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One important objective of urban traffic signal control is to reduce individual delay and improve safety for travelers in both private
car and public bus transit. To achieve signal control optimization from the perspective of all users, this paper proposes a platoon-
based adaptive signal control (PASC) strategy to provide multimodal signal control based on the online connected vehicle (CV)
information. By introducing unified phase precedence constraints, PASC strategy is not restricted by fixed cycle length and offsets.
A mixed-integer linear programming (MILP) model is proposed to optimize signal timings in a real-time manner, with platoon
arrival and discharge dynamics at stop line modeled as constraints. Based on the individual passenger occupancy, the objective
function aims at minimizing total personal delay for both buses and automobiles.With the communication between signals, PASC
achieves to provide implicit coordination for the signalized arterials. Simulation results by VISSIM microsimulation indicate that
PASC model successfully reduces around 40% bus passenger delay and 10% automobile delay, respectively, compared with signal
timings optimized by SYNCHRO. Results from sensitivity analysis demonstrate that the model performance is not sensitive to the
number fluctuation of bus passengers, and the requested CV penetration rate range is around 20% for the implementation.

1. Introduction

Signal light plays a significant role in urban trafficmanagement
and control. Adaptive signal control, a state-of-the-art type of
traffic control, can remarkably improve the mobility around
signalized intersections compared with fixed or actuated
controls [1, 2]. In urban areas, the number of transit buses has
boosted in recent years. With proper control strategy favoring
the bus and high-occupied vehicles, the controller can effec-
tively reduce passenger delay at intersections. However, recent
studies found that the transit signal priority control strategies
(TSP) inevitably interrupt automobile traffic flow and increase
the control delay for automobile users [3]. To minimize in-
dividual traveler delay at intersections, it is necessary to develop
a balanced multimodal signal control strategy.

One significant challenge in multimodal adaptive signal
control lies in the short-time traffic prediction for cars and

transit buses. With the advances in connected vehicle (CV)
technology [4], communication between vehicle-infrastructure
(V-I) enables reliable traffic information collection. Based on
accurate vehicle location and speed data, the generated signal
timings may readily match traffic demand fluctuation.
)erefore, the CV technology should be incorporated, thus
enhancing the multimodal control reliability in traffic man-
agement, particularly for signalized intersections.

Diakaki et al. [3] conducted a comprehensive review on
recent multimodal control strategies. Some typical adaptive
signal control systems, such as SCOOT [5] and SCATS [6],
apply a rule-based strategy to grant signal priority to transit
buses. Upon receiving a priority request, the controller’s
reactions involve green extension, red truncation, and
special stages. For example, Skabardonis and Geroliminis [7]
proposed a strategy to reduce bus control delays and
minimize adverse effects on the rest of the traffic. In
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addition, Wadjas and Furth’s control strategy [8] aims to
assign priority to light rail transits in 3-4 cycles ahead, so that
the dwell time became an important factor in arrival esti-
mation. Although the rule-based control strategy is a pro-
active approach to adjust signal timing for reducing bus
delay, it generally deals with only one priority request during
the given period. )us, its application is restricted under
oversaturated demand with high bus frequency.

Optimization-based strategies attempt to minimize total
disutility (delay, queue length, and stop numbers) by
employing nonlinear [9], mix-integer linear [10], or dynamic
programming [11]. One advantage of such a control strategy
is the nonlimitation on the number of conflicting priorities
in the optimization model, compared with rule-based
strategies. Christofa et al. [9] developed a model to minimize
the total personal delay in mixed traffic lanes based on
assumptions that automobile arrival follows a uniform
distribution, which is not suitable for closely located in-
tersections. To reduce the potential bus delay at downstream,
Ramezani et al. [12] introduced a TSP strategy that com-
prises of different models to estimate car and bus delays,
respectively, for the one-way arterials. However, both
strategies assumed an exclusive lane for transit vehicles,
indicating that the queues in front of the bus were largely
neglected.

