
Research Article
A Dendritic Neuron Model with Adaptive Synapses Trained by
Differential Evolution Algorithm

Zhe Wang ,1 Shangce Gao ,1 Jiaxin Wang ,1 Haichuan Yang ,1 and Yuki Todo 2

1Faculty of Engineering, University of Toyama, Toyama-Shi 930-8555, Japan
2School of Electrical and Computer Engineering, Kanazawa University, Kanazawa-Shi 920-1192, Japan

Correspondence should be addressed to Shangce Gao; gaosc@eng.u-toyama.ac.jp

Received 22 July 2019; Revised 12 November 2019; Accepted 30 December 2019; Published 17 January 2020

Guest Editor: Eduardo Rodriguez-Tello

Copyright © 2020 Zhe Wang et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A dendritic neuron model with adaptive synapses (DMASs) based on differential evolution (DE) algorithm training is proposed.
According to the signal transmission order, aDNMcan be divided into four parts: the synaptic layer, dendritic layer,membrane layer, and
somatic cell layer. It can be converted to a logic circuit that is easily implemented on hardware by removing useless synapses and dendrites
after training.-is logic circuit can be designed to solve complex nonlinear problems using only four basic logical devices: comparators,
AND (conjunction), OR (disjunction), and NOT (negation). To obtain a faster and better solution, we adopt the most popular DE for
DMAS training. We have chosen five classification datasets from the UCI Machine Learning Repository for an experiment. We analyze
and discuss the experimental results in terms of the correct rate, convergence rate, ROC curve, and the cross-validation and then compare
the results with a dendritic neuron model trained by the backpropagation algorithm (BP-DNM) and a neural network trained by the
backpropagation algorithm (BPNN). -e analysis results show that the DE-DMAS shows better performance in all aspects.

1. Introduction

-e human brain consists of billions of neurons, and a single
neuron cell is constituted by a cell body, an axon, a cell
membrane, and a dendrite. Dendrites occupy more than 90
percent of the nerve cell organization and have a pivotal role
in a human’s learning process. -e first artificial neuron was
originally proposed by MuCulloch and Pitts in 1943 [1].-is
model is an abstract and simplified model that was con-
structed according to the structure and working principle of
a biological neuron membrane based on mathematics and
algorithms called threshold logic.

-e perceptron is a method for pattern recognition, which
was first created by Rosenblatt in 1958 [2, 3]. It was the first
artificial neural network model, laying the foundation for the
neural networkmodel. However, inMinsky Papert’s analysis of
Rosenbatt’s single-layer perceptron from a mathematical
perspective [4], the artificial neural network was criticized with
an example of the XOR operation. -e problem of how an
intelligent system independently learns from an environment is
not well solved, and the development of artificial neural net-
works (ANNs) has deteriorated. In the mid-1980s, scholars

began to explore the inner logic of knowledge discovery in
depth and discovered that inductive logic, especially incom-
plete induction logic, is a reasonable way to discover knowl-
edge. Rumelhart et al. surprisingly discovered that the
backpropagation error (BP) [5], whichwas invented byWerbos
more than 10 years ago, can effectively solve the learning
problems of hidden nodes in multilayer networks. It is not
correct to accept Minsky’s assertion that there may be no
effective learning methods for multilayer networks. Since then,
people’s enthusiasm for ANN research has been rekindled.

However, researchers have argued that the use of
McCulloch and Pitts’s neuron is inadvisable because it disre-
gards the dendritic structure in a real biology neuron. Koch and
Segev [6, 7] proposed that the interaction between synapses and
the action at the turning point of a branch can be approximated
as logic operation. In recent years, several dendritic computing
models considering the functions of dendrites in a neuron have
been proposed in the literature. A dendritic morphological
neural network (DMNN) which is based on the traditional
morphological neural networks [8, 9] is proposed for solving
classification problems [10] and 3D object recognition tasks
[11]. A nonlinear dendritic neuronmodel equippedwith binary

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 2710561, 19 pages
https://doi.org/10.1155/2020/2710561

mailto:gaosc@eng.u-toyama.ac.jp
https://orcid.org/0000-0003-1975-1819
https://orcid.org/0000-0001-5042-3261
https://orcid.org/0000-0002-9775-7020
https://orcid.org/0000-0001-7100-7945
https://orcid.org/0000-0001-7379-1374
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2710561

synapses [11] is demonstrated to be capable of learning
temporal features of spike input patterns. Most recently, a
dendritic neuron model (DNM) with nonlinear synapses
has been proposed [12–14]. Different from DMNN, DNM
only considers a single neuron rather than the network of a
couple of neurons and has shown great information pro-
cessing capacity [15–19]. -e DNM uses a pruning tech-
nique derived from an interesting biological phenomenon:
in the early stages of neuron triggering, the selective re-
moval of unnecessary synapses and dendrites does not
cause neuron cell death [20, 21]. -e DNM subtly solves
nonlinear problems that cannot be well handled by the
Koch model [22, 23]. -e DNM has four layers in its
structure. -e input signal is triggered in the synaptic layer
and then sequentially received by the dendritic layer. -e
membrane layer collects the output from each branch of the
dendritic layer and sends the results to the somatic cell
layer. By the pruning function of the DNM, the precise
dendritic structure and morphology are simplified. After
training, all mature neurons are approximately replaced by
a logic circuit that consists of comparators, AND gates, OR
gates, and NOT gates.

In this study, we use a dendritic neuron model with
adaptive synapses (DMASs). Recent advances in neurobiology
have highlighted the importance of dendritic calculation. In
2019, Beaulieu-Laroche and his team [24] discovered that
dendrites are always active when the cell body of a neuron is
active, which implies that the dendritic synapse has a role in the
neural computing process. Based on this biophysical hy-
pothesis, we develop a synaptic adaptable neuron network
without parameters that need to be artificially adjusted. All
synaptic layer parameters will be trained by the learning al-
gorithm. -e effectiveness of adaptive synapses will be proved
in Section 4.3. -us, we have to consider additional aspects in
the choice of learning algorithms.

With the emergence of various new optimization al-
gorithms, how to train an ANN has been discussed [25]. BP
is very effective as an ANN training algorithm and can solve
some nonlinear problems [5]. However, BP has certain
limitations; for example, falling into a local minimum is easy,
the convergence speed is slow, and it is prone to overfitting
[26]. Differential evolution (DE) has been employed to train
DMAS in our research. DE was first proposed by Storn and
Price in 1997 [27]. It is a biological-inspired, population-
based global optimization algorithm. Due to its simple
concept, easy implementation, fast convergence, and ex-
cellent robustness, it has been more extensively utilized than
other mainstream evolutionary algorithms, such as the ge-
netic algorithm (GA) [28, 29], the evolutionary strategy (ES)
[30, 31], and particle swarm optimization (PSO) [32] in
recent years. DE is similar to the GA and ES but differs from
them because a unique differential evolution operator is
referenced in DE. DE has proven to be superior to many
algorithms [33–35]. Because of these characteristics and the
advantages of DE, it has been recognized by scholars in the
field of ANNs [36, 37]. Also, DE has been applied in dendrite
morphological neural networks [38].

Five realistic classifications problems are considered in
our research to validate our model (DE-DMAS) : iris, BUPA

liver disorders, breast cancer, glass, and Australian credit
approval (ACA). All the datasets are preprocessed as the
binary-classification problem. -ese five datasets have un-
dergone preprocessing, including outlier repair to fill in
missing values. We compare the experimental results of DE-
DMAS, BP-DNM, and BPNN for these five datasets. Ex-
perimental results show that DMAS outperforms its peers in
terms of test accuracy, sensitivity, specificity, receiver op-
erating characteristic (ROC), and cross-validation.

-e remainder of this paper is organized as follows:
Section 2 introduces the structure of our model (DMAS).
-e learning algorithm (DE) is explained in Section 3. -e
experimental method is designed in Section 4. Section 5
presents the analysis and discussion of the experimental
results. -e conclusions are provided in Section 6.

2. Dendritic Neuron Model with
Adaptive Synapses

DMAS is applied in our research. -e neuron model in-
cludes four layers: the adaptive synaptic layer, dendritic
layer, membrane layer, and somatic cell layer. In this section,
we detail the structure and principle of these four layers.

2.1. Adaptive Synaptic Layer. -e synaptic layer receives and
computes the input signal and sends the calculated results to
the dendritic layer. Once the input signal exceeds the
threshold, synapses will be fired. To simulate this process, we
design a synaptic layer with a sigmoid faction as in the
following equation:

Yi,m �
1

1 + e− k wimxi− qim()
, (1)

where xi is the input and Yi,m is the output of them-th (m �

1, 2, 3, . . . , M) branch of dendrites. -e i in i � 1, 2, 3, . . . , I

represents the number of inputs that have been normalized
into [0, 1] from the dataset. I also represents the number of
synapses on each dendrite. k is a tunable parameter which
denotes the connection strength between presynaptic and
postsynaptic neurons. To reduce the parameters that need to
be adjusted in our study, k will be used as the training object.
Due to the nature of the sigmoid function, this step has a
minimal effect on the function. wim and qim are objects that
also need to be trained by the learning algorithm; their values
will be set initially within [− 2, 2]. Because the synaptic layer
works with these three training objects and inputs and no
artificial adjustment parameters are needed, this synapse has
an adaptive function [39]. -e threshold θim is an important
indicator for synapses and is calculated by the following
equation:

θim �
qim

wim

. (2)

After the synapse has been activated by the sigmoid
function, it can adopt one of the 4 different states according
to different ranges of wim and qim. -ese states are described
as the direct-connecting state (●), opposite-connecting state
(▂), constant-1 state (①), and constant-0 state (⓪), as shown

2 Computational Intelligence and Neuroscience

in Figure 1. According to the change of the values of wim and
qim, the four states are divided into the following six cases.

