was proposed based on genetic
algorithm to find the membership functions and the rule sets

simultaneously. Juang proposed a TSK-type recurrent fuzzy
network with a genetic algorithm for control problems [21].

Recently, as a new branch in evolutionary algorithms,
particle swarm optimization (PSO) has attracted many
researchers’ interests [22]. Compared with GA, the PSO
has some attractive characteristics, such as simple concept,
easy implementation, robustness to control parameters, and
computation efficiency when compared with other heuristic
optimization techniques. Successful applications of PSO in
some optimization problems, such as function optimization
and neural network optimization, have demonstrated its
potential [23, 24]. The combined method of fuzzy model and
PSO algorithm was proposed in [25, 26] and the authors
found that PSO algorithm could generate better results for
identifying the fuzzy model than GA with the same complex
problem. Although PSO algorithm has been developing
rapidly, it is relatively inefficient in local search and easy to
result in premature convergence. Therefore, some improved
approaches and variants of PSO have been reported. Du et al.
proposed a novel hybrid learning algorithmbased on random
cooperative decomposing particle swarm optimization algo-
rithm and discrete binary version of PSO algorithm, and the
optimal structure and parameters of T-S FNNs were achieved
simultaneously [27, 28]. In [29], a prediction algorithm
for traffic flow of T-S fuzzy neural network and improved
particle swarm optimizationwas proposed, and the improved
strategy was used to make the algorithm jump out of local
convergence by using t distribution. Lin proposed a new
learning algorithm based on the immune-based symbiotic
particle swarm optimization for use in TSK-type neurofuzzy
networks to avoid trapping in a local optimal solution and to
ensure the search capability of a near global optimal solution
[30].

In addition, a cooperative particle swarm optimization
(CPSO) algorithm has been proposed based on the notion
of coevolution and proven to be more effective than the
traditional PSO in most optimization problems [31]. In
[32], a powerful cooperative evolutionary particle swarm
optimization algorithm based on two swarms with different
behaviors to improve the global performance of PSO was
proposed. In [33], a novel adaptive cooperative PSO with
adaptive search was presented, and the proposed approach
combined cooperative learning and PSO to combat curse of
dimensionality and control the balance of exploration and
exploitation in all the smaller-dimensional subswarms.

According to above analysis, although many improved
strategies for PSO have been proposed, they have some
common shortcomings summarized as follows. Firstly, most
improved IPSO algorithms are hard to get a good tradeoff
between global convergence and convergent efficiency. Sec-
ondly, it cost long computation time and there is aweak ability
in high dimension optimization problems. Finally, there is
lack of the effective judge tool to determine whether the
particles have gotten into local optimal value or not.

In this paper, an improved PSO algorithm is proposed
by employing parameters automation strategy and velocity
resetting, and the integrated method based on IPSO learning
algorithm and T-S CIN is generated to adjust the shearer
traction speed. Some simulation examples and comparison
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with other methods are carried out, and the proposed
approach is proved feasible and efficient.

3. The Proposed Method

3.1. Cloud Model. The cloud is a model using the linguistic
value to represent the uncertainty conversion between a qual-
itative concept and its quantitative representation. Suppose𝑈
is a quantitative domain expressed in precise values and 𝐴

is a qualitative concept in 𝑈. If a quantitative value 𝑥 ∈ 𝑈

is a random realization of the qualitative concept 𝐴 and the
membership of 𝑥 to 𝐴, 𝜇(𝑥) ∈ [0, 1], is a random number
with a stable tendency: 𝜇: 𝑈 → [0, 1], ∀𝑥 ∈ 𝑈, 𝑥 → 𝜇(𝑥),
then the distribution of 𝑥 on domain𝑈 is called the cloud and
each 𝑥 is called a cloud droplet.