To address the disadvantages of the conventional
strategies in modelling the mixed traffic conditions, recent
research efforts have been dedicated to developing new
control methods based on the CV data. He et al. [13]
proposed a novel control model called PAMSCOD, which
clusters vehicles into platoons to incorporate the arrival
patterns subject to upstream intersections. A mixed-integer
programming was introduced to solve the problems online
based on the platoon or bus serving requests. Hu et al. [14]
further exploited the CV technology by adjusting bus speed
to ensure the “green wave” under a pair of intersections.
Furthermore, Zeng et al. [15] proposed a control strategy
named PAPSCCI to model the dynamics of vehicular ar-
rivals. Although vehicles were treated individually to im-
prove the performance, the computational time may be
significantly increased under saturated demands.

One common characteristic of the control strategies is
the centralized control, which aggregates all signals within
one region into a global optimization. Consequently, the
increasing number of intersections and the complexity in
traffic dynamics often render the problem nonscalable [16].
)erefore, how to achieve progression for multiple traffic
modes under a decentralized framework is still a challenging
research problem [17].

)is study proposes a platoon-based adaptive signal
control (PASC) strategy based on the vehicular information
extracted from CV technology. A mixed-integer linear
programming (MILP) is developed for online optimization
[18]. )e main difference between PAMSCOD and the
proposed model lies in platoon arrival and delay formula-
tion. In the proposed model, the residual platoon is con-
sidered by the constraint so that the delay approximation is
simplified. Moreover, the mechanism about implicit coor-
dination is introduced to achieve the progression of

neighboring intersections. Under the framework of decen-
tralized control, PASC can save computation time and thus
has the potential to be applied in a large urban network. )e
remainder of the paper is organized as follows. )e details of
the PASC strategy, as well as the mechanism of implicit
coordination between controllers, are proposed in Section 2.
In Section 3, a simulation and evaluation platform is de-
veloped based on VISSIM. )en, an arterial road, Dong-
chuan Road, in Minhang District, Shanghai, was modeled to
demonstrate model effectiveness. Finally, Section 5 sum-
marizes the conclusions and offers the suggestions for
further studies.

2. Platoon-Based Adaptive Signal Control

2.1. Platoon Identification. )e critical headway is used to
identify the approaching and stopping platoons at inter-
sections. Suppose that h0 is the critical headway under 100%
CV penetration rate, then under the penetration rate of Rp,
the critical headway is denoted as hp and calculated as in
equation (1). If the detected headway of two consecutive
connected vehicles is less than hp, the vehicles are treated as
part of a platoon; otherwise, they are regarded as individual
ones:

hp �
h0

Rp

. (1)

At the same time, with penetration rate Rp, the number
of vehicles in the platoon is np, as calculated in the following
equation:

np �
N

Rp

, (2)

where h0 indicates the critical time headway which is rec-
ognized as platoon and N is the detected number of con-
nected vehicles within a platoon. Moreover, the platoon
arrival time at stop line is estimated based on the velocity
and position of the leading vehicle.

2.2. Mixed-Integer Linear Programming Model in PASC.
)is section introduces a mixed-integer linear programming
(MILP) model for multimodal traffic control optimization.
)e objective is to minimize the total delay for automobile
and bus passengers. )e set of constraints incorporates
NEMA configuration and traffic dynamics upon the stop
bar, including serving cycle estimation, platoon arrival, and
split. Variables and data notations for the optimization
model are listed in Table 1).

2.2.1. Phase Precedence Constraints. )e proposed model is
based on the standard NEMA 8-phase configuration. Figure 1
presents the phase structure and precedence constraint for a
four-leg intersection [10, 19]. Each ring contains four
movements, in which conflicting movements are separated by
a barrier so that the first movement in one phase group starts
only after all movements in the previous group terminate.)e
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phase precedence constraints are incorporated into the op-
timization model for each intersection in the control zone.