Case (a): direct-connecting state, when wim > qim > 0. In
this state, if the value of the input xim is greater than θim, the
value of the output approximately equals 1; otherwise, it
equals 0. For example, when wim � 1.0 and qim � 0.5, the
function can be shown in Figure 2(a), where the X-axis
represents the value of the input x and the Y-axis represents
the value of the output. Since the range of input is [0, 1], we
only need to pay attention to the area between the two
dashed lines.

Case (b): opposite-connecting state, e.g., when
0> qim >wim. In this state, if the value of the input xim is less
than θim, the value of the output approximately equals 1;
otherwise, it equals 0. A synapse in this state works as a logic
NOT operation. For example, when wim � − 1.0 and
qim � − 0.5, the function diagram is as shown in Figure 2(b).

Case (c1): constant-1 state when wim > 0> qim. For ex-
ample, when wim � 1.0 and qim � − 0.5, the function dia-
grams are as shown in Figure 2(c1).

Case (c2): constant-1 state when 0>wim > qim. For ex-
ample, when wim � − 1.0 and qim � − 1.5, the function dia-
grams are as shown in Figure 2(c2). In cases (c1) and (c2),
regardless of the value of the input xi,m, the output remains
1.

Case (d1): constant-0 state when qim >wim > 0. For ex-
ample, when wim � 1.0 and qim � 1.5, the function diagrams
are as shown in Figure 2(d1).

Case (d2): constant-0 when state qim > 0>wim. For ex-
ample, when wim � − 1.0 and qim � 0.5, the function dia-
grams are as shown in Figure 2(d2). In cases (d1) and (d2),
regardless of the value of the input xim, the output remains 0.

2.2. Dendritic Layer. -e outputs of the synaptic layer are
calculated by the dendritic layer using multiplication. Be-
cause the sigmoid function is employed, the outputs are
approximately equal to either 1 or 0. -e outputs of the
dendritic layer are also approximately equal to either 1 or 0.
-e dendrites work the same as a logic AND operation. -e
equation is

Zm � 􏽙
I

i�1
Yim. (3)

2.3. Membrane Layer. -e membrane accepts the output of
the dendritic layer as the input and linearly sums the values.
-e summation can be approximately simulated with logic
OR operations. -e equation is

V � 􏽘
M

m�1
Zm. (4)

2.4. SomaticCell Layer. -e somatic cell layer will receive the
signal from the membrane. -e signal is calculated using the
sigmoid function as follows:

O �
1

1 + e− ksoma V− θsoma())
, (5)

where ksoma and θsoma are set to 10 and 0.5, which were
suggested to be the most promising setting in our previous
papers [40, 41].

2.5. SimplifiedModel. We pruned the synapses and dendrites
to obtain our simplifiedmodel.-e synapse receiving the input
signal is activated and converted into the constant-1, constant-
0, direct-connecting, or opposite-connecting state. -e acti-
vated signal is transmitted to the dendrites. -ese signals are
multiplied in the dendrites, enter the membrane, and are re-
ceived by the soma. When a synapse is converted into the
constant-1 state, we will remove this synapse since 1 multiplied
by any number is equal to the number itself. When a synapse
on a dendrite is converted to the constant-0 state, we will
remove this dendrite since 0 multiplied by any number equals
0. An example is shown in Figure 3. In the upper left diagram,
dendrite (2) has a constant-0 state synapse (c) and an opposite-
connecting state synapse (d). Because synapse (c) is in the
constant-0 state, dendrite (2) is removed, including the other
synapses, as shown in the lower left diagram. We refer to this
step as dendrite pruning. In the lower left diagram, a constant-1
state synapse (a) and a direct-connecting state synapse (b) exist
on dendrite (1). Since synapse (a) is in the constant-1 state, this
synapse is removed. We refer to this step as synapse pruning.
-e diagram on the right shows the simplified model after
pruning, and only dendrite (1) and synapse (b) remain.

3. Learning Algorithm

As previously mentioned, we use the three parameters of the
synaptic layer as training objects. -is space is a vast search
space. We use the DE algorithm as the learning algorithm of
DMAS. Since DE is excellent in global optimization [42], it can
find the optimal solution faster in the immense search space.

DE demonstrates a fixed number of vectors that are
randomly initialized in the search space. -e new vectors
evolve over time to explore the minimum of the objective
function. In the process of evolution, arithmetical operators
are combined with the operators of mutation, hybridization,
and selection. A randomly generated starting population will
be evolved to an optimal solution. DE has numerous strategies

(a) (b)

1

(c)

0

(d)

Figure 1: Four connecting states: (a) direct-connecting state;
(b) opposite-connecting state; (c) constant-1 state; (d) constant-0 state.

Computational Intelligence and Neuroscience 3

[43], and we used DE/rand/1/bin in this study. Other strat-
egies include DE/best/1/exp and DE/rand/2/exp, and the
preliminary experimental results had suggested that they were
slightly inferior than DE/rand/1/bin because it has the sim-
plest structure [44, 45]. Next, we will explain how DE works.

Step 1. Parameter setup. Select the population size P and
restrict the boundary. Confirm the cross-probability CR,
the impact factor F [46, 47], and the termination criterion
of the maximum number of generations (G).

Step 2. Initialization of the population. Set the gener-
ation g � 0. Initialize a population containing P indi-
viduals. -e attributes of each individual include
weights w, thresholds q and a k, described as D. -e
number of weights w and thresholds q equals the
number of hidden layers (M) multiplied by the number
of inputs (I) provided by the dataset. -us, the pop-
ulation is considered to be a vectormatrix of P rows and

D (D � 2 × M × I + 1) columns. Each value of the
weights w and thresholds q is initialized as a random
real number in the range [− 2, 2]. -e value of the k is
randomly initialized in the range [1, 10]. -e following
equation shows the content of the population:

xp⟶ x1, x2, x3, . . . , xP(􏼁,

xp � w(1×1)p, q(1×1)p, . . . , w(1×M)p, q(1×M)p, . . . ,􏽮

w(I×M)p, q(I×M)p, kp􏽯.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

Step 3. Evaluation of the population. DE can be
employed as a training algorithm for DE-DMAS. DE-
DMAS can also be regarded as the evaluation function
of DE. -erefore, the evaluation becomes a calculation
of the mean square error (MSE), which will be formally

y

y

y y

y

y

0

0.5

1

–2 –1 210

(a) (b)

(c1) (c2)

(d1) (d2)

x

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 1–1 2–2
x

–2 2–1 0 1
x

0 1–2 2–1
x

0 1–2 2–1
x

0 1–2 2–1
x

Figure 2: -e synapse function figures for the four states: (a) direct-connecting state; (b) opposite-connecting state; (c1) constant-1 state;
(c2) constant-1 state; (d1) constant-0 state; (d2) constant-0 state.

Soma
layer

Soma
layer

Soma
layer

Membrane

Membrane

Membrane

Synapse
(a)

Synapse
(a)

Synapse
(c)

Synapse
(d)

Synapse
(b)

Synapse
(c)

Synapse
(d)

Synapse
(b)

Synapse
(b)

Dendrite 1

Dendrite 2

Dendrite 1

Dendrite 1

Dendrite 2

1

1

0

0

Figure 3: Simplified model.

4 Computational Intelligence and Neuroscience

defined in equation (12). In the experiment, the MSE of
DMAS is the fitness at each step. Each up-to-date
generation will be evaluated after the next mutation,
crossover, and selection operations. In our research, the
maximum number of generations is set to 1000. -us,
the evaluation function will be run 1001 times.
Step 4. Mutation operation. -e mutation operation
produces a mutation operator (vi,g). -e process of
production is shown in the following equation:

vi,g � xr1 ,g + F xr2 ,g − xr3 ,g􏼐 􏼑, (7)

where xr1 ,g, xr2 ,g, and xr3 ,g are randomly chosen from the
population of this generation. If all individuals are
regarded as points in the search space, then the mutation
operation can be interpreted as follows: vi,g is a new point
after xr1 ,g moves in the direction of xr3 ,g to xr2 ,g by F
times the Euclidean distance between xr2 ,g and xr3 ,g.
Step 5. Crossover operation. -e crossover operation
combines the mutation operator with the target indi-
vidual, resulting in a new individual. DE involves two
methods of crossover: binomial crossover and expo-
nential crossover. Zaharie analyzed the performance of
binomial crossover and exponential crossover [48] and
suggested that exponential crossover is more affected
by population size than binomial crossover. Binomial
crossover is applied in our research. -e following
equation shows the crossover function:

uj,i,g �
vj,i,g, if randj ≤CRor j � jrand,

xj,i,g, otherwise.
⎧⎨

⎩ (8)

Generate the random number randj ∈ [0, 1] for each
dimension of each individual. If randj is less than CR in
one dimension, then the target individual xi,g is
replaced by the mutation operator vi,g in this dimen-
sion; otherwise, it remains the same as the target in-
dividual xi,g. Before this step, to ensure that the target
individual hybridizes in at least in one dimension, a
random integer jrand ∈ 1, 2, 3, . . . , D{ } is generated.
When j � jrand, the target individual must hybridize in
the j-th dimension.
Step 6. Selection operation. DE employs the mutation
operator and the crossover operator to generate a son
population and applies a one-to-one selection to compare
the son individuals with the corresponding parent indi-
viduals. -e better individuals are saved to the next-
generation population. In DE-DMAS, the one-to-one
selection operation can be described as follows:

xi,g+1 �
ui,g, if MSEui

≤MSExi
,

xi,g, otherwise.
⎧⎨

⎩ (9)

Since DE employs a one-to-one selection method, the
algorithm can ensure that the elitism will not be lost during

the evolution process. In addition, one-to-one selection
operation has a better ability to maintain population di-
versity than sequencing or competitive bidding selection
[44].-e following Algorithm 1 summarizes the above steps,
where two functions rnd_int and rnd_real return random
integer and real numbers in the specified range, respectively.