Normal cloud is widely used as a cloud model. We
suppose that 𝑅(𝐸

1
, 𝐸
2
) denotes a one-dimensional normal

distribution random function, where 𝐸
1
is the expected value

and𝐸
2
is the standard deviation. If 𝑥 (𝑥 ∈ 𝑈) and 𝜇(𝑥) satisfy

the equations, which can be expressed as follows:

𝑥 = 𝑅 (Ex,En) ,

𝑝 = 𝑅 (En,He) ,

𝜇 = exp(−(𝑥 − Ex)2

2𝑝2
)

(1)

then the distribution of 𝑥 on domain 𝑈 is called the normal
cloud. In (1), Ex, En, and He denote the expectation, entropy,
and hyper entropy, respectively, which are used to describe
the numerical characteristics of cloud. Ex is the expectation
of cloud droplets in the distribution of the domain and is the
most typical point that represents this qualitative concept. En
is the uncertain measurement of the qualitative concept and
reflects the relevance of fuzziness and randomness. He is the
uncertain measurement of entropy and is determined by the
fuzziness and randomness.

A possible form of normal cloud and membership func-
tion, whose linguistic values are close to zero, can be shown as
Figure 1. Obviously, membership function is a specific curve.
Once the membership function represents the property of
fuzziness, it is no longer vague. However, normal cloud is
composed of some cloud droplets, which can reflect the
fuzziness. The membership is a group of random values with
a stable tendency, rather than fixed values. Cloudmodel is not
described through certain functions, therefore, to enhance
the processing capacity for uncertainty.

3.2. Structure of T-S Cloud Inference Network. For amultiple-
input and single-output (MISO) system, the T-S model can
be given as follows: let 𝑋 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
] denote an input

vector, where each variable 𝑥
𝑖
is a fuzzy linguistic variable.

The set of linguistic variables for 𝑥
𝑖
is represented by 𝑇(𝑥

𝑖
) =

{𝐴
1

𝑖
, 𝐴
2

𝑖
, . . . , 𝐴

𝑚

𝑖
} (𝑖 = 1, 2, . . . , 𝑛), where 𝐴𝑗

𝑖
(𝑗 = 1, 2, . . . , 𝑚)

is the 𝑗th linguistic value of the input 𝑥
𝑖
. The membership

of fuzzy set defined on domain of 𝑥
𝑖
is 𝜇
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚). According to [8], the T-S CIN is composed
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Figure 1: Normal cloud and membership function.

of four layers, which can be divided into two networks:
antecedent network and consequent network. The first three
layers of this T-S CIN correspond to the antecedent network
and the fourth layer is output layer. The structure of T-S CIN
can be described as Figure 2.

In Figure 2, the purpose andmeaning of each layer can be
defined as follows.

First Layer.This layer is the input layer of antecedent network
and no function is performed in this layer.The nodes are only
used to transmit the input values to the second layer.

Second Layer. This layer is the fuzzification layer by the use of
cloud model. Nodes in this layer correspond to one linguistic
label of the input variables in the first layer. Each node
represents a cloud model, which is used to realize the cloud
of input variables. In this study, the number of partitions for
the cloud is set as𝑚 and the total number of second layers is
𝑛 × 𝑚. The degree of membership cloud for input variable 𝑥

𝑖

can be calculated through the following equations:

𝜇
𝑖𝑗
(𝑥
𝑖
) = exp[

[

−

(𝑥
𝑖
− Ex
𝑖𝑗
)
2

2𝑝
2

𝑖𝑗

]

]

,

(𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚) ,

(2)

where 𝑝
𝑖𝑗
= 𝑅(En

𝑖𝑗
,He
𝑖𝑗
).

Third Layer. This layer is the cloud inference layer (cloud rule
layer). Firing strength of every rule is calculated. Each node
describes one cloud rule and is used tomatch the input vector.
The degree that the input vector𝑋matches rule Rule

𝑗
can be

computed through the following equation:

𝜆
𝑗
= 𝜇
1𝑗
⋅ 𝜇
2𝑗
⋅ ⋅ ⋅ 𝜇
𝑛𝑗
=

𝑛

∏

𝑖=1

𝜇
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑚) , (3)

where 𝜆
𝑗
is called the firing strength of rule Rule

𝑗
.
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Figure 2: Structure of T-S cloud inference network for the MISO system.