In this study, the phase precedence constraints (3)–(12)
are introduced so that MILP can be formulated at any phase
pair. Under NEMA framework, currently active phases
belong to following eight phase combinations: 1 and 5, 1 and
6, 2 and 5, 2 and 6, 3 and 7, 3 and 8, 4 and 7, and 4 and 8.
)us, NEMA origin phase pair is crucial to calculate the
elapsed green time and the minimum green time constraint
for current phases. To simplify the model, each intersection
is assumed to have the same phase sequence as presented in
Figure 1, in which phase pair 1 and 5 is set as the origin phase
of a cycle. )en, similar to PAMSCOD [13], the phase
precedence constraint is listed as follows:

t1,1 � O1 + Y + R t5,1 � O5 + Y + R, (3)

t2,k � t1,k + v1,k + s1,k,

t3,k � t2,k + v2,k + s2,k,

t4,k � t3,k + v3,k + s3,k,

∀k,

(4)

t6,k � t5,k + v5,k + s5,k,

t7,k � t6,k + v6,k + s6,k,

t8,k � t7,k + v7,k + s7,k,

∀k,

(5)

t1,k+1 � t4,k + v4,k + s4,k,

t5,k+1 � t8,k + v8,k + s8,k,

∀k,

(6)

g1,k + g2,k � g5,k + g6,k,

g3,k + g4,k � g7,k + g8,k,

∀k,

(7)

vp,k � gp,k + Y + R, ∀p, k, (8)

gp,1 � g
N
p , ∀p ∈ Δp, (9)

Table 1: Variables and data notations for the proposed optimization model.

Type Symbol Definition

Sets

p ∈ P )e set of phases
k ∈ 1, 2, . . . , K{ } )e set of cycles

j ∈ J )e set of platoons
m ∈ a, b{ } )e set of traffic mode: a is the automobile, b is the bus

(p, j, m) ∈ Γ )e set of jth platoon at phase p and mode m
Δ1,Δ2 )e current phase in ring 1 and 2, respectively, Δ1,Δ2 ⊂ P

Δ0 )e set of past phases in cycle 1, Δ0 ⊂ P

Δp )e set of past phases in the current cycle

Decision
variable

tp,k Green starting time of phase p during cycle k
gp,k Green duration of phase p during cycle k
vp,k Phase duration time of phase p during cycle k

Nr
p,j,m,k

Number of vehicles in residual platoon being cut from platoon (p,j,m) due to shortage of green time in
cycle k(Nr

p,j,m,k > 0)

xp,j,m,k

Binary variable indicating whether platoon (p, j, m) is served before the end of phase p during cycle k

(if xp,j,m,k � 1, the platoon is served within cycle k else served in other cycles)
Dl

p,j,m Total delay by stopping the leading vehicle of platoon (p, j, m), Dl
p,j,m > 0

Ds
p,j,m Total delay by splitting platoon (p, j, m), Ds

p,j,m > 0
sp,k Slack time for phase p in cycle k

Data

Ep Elapsed green time for phase p, p ∈ Δ0
gN

p Nominal green duration time for past phases in cycle 1
Op Initial starting time for phase p

Y + R Sum of yellow and red clearance time
Gmin

p , Gmax
p Minimum and maximum green time for phase p

Rp,j,m Estimated arrival time at stop line for platoon (p, j, m)

Np,j,m Number of vehicles in platoon (p, j, m)

hp Saturated vehicle headway at stop line for phase p

M A large constant

1 2 3 4

5 6 7 8

BarrierBarrierGroup 1 Group 2

Figure 1: NEMA phase with dual-ring structure.
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sp,k � 0 ∀p, k≥ 2 orp ∉ Δ1∪Δ2, k � 1, (10)

G
min
p ≤gp,k ≤G

max
p , ∀p, k≥ 2 orp ∉ Δp, k � 1, (11)

gp,k ≥max Ep, G
min
p􏽮 􏽯, ∀p ∈ Δ1∪Δ2, k � 1. (12)

Constraints (3)–(6) represent the phase sequence for
dual-ring phase structure, and the barrier constraint be-
tween two phase groups is modeled by constraint (7). It is
assumed that each phase starts with clearance time, and
consequently, constraint (3) indicates the initial green start
time within a cycle. A phase set Δp represents the past
phases, in which the green time duration is determined by
constraint (9). For currently active phases denoted in sets Δ1
and Δ2, the minimum green time constraint is defined as the
larger value of the elapsed green time and the minimum
green time as shown in constraint (12). Considering that
extra time is possible to be required at current phases to
satisfy the barrier constraint [13], the slack variable sp,k is
defined to relax the maximum green time constraint as
constraint (10).