4. Experimental Design

To achieve the best performance of the proposed method, it
is first necessary to confirm the parameters. DE-DMAS has
six main parameters. -e parameters can be divided into
fixed parameters and adjustable parameters. -e best ad-
justable parameters are determined using the Taguchi
method for each dataset [49], which is detailed in Section 4.2.
In Section 4.3, we will prove the adaptability of synapses as
mentioned above. Finally, DE-DMAS is compared with BP-
DNM and BPNN, which are introduced in Sections 4.4 and
Section 4.5, respectively. -e five datasets adopted in our
research are introduced in the following sections.

4.1.Dataset. -efive datasets, which are obtained fromUCI,
are extensively applied in artificial intelligence research. -e
datasets have been standardized by maximum minimization
to [0, 1] in our research. -eir detailed introduction and
summary are provided in Table 1.

-e iris data were provided by Fisher in July 1988
[50–52]. -e data have three classes: Iris Setosa, Iris Ver-
sicolour, and Iris Virginica. Each class has 50 instances. We
chose one of the instances as the experimental standard;
thus, the data are divided into two categories.-e selected 50
instances are divided into one class, and the other 100 in-
stances are divided into another class. Each instance has four
attributes: sepal length, sepal width, petal length, and petal
width. In our research, we use the class Iris Versicolour as
the output, and thus, it becomes a binary classification.
Because of the limitations of the single neuron model, the
DE-DMAS can only solve binary classification problems. So
we apply the iris dataset as a binary classification problem.

-e liver disorders dataset was provided by Richard S.
Forsyth in “None known other than what is shown in the PC/
BEAGLE User’s Guide.” It has been applied in [40, 53]. -e
dataset has 345 instances. Each instance has six attributes,
which include five kinds of blood tests and average daily al-
cohol consumption. -e liver dataset has two classifications:
164 healthy disorders and 181 unhealthy disorders.

-e breast cancer data were provided by Dr. William
Wolberg in July 1992 [54, 55]. It has been applied in [41].-e
699 instances of these data consist of 458 benign instances
and 241 malignant instances. Breast cancer data can be
divided into two classes. -e breast cancer data include 9
attributes, such as clump thickness, uniformity of cell size
and shape, and marginal adhesion.

-e glass identification database was provided by B.
Herman in September 1987. It has been applied in [56]. -e
glass data include 163 window glass instances and 51
nonwindow glass instances for a total of 214 instances. -e
attributes of the glass data include various element contents

Computational Intelligence and Neuroscience 5

(Na, Mg, Al, Si, K, Ca, Ba, and Fe) and the refractive index
(RI). -e instances can be classified by these 9 attributes.

-e ACA data indicate whether the applicants are
creditworthy. It has been applied in [57, 58]. -e credit
history of the applicants classifies the data into two classes.
-ese data provide information about 690 applicants. -e
applicants include 307 people who are creditworthy and 383
people who have no credit. -e information that can be
considered as the attributes of the ACA dataset consist of 8
categorical records and 6 numerical records.

4.2. Optimal Parameter Settings. -ree parameters, F, CR,
and NP, are mentioned in the DE learning algorithm. -e
number of hidden layers is an important parameter in DE-
DMAS, namely, M. For different datasets, M should be
suitably determined.-e parameter ranges in DE-DMAS are
shown in Table 2.

Typically, we need to experiment with all combinations
of parameters to obtain the optimal parameters. However,
four parameters exist, and each parameter has three choices.
-us, we should perform 81 (34) different experiments,
which will be time-consuming. To ensure the credibility of
the experimental results, we should repeat every different
experiment 30 times. Because this approach is time-con-
suming, we should reduce the number of different experi-
ments. Taguchi’s method is a kind of method to efficiently
obtain the optimal parameters [59, 60]. -is method is
primarily employed using orthogonal arrays. According to
the previously mentioned parameter ranges, four param-
eter trials containing three datasets are available. -us, the
L9(34) orthogonal array has been applied in the optimal
parameter experiments of the five datasets. -e instances of
each dataset have been divided into 70% for training and
30% for testing.-e orthogonal experiments of each dataset

have been repeated 30 times. -e epoch of each orthogonal
experiment is set to 1000. -e orthogonal experimental
result of the iris dataset is shown in Table 3.-e result of the
liver dataset is shown in Table 4. -e result of the glass
dataset is shown in Table 5. -e result of the cancer dataset
is shown in Table 6. -e result of the ACA dataset is shown
in Table 7. -e last column displays the average correct rate
of 30 test experiments. We obtain the most optimal pa-
rameters by a comprehensive analysis of the mean and
variance. -e bold font indicates the optimal combination
of parameters. -e optimal parameters for all datasets are
shown in Table 8.

4.3. Adaptability of Synapses. In order to demonstrate the
adaptability of the synaptic layer in DE-DMAS, we carried
out a confront analysis. We removed the hyperparameter k
from the population of DE and set it to 1, 5, and 10, re-
spectively. -e five datasets were randomly divided into two
parts: 70% for training and 30% for testing. -e parameters
except kwere set as the same as these in Table 8.-en, we did
30 independent experiments for them. We recorded all test
accuracy results and compared the results in terms of mean
and standard deviation, as shown in Table 9. From it, we
found that the adaptive k which was learned by DE generally
performed better than these fixed values. Additionally, the
Friedman test [61] gave the statistical analysis results for the
accuracies. In this case, the lower the value of the Friedman
test, the better the performance. -e result of the Friedman
test is shown in Table 10. Based on the above results, it is
evident that the adaptive synapse is beneficial for DNM.

4.4. Comparison with BPNN. In this section, we compared
DE-DMAS with the most popular model BPNN. To make the
comparison relatively fair, the number of adjusted weights and
thresholds (DBPNN and DDE− OMAS shown in equations (10) and
(11), respectively) in bothmodels should be arranged nearly the
same because these numbers generally determine the size of the
model and the computational complexity although the two
models have different architectures:

Table 1: Dataset introduction.

Dataset
name

No. of
instances

No. of input
attributes

No. of class 1
instances

No. of class 2
instances

Iris 150 4 50 100
Liver 345 6 164 181
Cancer 699 9 458 241
Glass 214 9 51 163
ACA 690 14 307 383

Initial population;
Calculate the fitness of the first generation;
for g = 1 to G do

randomly uniformly select r1 ≠ r2 ≠ r3 ≠ i;
jrand = rnd_int(1, D);
for j = 1 to D do

if rnd_realj[0, 1) < CR or j == jrand then
Ui,g(j) = Xr1,g(j) + F × (Xr2,g(j) − Xr3,g(j));

else
Ui,g(j) = Xi,g(j);

for i = 1 to P do
Calculate the fitness of the new individual Ui;
if Ui,g performs better than Xi,g then

Xi,g+1 = Ui,g;

ALGORITHM 1: Differential evolution algorithm for DNM.

Table 2: Parameter ranges in DE-DMAS.

Dataset NP CR F M
Iris 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 4, 8, 12
Liver 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 6, 12, 18
Cancer 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 9, 18, 27
Glass 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 9, 18, 27
ACA 10, 30, 60 0.3, 0.6, 0.9 0.3, 0.6, 0.9 16, 32, 48

6 Computational Intelligence and Neuroscience

DBPNN � (input × hidden) +(hidden × output)

+ hidden bias + output bias,
(10)

DDE− DMAS � (input × hidden) + 1. (11)

However, the larger the number of weights is, the more
the occupied computing resources are. In our research, to
demonstrate the excellent performance of DE-DMAS for
five datasets, the structure of DE-DMAS should be set
smaller than that of BPNN. Because the input and output of
each dataset are fixed, they are given the same number of
weights by adjusting their number of hidden layers. In the
previous section, we have configured this parameter (the
number of hidden layers) for DE-DMAS. We configure the
BPNN with the number of hidden layers according to the
above principles.-e structures of BPNN andDE-DMAS for
the five datasets are shown in Table 11. -e learning rate is
set to be 0.1 according to the experience.

Table 5: Orthogonal array for parameters of the glass dataset.

Experimental
runs

Parameters (levels)
Accuracy (%)Branch

(3)
F
(3)

CR
(3)

NP
(3)

1 9 0.3 0.3 10 93.75 ± 2.65
2 18 0.3 0.6 30 94.37 ± 4.13
3 27 0.3 0.9 60 94.42 ± 2.51
4 27 0.6 0.3 30 94.06 ± 4.44
5 9 0.6 0.6 10 93.12 ± 4.29
6 18 0.6 0.9 60 93.02 ± 4.07
7 18 0.9 0.3 60 93.54 ± 3.66
8 27 0.9 0.6 10 92.81 ± 4.03
9 9 0.9 0.9 30 94.01 ± 2.66

Table 6: Orthogonal array for parameters of the cancer dataset.

Experimental
runs

Parameters (levels)
Accuracy

(%)Branch
(3)

F
(3)

CR
(3)

NP
(3)

1 9 0.3 0.3 10 96.12 ± 1.17
2 18 0.3 0.6 30 96.12 ± 1.65
3 27 0.3 0.9 60 95.80 ± 1.26
4 27 0.6 0.3 30 95.39 ± 1.97
5 9 0.6 0.6 10 96.09 ± 1.64
6 18 0.6 0.9 60 96.19 ± 1.90
7 18 0.9 0.3 60 96.20 ± 2.00
8 27 0.9 0.6 10 95.81 ± 1.55
9 9 0.9 0.9 30 95.84 ± 1.31

Table 7: Orthogonal array for parameters of the ACA dataset.

Experimental
runs

Parameters (levels)
Accuracy

(%)Branch
(3)

F
(3)

CR
(3)

NP
(3)

1 16 0.3 0.3 10 84.41 ± 5.00
2 32 0.3 0.6 30 85.81 ± 2.41
3 48 0.3 0.9 60 85.28 ± 2.28
4 48 0.6 0.3 30 85.18 ± 1.67
5 16 0.6 0.6 10 85.58 ± 2.14
6 32 0.6 0.9 60 85.70 ± 1.64
7 32 0.9 0.3 60 84.89 ± 2.26
8 48 0.9 0.6 10 84.41 ± 5.73
9 16 0.9 0.9 30 86.18 ± 1.98

Table 8: Parameters for DE-DMAS

Dataset NP CR F M
Iris 0.6 0.6 10 4
Liver 0.3 0.6 30 12
Cancer 0.3 0.3 10 9
Glass 0.3 0.9 60 27
ACA 0.9 0.9 30 16

Table 3: Orthogonal array for parameters of the iris dataset.