Fourth Layer. In consequent network, it is a linear relation-
ship between the layers. The hidden layer output of this
network can be given through the following equation:

𝑦𝑘
𝑗
=

𝑛

∑

𝑖=0

𝑥
𝑖
⋅ 𝜔
𝑖𝑗

(𝑥
0
= 1; 𝑗 = 1, 2, . . . , 𝑚) , (4)

where 𝜔
𝑖𝑗
is the coefficient of the network.

The output layer sums up all the activated values from the
cloud inference rules to generate the overall output 𝑦, which
can be calculated by

𝑦 =

∑
𝑚

𝑗=1
𝜆
𝑗
⋅ 𝑦𝑘
𝑗

∑
𝑚

𝑗=1
𝜆
𝑗

. (5)

3.3. Learning Algorithm for T-S CIN. According to the
principle of T-S CIN, the structure and parameters manly
include the expectation Ex

𝑖𝑗
, entropy En

𝑖𝑗
, hyper entropyHe

𝑖𝑗

of cloud model, and coefficient 𝜔
𝑖𝑗
of consequent network.

Conventional learning algorithm for T-S CIN is the gradient
descent method. However, the initial values of gradient
descent method have a great influence on the learning effect
of network and thismethod is easy to fall into localminimum.
In this paper an improved particle swarm optimization
algorithm (IPSO) is proposed as the learning algorithm to
optimize the structure and parameters of T-S CIN.

The basic particle swarm optimization algorithm (PSO)
is that a swarm of particles are initialized randomly in the
solution space and each particle motions in a certain rule
to explore the optimal solution after several iterations. It has
two attributes of position and velocity.The position of the 𝑖th
particle is 𝑋

𝑖
and the velocity can be denoted by 𝑉

𝑖
. In T-S

CIN, the parameter of hyper entropy He
𝑖𝑗
is the uncertain

measurement of entropy and depends on the actual situation.
In this paper, He

𝑖𝑗
is set as He

𝑖𝑗
= En

𝑖𝑗
/10. Thus, other

parameters should be optimized through PSO. The location
of a particle 𝑋

𝑖
corresponding to T-S CIN can be encoded as

Figure 3.
Therefore, the position and the velocity of the 𝑖th particle

can be given as

𝑋
𝑖
=

[
[
[
[
[

[

𝑥
𝑖

11
, 𝑥
𝑖

12
, . . . , 𝑥

𝑖

1,3𝑛+1

𝑥
𝑖

21
, 𝑥
𝑖

22
, . . . , 𝑥

𝑖

2,3𝑛+1

.

.

.

𝑥
𝑖

𝑚1
, 𝑥
𝑖

𝑚2
, . . . , 𝑥

𝑖

𝑚,3𝑛+1

]
]
]
]
]

]

,

𝑉
𝑖
=

[
[
[
[
[

[

V𝑖
11
, V𝑖
12
, . . . , V𝑖

1,3𝑛+1

V𝑖
21
, V𝑖
22
, . . . , V𝑖

2,3𝑛+1

.

.

.

V𝑖
𝑚1
, V𝑖
𝑚2
, . . . , V𝑖

𝑚,3𝑛+1

]
]
]
]
]

]

.