Figure 2 presents the case that the precedence constraint
is formulated.)e current horizon starts from phases 2 and 6
with elapsed green time E2 and E6, respectively. )e dotted
line means the green time for past phases, while the solid line
represents the green time to be determined. In this study, the
planning horizon is assumed to contain at least two complete
cycles after the current cycle. Under this phase precedence
constraint, the cycle length is flexible to traffic demand
fluctuation.

2.2.2. Traffic Dynamics and Delay Evaluation. In the pre-
vious research, delay was used as the most common per-
formance index to evaluate the quality of signal timings
[9, 15, 20]. )is paper classifies the platoon delay into two
types: (1)Dl

p,j,m: total delay by stopping the leading vehicle of
platoon (p, j, m), including the time that leading vehicle
waits for the end of red time and the departure of front
platoons; (2) Ds

p,j,m: total delay by splitting platoon (p, j,m) if
the green duration is not enough to discharge the entire
platoon. Before delay evaluation, it is necessary to estimate
the cycle that the platoon can cross the intersection.

)e serving cycle estimation is based on the platoon
arrival time at the stop line and the possible delay by
stopping the leading vehicle of platoon. Figure 3 illustrates
the two possible cycles serving the platoons around the
intersection. For platoon (p, 1, m), it is clear that it will
pass the stop line in cycle k. Meanwhile, whether the
leading vehicle of platoon (p, 2, m) can pass the inter-
section at cycle k depends on the free-flow speed and the
amount of time waiting for the discharge of platoon (p, 1,
m). )e traffic dynamics are described by the following
constraints:

Rp,j,m + D
l
p,j,m − tp,k + gp,k􏼐 􏼑≤ 1 − xp,j,m,k􏼐 􏼑M, ∀(p, j, m) ∈ Γ, k,

(13)

􏽘
k

xj,p,m,k � 1, ∀(p, j, m) ∈ Γ, (14)

where Rp,j,m + Dl
p,j,mis the actual platoon departure time

considering the delay by stopping the leading vehicle of
platoon, tp,k + gp,k is the end of green time for phase p in
cycle k, and xp,j,m,k indicates that whether platoon (p, j, m)

departs during cycle k.
As depicted in Figure 3, it is figured out that if the

leading vehicle of platoon (p, 2, m) arrives at stop line
before the end of green time (Case 1), then cycle k is
selected as serving cycle. Otherwise, the entire platoon has
to wait until the beginning of green time in cycle k + 1
(Case 2). Constraint (14) ensures that only one cycle in the
planning horizon is selected to serve the leading vehicle of
the platoon.

For simplicity, the platoon is assumed to travel through
the intersection with no dispersion effect. Consequently, all
vehicles within one platoon keep the same headway and the
vehicle trajectories are parallel all time based on kinematic
theory [21]. )is means that all vehicles within the platoon
experience the same delay, as shown in Figure 4. )ere-
fore, the average delay is denoted as (Dl

p,j,m/Np,j,m), which
is the difference between the possibly earliest departure
time of the leading vehicle and the estimated arrival time
at stop line with free-flow speed. To this end, the delay by
stopping the leading vehicle in platoon is presented as
follows:

Dl
j,p,m

Np,j,m

⎛⎝ ⎞⎠≥ tp,k + 􏽘
m

􏽘

j1<j

j1�1
Np,j1 ,m ·

hp

lp − Rp,j,m − 1 − xp,j,m,k􏼐 􏼑M
, ∀p, k � 1 orp ∈ Δp, k � 2, (p, j, m) ∈ Γ, (15)

D1
j,p,m

Np,j,m

􏼠 􏼡≥ tp,k + 􏽘
m

􏽘

j1<j

j1�1
N

r
p,j1 ,m ·

hp

lp − Rp,j,m − 1 − xp,j,m,k􏼐 􏼑M
, ∀p, k> 2 orp ∉ Δ0, k � 2, (p, j, m) ∈ Γ, (16)

where tp,k + 􏽐m 􏽐
j1<j
j1�1 Np,j1,m

· hp/lp represents the earliest
departure time for the leading vehicle of platoon (p, j, m) in
the first cycle length from the moment the MILP is formed,
including the phases after Δ1 and Δ2 in current cycle and

next cycle’s phases belonging to Δ0. For subsequent phases,
the residual part of preceding platoons Nr

p,j1,m should be
considered in constraint (16). )e earliest departure time is
the summation of starting time of phase p and the amount of
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time for discharging platoons in front of (p, j, m). )e
effects of the multiple lanes to saturated headway are con-
sidered by introducing the lane number lp.