Experimental runs
Parameters (levels)

Accuracy (%)
Branch (3) F (3) CR (3) NP (3)

1 4 0.3 0.3 10 92.51 ± 4.61
2 8 0.3 0.6 30 94.49 ± 5.46
3 12 0.3 0.9 60 94.96 ± 2.47
4 12 0.6 0.3 30 94.20 ± 4.61
5 4 0.6 0.6 10 96.74 ± 2.78
6 8 0.6 0.9 60 93.62 ± 5.32
7 8 0.9 0.3 60 94.20 ± 4.47
8 12 0.9 0.6 10 95.50 ± 4.90
9 4 0.9 0.9 30 94.00 ± 2.74

Table 4: Orthogonal array for parameters of the liver dataset.

Experimental
runs

Parameters (levels)
Accuracy (%)Branch

(3)
F
(3)

CR
(3)

NP
(3)

1 6 0.3 0.3 10 70.60 ± 4.81
2 12 0.3 0.6 30 73.59 ± 6.66
3 18 0.3 0.9 60 72.17 ± 3.86
4 18 0.6 0.3 30 66.92 ± 6.80
5 6 0.6 0.6 10 71.85 ± 4.75
6 12 0.6 0.9 60 68.33 ± 6.91
7 12 0.9 0.3 60 66.28 ± 7.36
8 18 0.9 0.6 10 68.58 ± 7.74
9 6 0.9 0.9 30 69.61 ± 4.88

Computational Intelligence and Neuroscience 7

4.5. Comparison with BP-DNM. In order to compare BP-
DNM and DE-DMAS fairly, the three common parameters
of ksoma, θsoma, and the number of neurons in hidden layers
(M) are set to be the same. According to the experience, the
learning rate is set to 0.01, and the value of k is set to 3. BP-
DNM is also a single neuron model with synaptic nonlin-
earities. It has been proven to have outstanding performance
in the liver [40], cancer [41], and ACA [58].We will show the
performs of BP-DNM when it has the same structure as DE-
DMAS. We will use multiple objective methods to dem-
onstrate the performances of DE-DMAS and BP-DNM on
the five datasets and make a discussion.

5. Experimental Result Analysis

-e comparison experiment of DE-DMAS vs BPNN and
DE-DMAS vs BP-DNM is set up as follows: (1) the in-
stances of the five datasets are divided into 30% for testing
and 70% for training randomly, (2) the number of itera-
tions is set to 1000, and (3) all experiments are run using
Matlab 2018a.

5.1. Convergence Comparison. We use the value of the mean
square error (MSE) to represent the degree of convergence.
-e smaller the value is, the better the convergence is. We
calculate the value of MSE after each iteration in the DE-
DMAS, BP-DNM, and BPNN training process and record it.
We employ the following equation to calculate the value of
the MSE:

MSE �
1
2N

􏽘

N

i�1
Oi − Ti(􏼁

2
, (12)

where N represents the number of training instances and Oi

and Ti represent the output and the teacher signal of the i-th
training instance, respectively.

We perform 30 training sessions for DE-DMAS, BP-
DNM, and BPNN. We randomly select 70% of the instances
as the input for each training. We draw two graphs to

analyze the convergence effect of DE-DMAS, BP-DNM, and
BPNN for the five training datasets. In the first figure, the
ordinate represents the mean value of the MSE for 30
training sessions, and the abscissa represents the number of
iterations. A total of 1000 MSE values are recorded from the
start of initialization for the DE-DMAS, BP-DNM, and
BPNN. We can evaluate the speed of convergence by the
degree of the curve drop. In Figure 4, we note that curve of
DE-DMAS is falling faster than the comparators. -ese
figures show that DE-DMAS has an advantage in conver-
gence speed.

We record the value of MSE in the final iteration for 30
times in the training sessions. We use a box-and-whisker
plot [62] to represent the value of the MSE, as shown in
Figure 5. In this figure, the ordinate represents the value of
the MSE. -e horizontal line from the top to the bottom of
each box represents the maximum, 3/4 median, median, 1/4
median, and minimum. -e 1/4 median, median, and 3/4
median represent the value of MSE at 25%, 50%, and 75%,
respectively, after sorting. -e +sign represents an outlier,
which is a value that exceeds twice the standard deviation.
-e lines corresponding to the maximum, 3/4 median line,
median, 1/4 median, andminimum for DE-DMAS are below
those of BP-DNM and BPNN for the five datasets. Many
outliers exist in the boxes of BPNN and BP-DNM. -e
outliers above the maximum represent falling into a local
minimum during training. On the contrary, there is no
outlier above the maximum in the boxes of DE-DMAS. -e
results show that the convergence effect of DE-DMAS is
better than that of BP-DNM and BPNN.

Table 10: Demonstrate on the adaptability of synapse by the
Friedman test.

Dataset k� 1 k� 5 k� 10 Adaptive
Iris 4 2.33 2 1.67
Liver 2.77 2.73 2.55 1.95
Cancer 3.05 2.95 2.73 1.27
Glass 2.55 1.98 3.93 1.53
ACA 2.48 2.73 2.52 2.27

Table 9: Demonstrate on the adaptability of synapse in terms of test accuracy.

Dataset k� 1 k� 5 k� 10 Adaptive
Iris 80.81 ± 6.66 94.15 ± 2.83 95.11 ± 2.50 96.74 ± 2.78
Liver 69.39 ± 3.57 69.81 ± 4.12 69.39 ± 5.56 73.59 ± 6.66
Cancer 92.76 ± 3.35 92.97 ± 3.38 93.59 ± 2.11 96.12 ± 1.17
Glass 91.04 ± 2.84 93.33 ± 3.23 85.48 ± 2.02 94.42 ± 2.51
ACA 85.44 ± 2.99 85.56 ± 1.70 85.86 ± 2.53 86.18 ± 1.98

Table 11: Structures of DE-DMAS and BPNN for the five datasets.

Dataset Method No. of
inputs

No. of
branches

No. of
outputs

No.
of adjusted
weights

Iris
DE-

DMAS 4 4 1 33

BPNN 4 28 1 169

Liver
DE-

DMAS 6 12 1 145

BPNN 6 18 1 145

Cancer
DE-

DMAS 9 9 1 163

BPNN 9 18 1 199

Glass
DE-

DMAS 9 27 1 487

BPNN 27 45 1 496

ACA
DE-

DMAS 14 16 1 449

BPNN 14 30 1 481

8 Computational Intelligence and Neuroscience

5.2. Accuracy Comparison. We compare DE-DMAS, BP-
DNM, and BPNN in terms of the test accuracy, sensitivity,
specificity, and receiver operating characteristic (ROC)
curve [63], which is a method for objectively analyzing the
performance of classifiers. To draw the ROC curve, we
collected the output (O) of the five datasets tested by DE-
DMAS, BP-DNM, and BPNN. T represents the corre-
sponding teacher signals. We convert the output O from a
real number to an integer of 0 or 1. For a two-category
problem, the instances are divided into positive and
negative classes. -e actual classification has four
situations:

(1) If an instance is in the positive class and is predicted
to be in the positive class, then it is a true classifi-
cation (true positive (TP))

(2) If an instance is in the positive class but is predicted
to be in the negative class, then it is a false-negative
classification (false negative (FN))

(3) If an instance is in the negative class but is predicted
to be in the positive class, then it is a false-positive
classification (false positive (FP))

(4) If an instance is in the negative class and is predicted
to be in the negative class, then it is a true-negative
classification (true negative (TN))

-e true-positive rate (TPR), which represents the
proportion of actual positive instances in the positive class
predicted by the classifier to all positive instances, equals the
sensitivity. -e false-positive rate (FPR), which represents
the proportion of actual negative instances in the positive
class predicted by the classifier to all negative instances,
equals 1-specificity. -e ROC curve is drawn with the FPR
(1 − specificity) as the x-axis and the TPR (sensitivity) as the
y-axis. -e AUC is the area under the ROC curve. -e value
of AUC is between 0.0 and 1.0 since the ROC curve is drawn
in an square area. -e greater the values of the sensitivity,
specificity, and AUC are, the better the performance of the

0

0.2

0.4

M
SE

1000400 6000 800200
Iteration

BPNN
BP-DNM
DE-DMAS

(a)

800 10006000 200 400
Iteration

0.1

0.2

0.3

0.4

M
SE

BPNN
BP-DNM
DE-DMAS

(b)

200 400 800 10006000
Iteration

0

0.2

0.4

M
SE

BPNN
BP-DNM
DE-DMAS

(c)

800 10006000 200 400
Iteration

0

0.1

0.2

0.3

M
SE

BPNN
BP-DNM
DE-DMAS

(d)

200 400 800 10006000
Iteration

0

0.2

0.4

M
SE

BPNN
BP-DNM
DE-DMAS

(e)

Figure 4: Convergence graphs for the five datasets: (a) iris; (b) liver; (c) cancer; (d) glass; (e) ACA.

Computational Intelligence and Neuroscience 9

classifier is.-ese terms are defined in Table 12.We calculate
the accuracy, sensitivity, specificity, and AUC based on these
terms using the following equations:

accuracy �
TP + TN

TP + FN + TN + FP
,

sensitivity �
TP

(TP + FN)
,

specificity �
TN

(TN + FP)
,

AUC(%) �
1
2

TP
TP + FN

+
TN

TN + FP
􏼠 􏼡 × 100.