(6)

Particles are updated through tracking two “extremums”
in each iteration. One is the individual optimal solution 𝑃

𝑖
=

[𝑝
𝑖

𝑗𝑙
]
𝑚×(3𝑛+1)

found by the particle itself and another is the
global optimal solution 𝑃

𝑔
= [𝑝

𝑔

𝑗𝑙
]
𝑚×(3𝑛+1)

found by the
particle population. The specific iteration formulas can be
expressed as follows:

V𝑖
𝑗𝑙
(𝑘 + 1) = 𝑤

𝑘
V𝑖
𝑗𝑙
(𝑘) + 𝑐

1
𝑟
1
[𝑝
𝑖

𝑗𝑙
(𝑘) − 𝑥

𝑖

𝑗𝑙
(𝑘)]

+ 𝑐
2
𝑟
2
[𝑝
𝑔

𝑗𝑙
(𝑘) − 𝑥

𝑖

𝑗𝑙
(𝑘)] ,

𝑥
𝑖

𝑗𝑙
(𝑘 + 1) = 𝑥

𝑖

𝑗𝑙
(𝑘) + V𝑖

𝑗𝑙
(𝑘 + 1) ,

(7)
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Figure 3: Encoding of a particle location.

where 𝑘 is the current iteration times; 𝑖 = 1, 2, . . . ,𝑀, 𝑀 is
the number of particles; 𝑗 = 1, 2, . . . , 𝑚 and 𝑙 = 1, 2, . . . , 3𝑛 +

1; 𝑐
1
and 𝑐
2
are the acceleration coefficients; 𝑟

1
and 𝑟

2
are

uniformly distributed random numbers in the range (0, 1).
The velocity vector 𝑉 is limited to the range [−𝑉max, 𝑉max]
to reduce the likelihood of the particle leaving the search
space and the position vector 𝑋 is clamped to the range
[𝑋min, 𝑋max], which can be determined according to practical
problem and 𝑉max is usually chosen to be 𝛼 × 𝑋max, with
𝛼 ∈ [0.1, 1.0]; 𝜔

𝑘
is the current inertia weight.

Shi and Eberhart [34] proposed a linearly varying inertia
weight (𝑤

𝑘
) over the course of generations, which signifi-

cantly improves the performance of PSO and can be updated
by the following equation:

𝑤
𝑘
= (𝑤max − 𝑤min)

𝑇 − 𝑘

𝑇
+ 𝑤min, (8)

where 𝑤max and 𝑤min are the maximum and minimum
of inertia weight; 𝑇 is the maximum number of allowable
iterations. The empirical studies in [34] indicated that the
optimal solution can be improved by varying the value of 𝑤

𝑘

from 0.9 at the beginning of the evolutionary process to 0.4
at the end of the evolutionary process for most problems.

Although the version of PSO based on the time-varying
inertia weight is capable of locating a good solution with
a significantly faster velocity, the ability to fine-tune the
optimum solution is comparatively weak, mainly due to the
lack of diversity at the end of the evolutionary process.
Observed from (7), the particles tend to the optimal solution
through two stochastic components: one is the cognitive
component and another is the social component. Thus,
proper control of the two components is urgently needed
and effective for searching for the optimum solution. In this
paper, a version of PSO based on time-varying accelera-
tion coefficients is presented to adjust the components by
decreasing 𝑐

1
and increasing 𝑐

2
with time. Based on empirical

studies, Ratnaweera et al. [35] have observed that the optimal
solutions on most of the benchmarks can be improved by
decreasing 𝑐

1
from 2.5 to 0.5 and increasing 𝑐

2
from 0.5 to

2.5 over the full range of the search. Therefore, the varying
scheme of 𝑐

1
and 𝑐
2
can be given as follows:

𝑐
1
= 2.5 − (2.5 − 0.5) ⋅

𝑘

𝑇
,

𝑐
2
= (2.5 − 0.5) ⋅

𝑘

𝑇
+ 0.5.

(9)

At the beginning of the search, a large cognitive compo-
nent and a small social component are assigned to guarantee
the particles’ moving around the search space. On the
other hand, a small cognitive component and a large social
component allow the particles to converge to the global
optimum in the latter of the search.