Figure 4 illustrates the calculation for the delay by
stopping the leading vehicle delay Dl

p,j,a. Platoon (p, 2, m)

is traveling towards the intersection while platoon
(p, 1, m) has already been stopped at the stop line. Because
platoon (p, 1, m) needs Np,1,m · (hp/lp) duration for dis-
charging, platoon (p, 2, m)may consequently join the
platoon tail and thus experience delays. It should be noted
that since the green duration is enough for discharging all
vehicles in platoon (p, 2, m), platoon split does not occur
and no vehicles are left behind.

If the assigned green time is not enough to serve all
vehicles within a platoon, the platoon will be split into two
components, and the remaining part has to experience extra
control delay Ds

p,j,a, i.e., red duration between cycle k and
cycle k+ 1. Based on the assumption with no dispersion, it is
identified that each vehicle within the residual platoon ex-
periences the same delay duration as depicted in Figure 5.

Figure 5 illustrates the generation of delay incurred by
splitting the moving platoon. First, the platoon (p, 2, m) is
stopped to wait for discharge of the front queues. After the
platoon restarts, only a part of vehicles departures from the
stop line, while the remaining vehicles become the first
platoon for cycle k+ 1. Since the bus is treated as a special

platoon with individual vehicle, the size of residual platoon is
not considered. )e number of residual platoon before the
end of cycle k is then formulated as follows:

N
r
p,j,m,k ≥Np,j,m −

tp,k + gp,k − Rp,j,m − Dl
p,j,m

hp · lp

− 1 − xp,j,m,k􏼐 􏼑M, ∀(p, j, m) ∈ Γ, k, m � a,

(17)

where tp,k + gp,k − Rp,j,k − Dl
p,j,m represents the remaining

green time for discharging platoon (p, j, m) when the
leading vehicle in the platoon can pass through intersection
during cycle k. Two situations may occur if the number of
remaining vehicles Nr

p,j,m,k is equal to 0. )e first is that the
leading vehicle of platoon (p, j, m) does not arrive at the
stop line in cycle k, and the second is that the assigned green
time allows the entire platoon to depart from the inter-
section. Both scenarios do not produce the platoon splitting
delay.

Given the number of residual vehicles in platoon
(p, j, m) before the end of cycle k, the total delay incurred by
splitting platoon can be presented as follows:

E2

E6

1

5

2

6

3 4

7 8

Cycle 1
begining

Planning
horizon

Cycle 2
begining

t1,1
t5,1

t2,1

t6,1

Previous

t3,1

t7,1

t4,1

t8,1

Current

...

Figure 2: Example of planning horizon and current phases.

tp,k

xp,1,m,k = 1

vf

tp,k+1

xp,2,m,k + xp,2,m,k+1 = 1

Cycle k Cycle k + 1

tp,k + gp,k
Case1 Case2

(p, 1, m)

(p, 2, m)

Figure 3: Platoon serving cycle estimation.

xp,1,m,k = 1
vf xp,2,m,k = 1 Np,2,m,k = 0r(p, 2, m)

(p, 1, m)

tp,k tp,k+1
lDp,j,m/Np,j,m

lDp,j,m/Np,j,m

Figure 4: Delay incurred by stopping the leading vehicle in platoon
(j� 2).

vf
xp,1,m,k = 1
xp,2,m,k = 1 Np,2,m,k = 0r(p, 2, m)

(p, 1, m)

tp,k tp,k+1

s rDp,j,m/Np,j,m

lDp,j,m/Np,j,m

lDp,j,m/Np,j,m

Figure 5: Delay incurred by splitting platoon (j� 2).
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D
s
j,p,m ≥N

r
j,p,m,k · tp,k+1 − tp,k − gp,k􏼐 􏼑, ∀(p, j, m) ∈ Γ, k,

(18)

where tp,k+1 − gp,k − tp,k is the effective red duration between
cycle k and k+ 1. Unfortunately, this expression makes the
constraint nonlinear. Consequently, the delay incurred by
splitting platoon is approximated by replacing the compo-
nent of effective red time with nominal effective red time
[20, 22].)us, constraint (18) can be reformulated as follows:

D
s
p,j,m ≥N

r
p,j,m,k · C

N
− g

N
p􏼐 􏼑, ∀(p, j, m) ∈ Γ, k, (19)

where CN represents the nominal cycle length.