(13)

We plot the ROC curves of the five datasets to compare
DE-DMAS with BP-DNM and BPNN, as shown in Figure 6.
-e DE-DMAS curves are above the BP-DNM and BPNN
curves. -e sensitivity, specificity, and AUC, which can be
determined from the numerical values, are shown in Ta-
ble 13. -e test accuracy is the average of 30 experiments,
which we represent by the mean and variance in Table 13.
DE-DMAS exhibits higher values than BP-DNM and BPNN
for these four assessment levels. All test results prove the
superiority of DE-DMAS.

5.3. Cross-Validation. In order to facilitate the comparison
performance, four different experimental train-to-test ratios
were adopted and the four multifold cross-validation
(K × CV) methods include tenfold CV (90–10%, ×10),
fivefold CV (80–20%, ×5), fourfold CV (75–25%, ×4), and
twofold CV(50–50%, ×2). Here, the train-to-test ratio
represents the ratio between sample size for training and
testing. With K × CV (K� 2, 4, 5, 10), the whole dataset is
randomly divided intoK andmutually exclusive subsets with

approximately equal sample size. In K × CV, the method is
utilized on the training subsets, and the testing error is
measured on the testing subset. -e procedure is repeated
for a total of K trials, each time using a different subset for
testing. -e performance of the model is evaluated by the
mean of the squared error through testing over all trails of
the experiment. Compared with the single-fold validation
method, K×CV has an advantage of minimizing the cor-
relation deviation of random sampling of training samples,
but its disadvantage lies in that it may need too much
computation since the model has to be trained K times. We
select four kinds of BPNN with different learning rates and
number (No.) of branch as Table 14, namely, BPNN1,
BPNN2, BPNN3, and BPNN4. BP-DNM and DE-DMAS
used the above four types of training-to-test ratios. Five
datasets were applied to each type of training-to-test ratios
for each model, and 30 independent experiments were
performed. Finally, we compared the mean and standard
deviation of their test accuracy results. Table 15 shows the
cross-validation results of the iris dataset. Table 16 shows the
cross-validation results of the liver dataset. Table 17 shows
the cross-validation results of the cancer dataset. Table 18
shows the cross-validation results of the glass dataset. Ta-
ble 19 shows the cross-validation results of the ACA dataset.
Bold fonts in these tables indicate the top two according to
the standard deviation and the mean. DE-DMAS only in the
CV5 of the cancer dataset is not bold font. So we can
conclude that DE-DMAS is excellent.

0

0.1

0.2

0.3
Fi

na
l M

SE

BP-DNMBPNN DE-DMAS

(a)

0.1

0.15

0.2

Fi
na

l M
SE

BP-DNMBPNN DE-DMAS

(b)

BP-DNMBPNN DE-DMAS
0

0.1

0.2

0.3

Fi
na

l M
SE

(c)

BP-DNMBPNN DE-DMAS

0.02

0.04

0.06

Fi
na

l M
SE

(d)

0.05

0.1

0.15

0.2

Fi
na

l M
SE

BP-DNMBPNN DE-DMAS

(e)

Figure 5: Box-and-whisker plots for the final MSE: (a) iris; (b) liver; (c) cancer; (d) glass; (e) ACA.

Table 12: Description of terms.

Teacher
signal

Real output
Row total

Positive (1) Negative (0)
Positive (1) TP FN TP+FN
Negative (0) FP TN FP+TN
Column total TP + F FN+TN N�TP+TN+FP+ FN

10 Computational Intelligence and Neuroscience

5.4. Simplified Model. As previously mentioned, we remove
the useless dendrites and synapses by the pruning function.
-e entire simplification process for the iris dataset is shown

in Figure 7. First, initialize the structure of neurons with four
dendrites, as shown in Figure 7(a). Synapses on these
dendrites receive the inputs X1, X2, X3, and X4. -e

0

0.2

0.4

0.6

0.8

1
Tr

ue
-p

os
iti

ve
 ra

te

0.2 0.40 0.8 10.6
False-positive rate

BPNN
BP-DNM
DE-DMAS

(a)

0

0.2

0.4

0.6

0.8

1

Tr
ue

-p
os

iti
ve

 ra
te

10.50
False-positive rate

BPNN
BP-DNM
DE-DMAS

(b)

0

0.2

0.4

0.6

0.8

Tr
ue

-p
os

iti
ve

 ra
te

0.50 1
False-positive rate

BPNN
BP-DNM
DE-DMAS

(c)

0.5 10
False-positive rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

-p
os

iti
ve

 ra
te

BPNN
BP-DNM
DE-DMAS

(d)

0.5 10
False-positive rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

-p
os

iti
ve

 ra
te

BPNN
BP-DNM
DE-DMAS

(e)

Figure 6: ROC analysis for the five datasets: (a) iris ROC; (b) liver ROC; (c) cancer ROC; (d) glass ROC; (e) ACA ROC.

Table 13: Rate results for the five datasets.

Dataset Method Test accuracy Sensitivity Specificity AUC

Iris
DE-DMAS 96.74 ± 2.78 100 96.88 98.44
BP-DNM 91.78 ± 5.87 91.16 86.67 95.65
BPNN 85.93 ± 10.89 90.00 91.43 90.71

Liver
DE-DMAS 73.59 ± 6.66 66.67 83.87 75.27
BP-DNM 68.62 ± 5.24 52.50 .79.69 66.09
BPNN 59.94 ± 6.33 57.89 72.73 65.31

Cancer
DE-DMAS 96.12 ± 1.17 96.45 98.55 97.50
BP-DNM 96.33 ± 1.43 97.04 94.67 95.85
BPNN 93.76 ± 11.06 95.89 96.88 96.38

Glass
DE-DMAS 94.42 ± 2.51 98.57 92.85 96..67
BP-DNM 91.87 ± 3.88 84.62 96.08 90.35
BPNN 92.50 ± 3.34 97.92 81.25 89.58

ACA
DE-DMAS 86.18 ± 1.98 88.04 86.09 87.07
BP-DNM 83.66 ± 9.26 85.54 81.45 83.50
BPNN 85.57 ± 2.28 87.10 78.07 82.58

Computational Intelligence and Neuroscience 11

Table 14: No. of models.

No. of BPNN Learning rate No. of branch
BPNN1 0.1 30
BPNN2 0.08 60
BPNN3 0.08 30
BPNN4 0.06 60

Table 15: Cross-validation for the iris.

Model CV10 CV5 CV4 CV2
DE-DMAS 94.44 ± 5.59 94.56 ± 5.90 95.00 ± 3.61 93.38 ± 5.09
BP-DNM 93.33 ± 10.79 93.22 ± 6.64 91.93 ± 4.98 86.80 ± 9.16
BPNN1 90.67 ± 7.50 91.42 ± 5.62 89.06 ± 9.41 91.29 ± 7.182
BPNN2 93.55 ± 10.72 93.35 ± 7.92 92.80 ± 7.82 91.82 ± 7.97
BPNN3 91.10 ± 9.85 88.77 ± 9.20 90.27 ± 9.89 86.71 ± 13.43
BPNN4 90.44 ± 8.69 89.89 ± 9.07 88.80 ± 9.59 89.07 ± 9.72

Table 16: Cross-validation for the liver.

Model CV10 CV5 CV4 CV2
DE-DMAS 70.20 ± 7.98 71.93 ± 4.79 71.40 ± 0.40 70.12 ± 3.10
BP-DNM 58.82 ± 7.93 69.42 ± 5.68 68.88 ± 5.57 66.44 ± 4.81
BPNN1 58.76 ± 9.45 59.18 ± 5.72 59.43 ± 7.34 60.44 ± 4.30
BPNN2 63.14 ± 8.20 58.72 ± 6.11 61.47 ± 6.72 58.83 ± 5.05
BPNN3 58.00 ± 8.33 58.55 ± 5.80 61.47 ± 6.72 59.37 ± 8.50
BPNN4 60.19 ± 8.94 61.11 ± 6.09 60.92 ± 8.45 60.71 ± 5.56

Table 17: Cross-validation for cancer.

Model CV10 CV5 CV4 CV2
DE-DMAS 96.38 ± 2.36 96.05 ± 1.74 96.11 ± 1.12 95.90 ± 0.70
BP-DNM 95.71 ± 2.17 96.02 ± 1.84 95.75 ± 1.64 95.70 ± 1.06
BPNN1 91.48 ± 11.65 92.26 ± 11.80 96.29 ± 1.67 94.29 ± 1.08
BPNN2 96.57 ± 2.51 96.28 ± 1.54 94.33 ± 1.52 93.71 ± 2.44
BPNN3 93.45 ± 12.00 95.52 ± 1.45 95.73 ± 1.35 93.53 ± 11.54
BPNN4 94.05 ± 12.53 96.30 ± 1.34 96.10 ± 1.75 96.07 ± 1.04

Table 18: Cross-validation for glass.

Model CV10 CV5 CV4 CV2
DE-DMAS 95.24 ± 3.75 96.05 ± 1.74 96.01 ± 1.36 95.70 ± 0.70
BP-DNM1 92.53 ± 4.95 92.40 ± 3.23 91.58 ± 3.16 91.12 ± 2.77
BPNN1 91.59 ± 5.55 90.39 ± 4.44 91.05 ± 3.19 91.53 ± 2.22
BPNN2 91.90 ± 4.36 92.56 ± 4.12 90.99 ± 4.12 90.31 ± 5.24
BPNN3 91.75 ± 4.83 89.61 ± 4.56 91.42 ± 4.28 89.50 ± 3.85
BPNN4 90.00 ± 6.77 92.02 ± 4.08 90.00 ± 5.36 91.78 ± 3.72

Table 19: Cross-validation for ACA.