PSO can quickly find a good local solution but it some-
times suffers from stagnation without an improvement and
then traps in the local optimal solution. In this study, the
fitness variance is adopted to measure whether PSO gets into
local optimum, which can be calculated as follows:

𝜎
2
=

1

𝑀

𝑀

∑

𝑖=1

[
1

𝑓
Δ

(𝑓
𝑖
−

1

𝑀

𝑀

∑

𝑖=1

𝑓
𝑖
)]

2

, (10)

where 𝑓
𝑖
denotes the fitness of the 𝑖th particle; 𝑓

Δ
denotes

the normalized factor. The fitness function and 𝑓
Δ
can be

calculated as follows:

𝑓
𝑖
=
1

𝑞

𝑞

∑

𝑠=1

(𝑦
𝑠
− 𝑌
𝑠
)
2

,

𝑓
Δ
= max{1,max{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑖
−

1

𝑀

𝑀

∑

𝑖=1

𝑓
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}} ,

(11)

where 𝑞 is the total number of training samples; 𝑦
𝑠
is the

network output of the 𝑠th training sample; 𝑌
𝑠
is the expected

output.Thus, 𝑓
𝑖
is the normalized mean squared error (MSE)

of the individual 𝑖 on the training set.
The fitness variance 𝜎

2 is the symbol of particles con-
vergence degree. When 𝜎

2 is smaller than a specified value
𝜎
2

min, the algorithm is considered as falling into precocity.
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Therefore, to avoid this drawback of basic PSO, a mutation
mechanism based on resetting the velocity is proposed to
enable particles to have a new momentum. Under this new
strategy, when 𝜎

2
< 𝜎
2

min, each particle 𝑖 will be selected
by a predefined probability from the population, and then
a random perturbation is added to each dimension V𝑖

𝑗𝑙

(selected by a predefined probability) of velocity vector 𝑉𝑖 of
the selected particle 𝑖. The pseudocode of resetting velocity
can be given as in Pseudocode 1, where 𝑝 1, 𝑝 2, and 𝑝 3

are separately generated and uniformly distributed random
numbers in range (0, 1).

3.4. Flowchart of Proposed Method. With above specific
treatment, structure and parameters of the T-S CIN evolution
can be implemented by IPSO. According to above description
about the learning algorithm for T-S CIN, the proposed
approach is an iterative algorithm and can be coded easily on
the computer, and the flowchart can be summarized as shown
in Figure 4.

4. Simulation Examples

In this section, an example on the adjustment of shearer
traction speed is provided to validate the proposed method.
The aimof this study is to improve the accuracy and efficiency
of identification for traction speed. Furthermore, the example
can be divided into three main stages. Firstly, according to
the working principle of shearer, the level of traction speed
and mainly evaluation indexes can be determined and the
sample can be established reasonably. Secondly, according to
the obtained evaluation indexes, the T-S CIN model can be
constructed. Thirdly, the constructed standard T-S CIN, the
T-S CIN with PSO, IPSO, and traditional T-S FNN, the T-
S FNN with PSO, IPSO optimization are, respectively, tested
with the same training and test samples to compare the accu-
racy and efficiency in adjustment of shearer traction speed.

4.1. Sample Preparation. In a fully mechanized coal mining
face, the adjustment of shearer traction speed should consider
the coordination with other coal mining equipment (scraper
conveyor and hydraulic support). After the analysis of shearer
working principle, the evaluation indexes of traction speed
mainly consist of cutting motor current (CMC), cutting
motor temperature (CMT), traction motor current (TMC),
tractionmotor temperature (TMT), scraper conveyor current
(SCC), and scraper conveyor speed (SCS). For a fixed shearer
of MG 300/730-WD, the adjusting range of traction speed
is 0∼9.0m/min. The levels of traction speed are reasonably
partitioned and can be applied in controlling shearer. Based
on the empirical studies, the speed levels can be divided as 0∼
2.0m/min (Class I), 2.0∼3.5m/min (Class II), 3.5∼4.5m/min
(Class III), 4.5∼6.0m/min (Class IV), 6.0∼7.5m/min (Class
V), and 7.5∼9.0m/min (Class VI). However, as the informa-
tion in the database is collected after the workers operate the
coalmining equipment, the informationmaybe not very ideal
and practical. Therefore, a threshold of 0.2 is introduced to
express the subjective factors, and the traction speed levels
from the database can be processed and described as Figure 5.