2.2.3. Model Formulation. In the proposed model, the ob-
jective function is to minimize the total passenger delay for
automobile and bus users, which is achieved by weighting
delay by vehicular passenger occupancy collected by CV
technology. Compared with the vehicle-based delay objec-
tive function, the person-based delay objective function can
better address conflicting priority for bus services [23]. A
summary of model is presented as follows:
objective function: 􏽐

(j,p,m)∈Γ
Occp,j,m · Dl

p,j,m + Ds
p,j,m􏼐 􏼑

s.t.

phase precedence constraint: (3) − (12)

serving cycle estimation : (13)and(14)

delay by stopping leading vehicle: (15)and(16)

number of residual queue : (17)

delay by splitting platoon: (19),

(20)

where Occp,j,m is the passenger occupancy for platoon
(p, j, m), and the controlled variables are binary decision
variables, and all other variables are nonnegative.

As discussed, the proposed control model aims to serve
all identified platoons in three cycles under the framework of
rolling horizon. )e optimization model is formed and
solved every 30 s to implement the signal control. For
simplicity, only two significant platoons were considered for
noncoordinated phases, while at least one platoon at up-
stream intersection is estimated for the coordinated phases
(phases 2 and 6). Since the queues at upstream stop bar will
approach to the current intersection as one or more pla-
toons, the size and starting time of those platoons could be
roughly estimated by the location of upstream vehicles and
the signal timing plans [13]. Location data on the upstream
vehicle are collected by CV technology, while the signal
timing is extracted through communication between signals.

2.3. Communication between Signals. For a signalized ar-
terial, the proposed control model optimizes signal
timing for each intersection in a fixed sequence. )e
implicit coordination depends on optimized signal
timings of individual controller and the way of unknown
signal timing estimation. In this study, the latest his-
torical signal timings are used to predict upstream phase
duration [17].

For the coordinated phases at upstream intersection,
phase durations can be obtained from the last optimization
results. For the signal timings out of previous rolling ho-
rizon, the latest historical green time is assigned. )e un-
known green time duration for phase p in cycle k is then
calculated as follows:

􏽢gp,k � gp,k− 1, ∀p, k, (21)

where 􏽢gp,k is the estimated green time for upstream inter-
section and gp,k− 1is the actual realized green time on cycle
k − 1.

Based on the phase precedence constraints presented in
Section 2.1, the estimated starting time of coordinated phase
is obtained at upstream intersections. )erefore, the up-
stream platoon arrival time at current intersection can be
calculated as follows:

Rp,j,m � 􏽢tp,k + td, ∀(p, j, m) ∈ d, k, (22)

where 􏽢tp,k is the estimated starting time for phase p at
upstream intersection, td is the platoon travel time from
upstream intersection to the current stop line, and Γd is the
set of platoons which have not passed the upstream inter-
section. With the estimated arrival time of platoon dis-
charged from upstream intersection as input, implicit
coordination between neighboring intersections is fulfilled.

3. Simulation Case Study

To evaluate the effectiveness of the proposed model, a
simulation and evaluation platform was developed in
C++ language. )e system contains VISSIM with COM
(component object module) as a simulation module and
IBM/CPLEX solver serving for optimization purpose.
For every 30 seconds, vehicular information was
extracted for the optimization, and CPLEX was used to
find the optimal solution, so that the generated signal
timings can be implemented into the VISSIM simula-
tions [24].