Model CV10 CV5 CV4 CV2
DE-DMAS 84.98 ± 3.95 86.79 ± 2.70 85.59 ± 2.81 85.78 ± 1.39
BP-DNM 83.09 ± 8.52 82.00 ± 10.62 83.06 ± 10.51 82.07 ± 10.36
BPNN1 85.94 ± 4.34 85.20 ± 2.66 85.04 ± 2.63 85.39 ± 1.61
BPNN2 84.12 ± 3.97 85.11 ± 2.60 83.51 ± 3.41 86.13 ± 1.28
BPNN3 83.51 ± 4.64 85.48 ± 2.79 84.00 ± 3.49 85.35 ± 1.18
BPNN4 84.16 ± 4.48 86.11 ± 2.15 83.51 ± 33.30 85.09 ± 1.55

12 Computational Intelligence and Neuroscience

synapses are activated and converted to the direct-con-
necting state (●), opposite-connecting state (▂), constant-1
state(①), or constant-0 state (⓪) after learning. Second,
remove all useless dendrites by the dendrite pruning
function; that is, if at least one synapse on a dendrite is in the
constant-0 state, remove the dendrites. In Figure 7(b), we
denote removed dendrite 1, dendrite 3, and dendrite 4 with
the symbol ✖. After dendrite pruning, only dendrite 2 re-
mains, as shown in Figure 7(c). -en, remove all unnec-
essary synapses by the synapse pruning function; that is,
remove the synapses with the constant-1 state by the symbol
✖ in the Figure 7(c). Figure 7(d) shows the simplified
structure for the iris dataset.-is structure is simplified from
4 layers of dendrites and 4 inputs to only dendrite 2 and the 2
inputs X3 and X4.

Liver dataset has 12 layers of dendrites and 6 inputs, as
shown in Figure 8(a). In Figure 8(b), we denote removed
(dendrites 1, 3, 4, 5, 6, 7, 8, 9, 10, and 12) with the symbol✖.
After dendrite pruning, dendrites 2 and 11 remain, as shown
in Figure 8(c). After synapse pruning, X1, X3, X4, and X6
have been remained, and the others have been removed by
the symbol ✖. Figure 8(d) shows the simplified structure for
the liver dataset.-is structure is simplified from 12 layers of
dendrites and 6 inputs to only dendrites 2 and 11 and the 4
inputs X1, X3, X4, and X6.

Cancer dataset has 9 layers of dendrites and 9 inputs, as
shown in Figure 9(a). In Figure 9(b), we denote removed
(dendrites 1, 2, 3, 4, 6, 7, and 9) with the symbol ✖. After
dendrite pruning, dendrites 5 and 8 remain, as shown in
Figure 9(c). After synapse pruning, X1, X2, X3, X5, and X6
have been remained, and the others have removed by the
symbol ✖. Figure 9(d) shows the simplified structure for the
cancer dataset. -is structure is simplified from 9 layers of

dendrites and 9 inputs to only dendrites 5 and 8 and the 5
inputs X1, X2, X3, X5, and X6.

Glass dataset has 27 layers of dendrites and 9 inputs, as
shown in Figure 10(a). In Figure 10(b), we denote removed
(dendrites 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 25, 26, and 27) with the symbol ✖. After
dendrite pruning, dendrites 6 and 24 remain, as shown in
Figure 10(c). After synapse pruning,X1,X3,X4, andX8 have
been remained, and the others have been removed by the
symbol ✖. Figure 10(d) shows the simplified structure for
the liver dataset.-is structure is simplified from 12 layers of
dendrites and 6 inputs to only dendrites 6 and 24 and the 4
inputs X1, X3, X4, and X8.

ACA dataset has 16 layers of dendrites and 14 inputs, as
shown in Figure 11(a). In Figure 11(b), we denote removed
(dendrites 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, and 16) with the
symbol✖. After dendrite pruning, dendrites 10 and 13 remain,
as shown in Figure 11(c). After synapse pruning, X3, X7, X8,
X10, X12, and X13 have remained, and the others have been
removed by the symbol ✖. Figure 11(d) shows the simplified
structure for the liver dataset. -is structure is simplified from
16 layers of dendrites and 6 inputs to only dendrites 10 and 13
and the 6 inputs X3, X7, X8, X10, X12, and X13.

As shown in these figures, we have obtained the final
simplified models of the five datasets. After simplifying the
models, the structures of the models have been reduced by
more than 90%, which indicates that we can use simpler
logic to solve the real problem. -e problem used to be
solved with more than hundreds of logic components but
can now be solved by only a few dozen simple logic com-
ponents, such as comparators, AND gates, OR gates, and
NOT gates. -is change substantially reduces the labor and
time costs. Logic circuits of the five datasets have been drawn

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 4

Membrane
X1 X2 X3 X4

Soma

0

0

0

1

1

1 1 1

1

1

(a)

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 4

Membrane
X1 X2 X3 X4

Soma

0

0

0

1

1

1 1 1

1

1

(b)

Dendrite 2

Membrane
X1 X2 X3 X4

Soma

1 1

(c)

Dendrite 2

Membrane
X3 X4

Soma

(d)

Figure 7: Structure simplification process for the iris dataset.

Computational Intelligence and Neuroscience 13

Dendrite 1
Dendrite 2
Dendrite 3
Dendrite 4
Dendrite 5
Dendrite 6
Dendrite 7
Dendrite 8
Dendrite 9

X1 X2 X3 X4 X5 X6 X7 X8 X9
Membrane

Soma

1 1 1 0 0 1 1

1 00

1 1 0 1 000

11 0 110

1 1

1 1 1

1 1 0 1

11 1 1

1 01

1 11 10

11

1 11 11

0

1 1

(a)

Dendrite 1
Dendrite 2
Dendrite 3
Dendrite 4
Dendrite 5
Dendrite 6
Dendrite 7
Dendrite 8
Dendrite 9

X1 X2 X3 X4 X5 X6 X7 X8 X9
Membrane

Soma

1 1 1 0 0 1 1

1 00

1 1 0 1 000

11 0 110

1 1

1 1 1

1 1 0 1

11 1 1

1 01

1 11 10

11

1 11 11

0

1 1

(b)

Figure 9: Continued.

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 4

Dendrite 5

Dendrite 6

Dendrite 7

Dendrite 8

Dendrite 9

Dendrite 10

Dendrite 11

Dendrite 12

MembraneX1 X2 X3 X4 X5 X6

0

0 0

0 0

0

1 1

0

0 0

1

0 1

1 1

1 1

1

0

1 1

0 0 0

0

0

0

0 1 0 0

0

1

1 1 1

1 11

0 1

1 1

1

00 1 1 1 1

Soma

(a)

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 4

Dendrite 5

Dendrite 6

Dendrite 7

Dendrite 8

Dendrite 9

Dendrite 10

Dendrite 11

Dendrite 12

MembraneX1 X2 X3 X4 X5 X6

0

0 0

0 0

0

1 1

0

0 0

1

0 1

1 1

1 1

1

0

1 1

0 0 0

0

0

0

0 1 0 0

0

1

1 1 1

1 11

0 1

1 1

1

00 1 1 1 1

Soma

(b)

Dendrite 2

Dendrite 11

MembraneX1 X2 X3 X4 X5 X6

1

1 1

1 1

Soma

1

(c)

Dendrite 2

Dendrite 11

MembraneX1 X3 X4 X6

Soma

(d)

Figure 8: Structure simplification process for the liver dataset.

14 Computational Intelligence and Neuroscience

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 4

Dendrite 5

Dendrite 6

Dendrite 7

Dendrite 8

Dendrite 9

Dendrite 10

Dendrite 11

Dendrite 12

Dendrite 13

Dendrite 14

Dendrite 15

Dendrite 16

Dendrite 17

Dendrite 18

Dendrite 19

Dendrite 20

Dendrite 21

Dendrite 22

Dendrite 23

Dendrite 24

Dendrite 25

Dendrite 26

Dendrite 27

MembraneX1 X2 X3 X4 X5 X6 X7 X8 X9

Soma

1 0 1 1 0 0 0

1 0 11 1 1 1

11 11 1 0 0

101 01 1 1 01

11 1 11 0 11

1 0

0

1 1 11 01

1 1 11 1 11

01 1 11 1 11

1 11 0 01 0 1

01 0 00 01

1 11 1 11 10

1 11 1 11 1 01

01 1 100 10

1 1 11 1 00 0

10 1 11 1 11

11 1 01 0 11

11 000 0 01

01 11 1 01

01 1 11 11 1

0 01 0 11 01

1 1 1 00 0 01

11 1 111 0 11

1 01 11 11

0 11 1 11 1 10

0 01 0 01 01

1 11 0 00 11

11 1 11 11

(a)

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 4

Dendrite 5

Dendrite 6

Dendrite 7

Dendrite 8

Dendrite 9

Dendrite 10

Dendrite 11

Dendrite 12

Dendrite 13

Dendrite 14

Dendrite 15

Dendrite 16

Dendrite 17

Dendrite 18

Dendrite 19

Dendrite 20

Dendrite 21

Dendrite 22

Dendrite 23

Dendrite 24

Dendrite 25

Dendrite 26

Dendrite 27

MembraneX1 X2 X3 X4 X5 X6 X7 X8 X9

Soma

1 0 1 1 0 0 0

1 0 11 1 1 1

11 11 1 0 0

101 01 1 1 01

11 1 11 0 11

1 0

0

1 1 11 01

1 1 11 1 11

01 1 11 1 11

1 11 0 01 0 1

01 0 00 01

1 11 1 11 10

1 11 1 11 1 01

01 1 100 10

1 1 11 1 00 0

10 1 11 1 11

11 1 01 0 11

11 000 0 01

01 11 1 01

01 1 11 11 1

0 01 0 11 01

1 1 1 00 0 01

11 1 111 0 11

1 01 11 11

0 11 1 11 1 10

0 01 0 01 01

1 11 0 00 11

11 1 11 11

(b)

Dendrite 6

Dendrite 24

X1 X2 X3 X4 X5 X6 X7 X8 X9
Membrane

Soma

1

1 1

1 1 1 1 1

1 1 1 1

(c)

Soma

Dendrite 6

Dendrite 24

X1 X3 X4 X8
Membrane

(d)

Figure 10: Structure simplification process for the glass dataset.