For 𝑖 = 1 to𝑀
If 𝑝 1 > 0.5
Particle 𝑖 is selected for velocity resetting
For 𝑗 = 1 to𝑚
For 𝑙 = 1 to (3𝑛 + 1)

If 𝑝 2 > 0.5
V𝑖
𝑗𝑙
= V𝑖
𝑗𝑙
+ (2 × 𝑝 3 − 1) × 𝑉max

End if
End for

End for
End if

End for

Pseudocode 1

Begin

Sample data

Initialize position, velocity, and

End

Yes

No

Yes

No

Reset the velocity

Decode and generate T-S CIN
parameters

Mutation
mechanism

n, m, M, T, Minerr, r1, r2, Vmax ,
Xmax , 𝛼, wmax , wmin , and 𝜎2min

Set k = 1

Calculate ys of each sample,
s = 1, 2, . . . , q

Calculate fi, fΔ , ,Pi, and Pg

i = 1, 2, . . . , M

Update w, c1, c2, Xi, and Vi

Calculate fitness variance 𝜎2

𝜎2 < 𝜎2min ?

Randomly generate p 1, p 2, p 3

k = k + 1Calculate f(Pg)

k ≤ T?
f(Pg) < ?

Output Pg

Minerr

Figure 4: Flowchart of proposed method.
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Figure 5: Redefined levels of traction speed.

Taken Class 1 (Class I) as an example, the level of speed
0∼2m/min can be redefined as follows:

Class (Sp)New
1

=

{{

{{

{

−0.4Sp + 1, 0 < Sp ≤ 0.5,

0.4Sp + 0.6, 0.5 < Sp ≤ 1.5,

−0.4Sp + 1.8, 1.5 < Sp ≤ 2,

(12)

where Sp is the current traction speed of shearer. In the same
way, the redefined functions for other speeds can also be
obtained easily.

According to the information database acquired from the
2215 coal face in Changcun Coal Mine of Yima Coal Industry
Group Co., 400 groups of samples are randomly extracted
and rearranged as shown in Figure 6.

4.2. Parameters Selection for Proposed Method. There are
some parameters in IPSO which need to be specified by the
user. However, it is unnecessary to tune all these parameters
for the sample data because IPSO is not very sensitive to
them. Therefore, these parameters are set as the number
of particles 𝑀 (50); the maximum number of allowable
iterations𝑇 (500); the position and velocity range of particles
([−1, 1]); the initial acceleration coefficients 𝑐

1
and 𝑐
2
of IPSO

(2.5 and 0.5); the inertia weights 𝑤max and 𝑤min of IPSO
(0.9 and 0.4); the termination error Minerr (0.0001); the
minimum fitness variance for mutation 𝜎

2

min (0.001).
The structure of T-S CIN is determined by the sample

data. In this simulation example, the input data of T-S
CIN is 6-dimensional and output data is 1-dimensional.
Thus, 𝑛 = 6 and 𝑚 can be set as 12. Other parameters
including expectation Ex

𝑖𝑗
, entropy En

𝑖𝑗
, hyper entropy He

𝑖𝑗
,

and coefficient 𝜔
𝑖𝑗
can be optimized through IPSO.

4.3. SimulationResults. Thesample data in Figure 6 should be
normalized firstly and are randomly split into a training data
set containing 350 samples and a testing data set containing
the remaining 50 samples, which is only used to verify the
accuracy and the effectiveness of the trained T-S CIN model.

The relevant parameters are given as Section 4.3
described.The proposed method runs 10 times and the mean

values are regarded as the final results. The performance
criterion of T-S CIN can be measured by the mean squared
absolute error (MSE) and the mean absolute error (MAE)
between the predicted outcome and the actual outcome. The
learning curves with MSE andMAE of T-S CINmodel based
on IPSO can be shown in Figure 7.