3.1. Simulation Test Bed. Simulation tests were conducted
based on the arterial segment of Dongchuan Road (D.C.
Road), ranging from Cangyuan Road (C.Y. Road) to Anning
Road (A.N. Road). As shown in Figure 6, three conflicting
bus routes (routes 4, 11, and 16) are operated in the network,
in which one route travels on the Dongchuan Road and the
others travel on the cross streets. All far-side bus stops are
located near the exit of upstream intersection. In the arterial
network, D.C. Road/C.Y. Road and D.C. Road/A.N. Road
are entry intersections of control zones, and vehicles arrive
randomly at one coordinated phase (phase 2 or 6). In D.C.
Road/H.M. Road, vehicles generally arrive in platoons at
both coordinated phases subject to upstream signal controls
[25].

Table 2 presents three demand scenarios to validate the
proposed control model. )e level of saturation is measured
by Intersection Capacity Utilization (ICU) in SYNCHRO. It
is assumed that all buses were equipped with CV technology,
so that the information on bus location and speed is
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available. During the simulation tests, each bus sends pri-
ority requests before arriving at an intersection. )e bus
occupancy in this study changes from 20 to 30 and then to
40, under different demand scenarios, which may be based
on the average number of passengers collected from APC
(Automatic Passenger Counter) devices during the field
implementation.

)e background signal timing information was obtained
from SYNCHRO, including cycle length, phase splits, and
offsets. Fixed signal timings were served as the baseline for
the proposed model. For each scenario, the simulation test
runs with 10 different random seeds based on one-hour
duration, including 10min warm up period [26–28].

4. Results and Discussion

Under the assumption of 100% penetration rate and average
40 bus passenger occupancy, the simulation test results with
three different control strategies are listed in Table 3, namely,
the fixed signal timings from SYNCHRO and the proposed
control model with person-based and vehicle-based objec-
tive functions. Person-based objective function considers
passenger occupancy in each bus, while vehicle-based one
treats bus with the same weight with cars. Personal delay was
chosen as the measurement performance of control strategy
for automobiles, bus, and all vehicles. Figures 7 and 8 depict
the percentage of change in personal delay from SYNCHRO
to the proposed models, with findings summarized as
follows.

As shown in Figure 7, the person-based PASC has ob-
vious advantages compared with SYNCHRO, personal delay
for each category of vehicle decreases with the rise of traffic
demand. Specifically, under low traffic demand (ICU� 0.5),
although the reduction of automobile passenger delay is not
significant, the bus passengers experience nearly less 40%
personal delay. More importantly, the decreasing trend of
personal delay of all vehicles (more than 20%) shows that
giving signal priority to bus passenger will not sacrifice the
benefits of all automobile users. As a result, the person-based
PASC actually reduces the delay of all the passengers.

Figure 8 presents the comparison between two PASC
strategies with person-based and vehicle-based objective
functions. First, the person-based PASC generated more
personal delay for automobile passengers by 5%–10%
compared with vehicle-based PASC, which is acceptable,
since in transit priority, the automobile platoon may wait for
longer time to give way to buses in other phases. With the
increase of traffic demand, the disruption effect becomes
more obvious. However, the person-based PASC still pro-
duce less personal delay for all vehicles in the network, again
proving its ability to balance the passing priority of all users.

To evaluate the impact of the fluctuation of bus pas-
senger number to the controller’s performance, three levels
of the bus passenger occupancy (BPO), were set as 20, 30,
and 40 passengers per bus, respectively. Within the heavy
traffic demand (ICU� 0.9), the test results are presented in
Figure 9. It can be figured out that the change of BPO has a
limited impact on the optimization results. Personal delay of
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Figure 6: Network layout and bus routes.

Table 2: Demand scenario (veh/h).

Movement ICU� 0.5 ICU� 0.7 ICU� 0.9
D.C./C.Y D.C./H.M D.C./A.N. D.C./C.Y D.C./H.M. D.C./A.N. D.C./C.Y D.C./H.M. D.C./A.N.