Dendrite 5

Dendrite 8

X1 X2 X3 X4 X5 X6 X7 X8 X9
Membrane

Soma

1 1 111 1

1 11 1 1

(c)

Dendrite 5

Dendrite 8

X1 X2 X3 X5 X6
Membrane

Soma

(d)

Figure 9: Structure simplification process for the cancer dataset.

Computational Intelligence and Neuroscience 15

Dendrite 1
Dendrite 2
Dendrite 3
Dendrite 4
Dendrite 5
Dendrite 6
Dendrite 7
Dendrite 8
Dendrite 9
Dendrite 10
Dendrite 11
Dendrite 12
Dendrite 13
Dendrite 14
Dendrite 15
Dendrite 16

Membrane
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

0 0 0 1 1 1 1 0 10

0 1 0 1 1 0 1 10 0

1 1 1 1 1 0 1 0 110 1 1 0

1 1 1 1 1 1 1 1 11 1 1

0 1 1 1 0 1 1 0 101 1 0 1

1 0 1 1 1 1 1 011 1 1 0

0 1 0 1 1 0 101 1 0

1 1 1 1 1 1 1 11 1 1 1

1 1 1 0 1 1 01 0 0 1

0 1 1 0 1 0 1 0 101 1 1

1 0 1 0 1 1 0 000 1 0 1

0 0 0 1 0 1 1 1 010 0 0

0 1 0 1 1 1 1 010 1 1 1

0 1 0 1 0 1 0 0 111 1 1

1 1 1 1 1 0 0 011 1 0 1

0 1 1 1 1 1 0 0 100 0 0 0

Soma

(a)

Dendrite 1
Dendrite 2
Dendrite 3
Dendrite 4
Dendrite 5
Dendrite 6
Dendrite 7
Dendrite 8
Dendrite 9
Dendrite 10
Dendrite 11
Dendrite 12
Dendrite 13
Dendrite 14
Dendrite 15
Dendrite 16

Membrane
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

0 0 0 1 1 1 1 0 10

0 1 0 1 1 0 1 10 0

1 1 1 1 1 0 1 0 110 1 1 0

1 1 1 1 1 1 1 1 11 1 1

0 1 1 1 0 1 1 0 101 1 0 1

1 0 1 1 1 1 1 011 1 1 0

0 1 0 1 1 0 101 1 0

1 1 1 1 1 1 1 11 1 1 1

1 1 1 0 1 1 01 0 0 1

0 1 1 0 1 0 1 0 101 1 1

1 0 1 0 1 1 0 000 1 0 1

0 0 0 1 0 1 1 1 010 0 0

0 1 0 1 1 1 1 010 1 1 1

0 1 0 1 0 1 0 0 111 1 1

1 1 1 1 1 0 0 011 1 0 1

0 1 1 1 1 1 0 0 100 0 0 0

Soma

(b)

Dendrite 10

Dendrite 13

Membrane
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

1 1 1 1 1 1 11 1 1

1 1 1 1 1 1 1 11 11 1 1

Soma

(c)

Dendrite 10

Dendrite 13

Membrane
X3 X7 X8 X10 X12 X13

Soma

(d)

Figure 11: Structure simplification process for the ACA dataset.

X3

X4

AND
θ = 1.5678

θ = 1.5456

(a)

X1

X4

X8

X3

θ = 1.3526

θ = 1.5687

θ = 1.2222

θ = 1.0022

θ = 1.3567

θ = 1.1234

(b)

Figure 12: Continued.

16 Computational Intelligence and Neuroscience

in Figure 12.-e value of θ in the comparator in the figure is
the value of θ in the corresponding synapse after training.
-e standardized input was calculated by these logic com-
ponents to get the expected output as 0 or 1.

6. Conclusion

To improve the calculation ability of the dendritic neuron
model (DNM), a dendritic neuron model with adaptive
synapses trained by differential evolution algorithm (DE-
DMAS) is proposed, which shows enhanced performance in
the simulation based on UCI datasets. A comparison with
the classic BPNN and BP-DNM is carried out in terms of the
test accuracy, sensitivity, specificity, and ROC and cross-
validation. DE-DMAS shows its superiority in all the results,
and DE-DMAS as a single neuron model is found to sub-
stantially outperform BPNN and BP-DNM.

DMAS has further access to the real biological neuron
with a self-pruning ability. -is function can eliminate
branches from the dendrite morphology depending on the
continuum values. It hence reduces the computational load

by evolving and simplifying the dendritic structure without
affecting the computational result. Simplified dendritic
structure can be implemented in the logic circuit with
comparator, OR gate, AND gate, and NOT gate. It makes it
possible to solve real problems with less cost.

To highlight the contribution of this work, a self-adaptive
synapse is for the first time proposed in the paper. Its utility
is proved by the Friedman test as summarized in Section 4.3.
-e ability of adaptive synapse not only has stronger ro-
bustness but also reduces a parameter in DNM and improves
the performance of DNM.

-e dendrite plays a pivotal role in the computing
process. A single DE-DMAS neuron model can only deal
with dichotomies problems (i.e., binary classification
problems), which is its main limitation. But all the current
neural networks are made up of multiple single neuron
models which can only deal with dichotomies. -is paper
aims at proposing the DE-DMAS model instead of the
network structure, so it is only a single one. Nevertheless, it is
worth pointing out that variants of DE-DMAS can be de-
veloped for solving multiclass classification problems. For

X1

X2

X6

X3

X5

θ = 0.2168

θ = 0.9578

θ = 0.5613

θ = 0.2568

θ = 0.3568

θ = 0.3639

θ = 0.9143

(c)

X3

X13

X12

X10

X8

X7

θ = 1.2589

θ = 2.4569

θ = 1.2221

θ = 3.2456

θ = 0.1235

θ = 2.5894

θ = 5.5689

(d)

X3

X13

X12

X10

X8

X7

θ = 1.2589

θ = 2.4569

θ = 1.2221

θ = 3.2456

θ = 0.1235

θ = 2.5894

θ = 5.5689

(e)

Figure 12: Logic circuits obtained by the proposed method for five datasets: (a) iris; (b) liver; (c) cancer; (d) glass; (e) ACA.

Computational Intelligence and Neuroscience 17

example, by using softmax function (together with the cross
entropy), the multiclass classification problem can be ap-
proximately transformed into dichotomies problems, and
the one-hot-encoding strategy based on several DE-DMAS
neuron models can be used to calculate the information
entropy. -e reason why we choose multiple datasets that
can be classified into two categories for experiments is that
we want to more intuitively reflect the ability of a single
neuron model, rather than the network of several ones.
Further research will focus on DMAS’s adjustment to make
it adaptive to the deep learning structure. We also believe
that this model has considerable potential in fields of
electronic design, such as VLSI and biomedical science.

Data Availability

-e classification dataset could be downloaded freely at
https://archive.ics.uci.edu/ml/index.php.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was supported by the JSPS KAKENHI (Grant no.
JP19K12136).

References

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” >e Bulletin of Mathematical
Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[2] N. Rochester, J. Holland, L. Haibt, and W. Duda, “Tests on a
cell assembly theory of the action of the brain, using a large
digital computer,” IEEE Transactions on Information >eory,
vol. 2, no. 3, pp. 80–93, 1956.

[3] F. Rosenblatt, “-e perceptron: a probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, vol. 65, no. 6, pp. 386–408, 1958.

[4] M. Minsky and S. A. Papert, Perceptrons: An Introduction to
Computational Geometry, MIT Press, Cambridge, MA, USA,
2017.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” Technical
Report, California Univ San Diego La Jolla Inst for Cognitive
Science, La Jolla, CA, USA, 1985.

[6] C. Koch, “Computation and the single neuron,” Nature,
vol. 385, no. 6613, pp. 207–210, 1997.

[7] C. Koch and I. Segev, “-e role of single neurons in infor-
mation processing,” Nature Neuroscience, vol. 3, no. 11,
pp. 1171–1177, 2000.

[8] J. L. Davidson and F. Hummer, “Morphology neural net-
works: an introduction with applications,” Circuits, Systems,
and Signal Processing, vol. 12, no. 2, pp. 177–210, 1993.

[9] G. X. Ritter and P. Sussner, “An introduction to morpho-
logical neural networks,” in Proceedings of the 13th Interna-
tional Conference on Pattern Recognition, vol. 4, pp. 709–717,
IEEE, Vienna, Austria, August 1996.

[10] H. Sossa and E. Guevara, “Efficient training for dendrite
morphological neural networks,” Neurocomputing, vol. 131,
pp. 132–142, 2014.

[11] H. Sossa and E. Guevara, “Modified dendrite morphological
neural network applied to 3D object recognition,” inMexican
Conference on Pattern Recognition, pp. 314–324, Springer,
Berlin, Germany, 2013.

[12] Y. Todo, H. Tamura, K. Yamashita, and Z. Tang, “Unsu-
pervised learnable neuron model with nonlinear interaction
on dendrites,” Neural Networks, vol. 60, pp. 96–103, 2014.

[13] J. Ji, S. Gao, J. Cheng, Z. Tang, and Y. Todo, “An approximate
logic neuron model with a dendritic structure,” Neuro-
computing, vol. 173, pp. 1775–1783, 2016.

[14] Y. Tang, J. Ji, Y. Zhu, S. Gao, Z. Tang, and Y. Todo, “A
differential evolution-oriented pruning neural network model
for bankruptcy prediction,” Complexity, vol. 2019, Article ID
8682124, 21 pages, 2019.

[15] X. Qian, Y. Wang, S. Cao, Y. Todo, and S. Gao, “Mr2DNM: a
novel mutual information-based dendritic neuron model,”
Computational Intelligence and Neuroscience, vol. 2019,
Article ID 7362931, 13 pages, 2019.

[16] T. Zhou, S. Gao, J.Wang, C. Chu, Y. Todo, andZ. Tang, “Financial
time series prediction using a dendritic neuron model,” Knowl-
edge-Based Systems, vol. 105, pp. 214–224, 2016.