As shown in Figure 7, after the IPSO-based T-S CIN
model is trained for 500 times, MSE of the training samples
can reach 0.00065 and MAE can reach 0.00987. Actually, the
values of MSE and MAE basically keep stable at the times
of 280, which can show good convergence performance of
proposed method.

After the training phase, a T-S CIN model can be
obtained. In order to verify the accuracy of the model, the
remaining 50 samples are utilized to test its performance.The
prediction errors and deviation comparison diagrams of the
network output and actual output are given as Figure 8. As
shown in Figure 8, the MSE and MAE of testing samples are
0.006118 and 0.0346, respectively, showing good generaliza-
tion performance. Furthermore, the mean relative error and
maximum relative error are 1.23% and 5.78%, which satisfies
the accuracy requirement.

4.4. Comparison with OtherMethods. In order to indicate the
meliority of T-S CIN integrating IPSO, the T-S CINs based
on the basic PSO (bPSO), CPSO, and IPSO are provided to
solve the problem of above example. The training samples
and testing samples are the same. The configurations of
simulation environment for three algorithms are uniform and
the relevant parameters are in common with above example.
The compared learning curves with MSE and MAE of T-S
CIN models based on bPSO, CPSO, and IPSO can be shown
in Figure 9 and some performance criterions are listed in
Table 1, where 50 MSE and 50 MAE are the values of MSE
andMAE in the stage of 50 iterations. Furthermore,MRE and
MaxRE denote themean relative error andmaximum relative
error of the network output and actual output.

Seen from Figure 9 and Table 1, the declining velocity of
the error of CPSO and IPSO is faster than that of bPSOduring
the training phase. The MAE of IPSO-based T-S CIN gets to
<0.05 for 30 iterations and the MSE of training phase reaches
a stable phase for 300 iterations. However, the training errors
of MAE with the bPSO, CPSO-based T-S CIN model are still
0.05026 and 0.1293 for 30 iterations. In the testing phase, the
test sample error of bPSO, CPSO-based T-S CIN is much
larger than the same input conditions of proposed method.
By analysis, the criterions of CPSO-based T-S CIN are more
excellent than these of other methods both in the training
stage and in the testing stage, which proves the effectiveness
and feasibility of proposed method.

In order to verify the superiority of T-S CIN (T-S NN
coupling cloud model), the sample data in Figure 6 are used
to test the performance of T-S CIN and conventional T-S
FNN, and the proposed IPSO is also integrated with the two
networks. Thus, four algorithms are developed, marked as T-
S FNN, T-S CIN, T-S FNN IPSO, and T-S CIN IPSO. The
configurations of simulation environment for four algorithms
are uniform and the parameters are in common with above
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Figure 6: Sample data of this example.

Table 1: The compared criterions of T-S CIN based on bPSO, CPSO, and IPSO.

Method Training phase Testing phase
MSE MAE 50 MSE 50 MAE MSE MAE MRE MaxRE

bPSO 0.04024 0.05396 0.07361 0.11573 0.09726 0.2324 9.86% 17.36%
CPSO 0.00626 0.02698 0.03657 0.04956 0.01853 0.0954 4.65% 9.57%
IPSO 0.00065 0.00987 0.02196 0.03779 0.006118 0.0346 1.23% 5.78%

simulation example.The training samples and testing samples
of these algorithms should keep consistent. In order to
avoid the random error, each algorithm runs 10 times and
calculated the average values. The comparison diagram of
different testing results is shown in Figure 10.

As Figure 10 illustrated, the prediction errors of T-S CIN
are obviously smaller than these of T-S CIN. Through the
application of cloud model replacing the membership func-
tion in T-Smodel, the processing capacity for the uncertainty
of the problem can be enhanced and the T-SCIN performs
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with lower MSE, MAE, MRE, and MaxRE. Furthermore,
the compared results of coupling IPSO algorithm verify the
outperforming others of proposed method.