WB
L 52 131 50 69 225 122 154 200 190
) 431 502 515 835 852 659 1003 1008 1025
R 88 42 113 123 122 86 128 79 109

EB
L 172 134 147 190 192 227 222 162 217
) 433 555 519 823 805 842 1138 1246 1362
R 99 36 50 105 218 117 123 183 94

SB
L 134 192 59 196 206 78 170 350 64
) 93 259 123 154 447 163 163 542 163
R 20 39 85 107 98 223 107 92 228

NB
L 68 90 128 96 144 227 116 190 234
) 66 190 165 154 402 106 156 510 139
R 75 103 71 138 125 80 186 149 98
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automobile passengers keeps almost unchanged, while the
personal delay of bus passenger declines slightly with the
increase of BPO. As a result, the overall road users would
reduce personal delay by 20%.

Since vehicle information collected by CV technology
serves as an important input for platoon identification, the
market penetration rate of CV devices largely influences the
quality of signal timing. To test the model sensitivity to the
penetration rate, the ideal assumption that all vehicles are

equipped with CV devices was relaxed. Based on the pen-
etration rate ranging from 20% to 100% with a 20% interval,
simulation tests were conducted under high demand sce-
narios (ICU� 0.9; BPO� 40). Because all buses are generally
equipped with GPS devices, only automobiles are assumed
to subject to the penetration rate change. Figure 10 illustrates
the percentage of changes in person delay from SYNCHRO
to person-based PASC under different penetration rates.

Table 3: Control performance under different methods (personal delay, seconds).

ICU Vehicle type SYNCHRO PASC (person-based) PASC (vehicle-based)

0.5
Automobile 24.2 23.9 22.7

Bus 34.7 21.3 31.6
All vehicles 29.8 22.6 27.4

0.7
Automobile 28.5 26.2 25.0

Bus 40.6 25.0 34.1
All vehicles 33.7 25.7 29.0

0.9
Automobile 35.5 31.1 28.2

Bus 51.8 29.6 38.3
All vehicles 41.3 305 31.8
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Figure 7: Percentage of change in person delay from SYNCHRO to
person-based PASC under different traffic demands.
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to person-based PASC under different traffic demands.
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8 Computational Intelligence and Neuroscience



It can be figured out that personal delay of all types of
vehicles increases as fewer vehicles are detected on the
road. If the penetration rate is lower than 80%, PASC is
likely to generate more personal delay to automobile
passengers, and the increasing trend grows obviously under
a lower penetration rate. )is is probably caused by the
estimation error in determining the position of the leading
vehicle in the platoon, which can be solved by a more
complicated platoon identification algorithm [13]. On the
other hand, personal delay of the bus passenger rises
slightly, which indicates that the estimation error of the
front platoons does not influence the benefits of bus
passengers. Considering PASC still reduces personal delay
for passengers of all vehicles with more than 20% pene-
tration rate, it is recommended that the obligatory CV
penetration rate should be set at least as 20%.

5. Conclusions

)is paper proposed an improved platoon-based adaptive
control strategy to provide multimodal traffic management
for signalized intersections, assuming that the connected
vehicle information is available online. By introducing
unified phase precedence constraints, PASC was not re-
stricted by fixed cycle length and offset. A MILP optimi-
zation model was developed, in which platoon arrival and
discharge dynamics were modeled for delay evaluation.
With the communication between controllers, PASC pro-
vided implicit signal coordination of neighboring inter-
sections for automobiles and buses.

A simulation and evaluation platform was developed
to validate the proposed control strategy. )e results
indicated that person-based PASC successfully strikes a
balance between automobile and bus passengers. At high
demand scenario, person-based PASC reduces up to 40%
bus passenger delay and 10% automobile passenger delay
in comparison with SYNCHRO. Although the control
performance of person-based PASC for automobile pas-
sengers is slightly inferior to vehicle-based PASC, it still
reduces all personal delay by around 10%. )rough
sensitivity evaluation, it was found that the control per-
formance keeps stable with the fluctuation of bus pas-
senger number, and the minimal CV penetration rate is
around 20%.

While the results are promising, limitations still exist
within the proposed model, especially when the penetra-
tion rate is low. )erefore, how to improve the model
robustness under a low penetration environment is a
crucial question to be explored. Furthermore, additional
progression mechanism and/or big data analytics should be
incorporated into PASC to improve control performance in
a large network [29, 30]. In future, PASC may be applied to
a grid network to evaluate the effectiveness of implicit
coordination.
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