[17] W. Chen, J. Sun, S. Gao, J.-J. Cheng, J. Wang, and Y. Todo,
“Using a single dendritic neuron to forecast tourist arrivals to
Japan,” IEICE Transactions on Information and Systems,
vol. 100, no. 1, pp. 190–202, 2017.

[18] J. Ji, S. Song, Y. Tang, S. Gao, Z. Tang, and Y. Todo, “Ap-
proximate logic neuron model trained by states of matter
search algorithm,” Knowledge-Based Systems, vol. 163,
pp. 120–130, 2019.

[19] Y. Yu, Y.Wang, S. Gao, and Z. Tang, “Statistical modeling and
prediction for tourism economy using dendritic neural net-
work,” Computational Intelligence and Neuroscience,
vol. 2017, Article ID 7436948, 9 pages, 2017.

[20] L. Luo and D. D. M. O’Leary, “Axon retraction and degen-
eration in development and disease,” Annual Review of
Neuroscience, vol. 28, no. 1, pp. 127–156, 2005.

[21] P. Hagmann, O. Sporns, N. Madan et al., “White matter
maturation reshapes structural connectivity in the late de-
veloping human brain,” Proceedings of the National Academy
of Sciences, vol. 107, no. 44, pp. 19067–19072, 2010.

[22] C. Koch, T. Poggio, and V. Torres, “Retinal ganglion cells: a
functional interpretation of dendritic morphology,” Philo-
sophical Transactions of the Royal Society B: Biological Sci-
ences, vol. 298, no. 1090, pp. 227–263, 1982.

[23] C. Koch, T. Poggio, and V. Torre, “Nonlinear interactions in a
dendritic tree: localization, timing, and role in information
processing,” Proceedings of the National Academy of Sciences,
vol. 80, no. 9, pp. 2799–2802, 1983.

[24] L. Beaulieu-Laroche, E. H. S. Toloza, N. J. Brown, and
M. T. Harnett, “Widespread and highly correlated somato-
dendritic activity in cortical layer 5 neurons,” Neuron,
vol. 103, no. 2, pp. 235–241, 2019.

[25] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang,
“Dendritic neuron model with effective learning algorithms
for classification, approximation, and prediction,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 30, no. 2, pp. 601–614, 2019.

[26] X. G. Wang, Z. Tang, H. Tamura, M. Ishii, and W. D. Sun, “An
improved backpropagation algorithm to avoid the local minima
problem,” Neurocomputing, vol. 56, pp. 455–460, 2004.

[27] R. Storn and K. Price, “Differential evolution-a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

18 Computational Intelligence and Neuroscience

https://archive.ics.uci.edu/ml/index.php

[28] K. S. Tang, K. F. Man, S. Kwong, and Q. He, “Genetic al-
gorithms and their applications,” IEEE Signal Processing
Magazine, vol. 13, no. 6, pp. 22–37, 1996.

[29] D. J. Montana and L. Davis, “Training feedforward neural
networks using genetic algorithms,” in Proceedings of the
International Joint Conferences on Artificial Intelligence
(IJCAI), vol. 89, pp. 762–767, Detroit, MI, USA, August 1989.

[30] S. Gao, S. Song, J. Cheng, Y. Todo, and M. Zhou, “Incor-
poration of solvent effect into multi-objective evolutionary
algorithm for improved protein structure prediction,” IEEE/
ACM Transactions on Computational Biology and Bio-
informatics, vol. 15, no. 4, pp. 1365–1378, 2018.

[31] S. Song, S. Gao, X. Chen, D. Jia, X. Qian, and Y. Todo,
“AIMOES: archive information assisted multi-objective
evolutionary strategy for ab initio protein structure predic-
tion,” Knowledge-Based Systems, vol. 146, pp. 58–72, 2018.

[32] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, pp. 760–766, Springer, Boston, MA, USA,
2010.

[33] J. Vesterstrom and R. -omsen, “A comparative study of
differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark problems,”
in Proceedings of the 2004 Congress on Evolutionary Com-
putation, vol. 2, pp. 1980–1987, IEEE, Portland, OR, USA,
June 2004.

[34] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, and M. Zhou,
“Chaotic local search-based differential evolution algorithms
for optimization,” IEEE Transactions on Systems, Man and
Cybernetics: Systems, In press.

[35] J. Sun, S. Gao, H. Dai, J. Cheng, M. Zhou, and J. Wang, “Bi-
objective elite differential evolution algorithm for multivalued
logic networks,” IEEE Transactions on Cybernetics, vol. 50,
no. 1, pp. 233–246, 2020.

[36] B. Subudhi and D. Jena, “A differential evolution based neural
network approach to nonlinear system identification,” Ap-
plied Soft Computing, vol. 11, no. 1, pp. 861–871, 2011.

[37] E. Bas, “-e training of multiplicative neuron model based
artificial neural networks with differential evolution algorithm
for forecasting,” Journal of Artificial Intelligence and Soft
Computing Research, vol. 6, no. 1, pp. 5–11, 2016.

[38] F. Arce, E. Zamora, H. Sossa, and R. Barrón, “Differential evo-
lution training algorithm for dendrite morphological neural
networks,” Applied Soft Computing, vol. 68, pp. 303–313, 2018.

[39] M. J. Tyre and E. Von Hippel, “-e situated nature of adaptive
learning in organizations,” Organization Science, vol. 8, no. 1,
pp. 71–83, 1997.

[40] Z. Sha, L. Hu, Y. Todo, J. Ji, S. Gao, and Z. Tang, “A breast
cancer classifier using a neuron model with dendritic non-
linearity,” IEICE Transactions on Information and Systems,
vol. 98, no. 7, pp. 1365–1376, 2015.

[41] T. Jiang, S. Gao, D. Wang, J. Ji, Y. Todo, and Z. Tang, “A
neuron model with synaptic nonlinearities in a dendritic tree
for liver disorders,” IEEJ Transactions on Electrical and
Electronic Engineering, vol. 12, no. 1, pp. 105–115, 2017.

[42] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello
Coello, “A comparative study of differential evolution variants
for global optimization,” in Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation,
pp. 485–492, ACM, Seattle, WC, USA, July 2006.

[43] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evo-
lution training algorithm for feed-forward neural networks,”
Neural Processing Letters, vol. 17, no. 1, pp. 93–105, 2003.

[44] S. Das and P. N. Suganthan, “Differential evolution: a survey
of the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[45] Y. Yu, S. Gao, Y. Wang, and Y. Todo, “Global optimum-based
search differential evolution,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 6, no. 2, pp. 379–394, 2019.

[46] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A pa-
rameter study for differential evolution,” Advances in Intel-
ligent Systems, Fuzzy Systems, Evolutionary Computation,
vol. 10, no. 10, pp. 293–298, 2002.

[47] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real-parameter
optimization with differential evolution,” in Proceedings of the
2005 IEEE Congress on Evolutionary Computation, vol. 1,
pp. 506–513, IEEE, Scotland, UK, September 2005.

[48] D. Zaharie, “Influence of crossover on the behavior of dif-
ferential evolution algorithms,” Applied Soft Computing,
vol. 9, no. 3, pp. 1126–1138, 2009.

[49] G. Taguchi, R. Jugulum, and S. Taguchi, Computer-Based
Robust Engineering: Essentials for DFSS, ASQ Quality Press,
Milwaukee, WI, USA, 2004.

[50] R. A. Fisher, “-e use of multiple measurements in taxonomic
problems,”Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[51] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification
and Scene Analysis, Wiley, New York, NY, USA, 1973.

[52] B. V. Dasarathy, “Nosing around the neighborhood: a new system
structure and classification rule for recognition in partially exposed
environments,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 2, no. 1, pp. 67–71, 1980.

[53] J. McDermott and R. S. Forsyth, “Diagnosing a disorder in a
classification benchmark,” Pattern Recognition Letters, vol. 73,
pp. 41–43, 2016.

[54] O. L. Mangasarian and W. H. Wolberg, Cancer Diagnosis via
Linear Programming,Technical Report, University of Wis-
consin-Madison Department of Computer Sciences, Madi-
son, WI, USA, 1990.

[55] W. H.Wolberg and O. L. Mangasarian, “Multisurface method
of pattern separation for medical diagnosis applied to breast
cytology,” Proceedings of the National Academy of Sciences,
vol. 87, no. 23, pp. 9193–9196, 1990.

[56] I. W. Evett and J. S. Ernest, Rule Induction in Forensic Science,
Central Research Establishment. Home Office Forensic Sci-
ence Service, Aldermaston, UK, 1998.

[57] J. R. Quinlan, “Simplifying decision trees,” International Journal of
Man-Machine Studies, vol. 27, no. 3, pp. 221–234, 1987.

[58] Y. Tang, J. Ji, S. Gao, H. Dai, Y. Yu, and Y. Todo, “A pruning
neural network model in credit classification analysis,”
Computational Intelligence and Neuroscience, vol. 2018,
Article ID 9390410, 22 pages, 2018.

[59] J. F. C. Khaw, B. S. Lim, and L. E. N. Lim, “Optimal design of
neural networks using the Taguchi method,”Neurocomputing,
vol. 7, no. 3, pp. 225–245, 1995.

[60] W. Yang and Y. Tarng, “Design optimization of cutting pa-
rameters for turning operations based on the Taguchi
method,” Journal of Materials Processing Technology, vol. 84,
no. 1–3, pp. 122–129, 1998.

[61] M. Friedman, “-e use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, no. 200, pp. 675–701,
1937.

[62] C. H. Yu, “Exploratory data analysis,” Methods, vol. 2,
pp. 131–160, 1977.

[63] N. R. Cook, “Statistical evaluation of prognostic versus di-
agnostic models: beyond the ROC curve,” Clinical Chemistry,
vol. 54, no. 1, pp. 17–23, 2008.

Computational Intelligence and Neuroscience 19

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