4.5. Further Discussion. In order to further compare and
analyze the overall performance of T-S CIN based on IPSO,
CPSO, and PSO optimization with the optimal solution
(the actual value), the same 400 samples are experimented.
In this example, a certain number of samples, denoted by

training-size (𝑇size), are randomly selected from the data as
the training samples and 50 samples are randomly selected
from the remaining 400−𝑇size samples as the testing samples.
Each neural network is then trained and tested 50 times
and the average result is recorded as the final result. In this
study, the training-size of the example varies over 𝑇size =

50, 80, 110, . . . , 350. That is to say, we run several trials over
the networks with training-size ranging from 50 to 350.
According to [36], the relative error |𝑦 − 𝑌|/𝑌 (where 𝑦 is
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the network output and𝑌 is the expected output) is chosen as
the metric to express the result as a proportion of the optimal
solution (the actual value).

Figure 11 plots the means of this metric (MRE) for each
trial as a function of problem size 𝑇size. It can be seen that for
all trials theMRE decreases nonlinearly with𝑇size and the T-S
CIN based on IPSO optimization outperforms T-SCIN based
on CPSO optimization, which in turn outperforms T-S CIN
based on bPSO optimization for all 𝑇size.
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Figure 11: The changes of MRE with different training-sizes.

From Figure 11, it is obvious that the deviation of T-S CIN
based on IPSO optimization is the smallest across different
training-sizes, which means that the T-S CIN based on IPSO
optimization is more stable and robust, and owns stronger
generalization ability than T-S CIN based on CPSO and PSO
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optimization regardless of the training-size.Therefore, the T-
S CIN based on IPSO optimization can obtain a relative high
accuracy to provide an effective support tool for fuzzy and
uncertain adjustment for shearer traction speed.

5. Industrial Application

In this section, a system based on proposed approach has
been developed and applied in the field of coal mining face
as shown in Figure 12.

As Figure 12 has shown, the “Gateway controller” and
“Groundmonitoring center” are used to control and monitor
the shearer working parameters, which are located under-
ground and on the ground, respectively.The proposed system
is uploaded into the PLC (programmable logic controller)
installed on the shearer and the speed level can be obtained.
The traction speed of shearer can be adjusted through
the speed level with Figure 5. The parameters of shearer
are transferred into the “Gateway controller” through the
wireless network. The “Ground monitoring center” receives
these data through the communication of the underground
optical fiber and the ground LAN.

For the shearer, the aim of adjusting traction speed is
to ensure shearer mine coal smoothly and efficiently when
shearer cuts the coal with gangue. In order to illustrate the
application effect of proposed system, the shearer operator
records the location of cutting the coal or the coal with
gangue. This effect can be perfectly reflected through the
changes of cutting motor current. In this experiment, the
cuttingmotor current is collected every 1Hz and the collected
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Figure 13: Application effect of proposed system.

data are transmitted to the “Gateway controller” and “Ground
monitoring center.” The change curve of cutting motor cur-
rent is plotted to illustrate the application effect of proposed
system, as shown Figure 13.

Seen from Figure 13, the cutting currents at the location
of 2.5m to 4.0m and 7.3m to 8.2m are a little higher than
other locations because shearer cut the coal with gangue,
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and the corresponding traction speeds are adjusted timely to
lower levels through the proposed system. The application
effect indicates that the system based on proposed method
can provide a feasible strategy for safe and efficient coal
mining.

6. Conclusions

In this paper, a novel adjustment method for shearer traction
speed is proposed,which is based onT-SCINwith integrating
IPSO algorithm. IPSO enables T-S CIN to dynamically evolve
its parameters by using a specific individual representation
and evolutionary scheme. To improve efficiency of PSO in
global search and fine-tuning of the solutions, parameter
automation adjustment strategy and velocity resetting are
used in IPSO algorithm. To demonstrate the performance of
proposed method, some simulation examples are provided
and some comparisons with other methods are carried out.
The results verify that the IPSO-based T-S CIN is an effective
support tool for fuzzy and uncertain traction speed adjusting
of shearer.
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