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Local contrasts attract human attention to different areas of an image. Studies have shown that orientation, color, and intensity are
some basic visual features which their contrasts attract our attention. Since these features are in different modalities, their
contribution in the attraction of human attention is not easily comparable. In this study, we investigated the importance of these
three features in the attraction of human attention in synthetic and natural images. Choosing 100% percent detectable contrast in
each modality, we studied the competition between different features. Psychophysics results showed that, although single features
can be detected easily in all trials, when features were presented simultaneously in a stimulus, orientation always attracts subject’s
attention. In addition, computational results showed that orientation feature map is more informative about the pattern of human
saccades in natural images. Finally, using optimization algorithms we quantified the impact of each feature map in construction of
the final saliency map.

1. Introduction

Primates can detect conspicuous objects in cluttered scenes.
Most of them can also move their eyes to different areas of
the visual environment. *ey use this ability to move their
fovea, the high resolution part of the retina, onto informative
parts of the images. *ey focus on salient regions for more
precise sampling of the information. Targeted eye move-
ments provide them with an appropriate usage of processing
resources for the most relevant visual information and a
real-time perception of complex scenes [1].

Much research has been carried out on the underlying
mechanisms of visual attention [2–7]. As one of the first
studies, the importance of the local contrast on attention was
investigated by Triesman and Gelade [8]. *ey defined a
variety of features which can affect human attention. In their
study, it was shown that there was no general feature which
adequately contained salient content across all images. Koch
and Ullman [9], using Feature Integration*eory, proposed
the existence of an integrated map in the primate visual

system that controls the region of interest in the visual field
[9]. *e proposed map prioritizes different regions of the
visual scene for attention. *e oculomotor system may use
such map in order to move the eye toward the more
prominent regions in the scene (overt attention (in an overt
attention, subjects move their eyes to the attended region)).
With respect to this theory, low-level feature extraction
mechanisms act in a parallel manner over the entire visual
scene. Extracted features are processed in different areas of
the brain to provide the bottom-up cues towards the salient
locations of the scene. In this context, the combined pooling
of the basic feature maps is referred to as the saliency map.
Many studies in this area have focused on observing the
correlation (relation) between fixations made by human
observers and the integrated saliency map [10].

Several computational models have been proposed to
predict the salient regions of visual scene in order to simulate
the visual attention of the primates [5, 11–15]. A frequently
referred model of bottom-up attention is the model pro-
posed by Itti et al. [13].*e biologically plausible approach of
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this model is laid on the contrasts of intrinsic low level visual
features of images such as color, intensity, and orientation
without any explicit usage of high-order features. Some
studies have suggested other features or other computations
for feature integration in order to improve the model’s
performance or make it more biologically plausible. Cerf
et al. [16] added a face detection channel to the model, Itti
et al. [17] added motion and flicker channels, Zabbah et al.
[18] suggested a biologically plausible model for motion
extraction, Torralba [19] modeled global scene factors, Tatler
used a center-bias mechanism, Kootstra et al. [20] intro-
duced symmetry as an effective source of attention, Par-
khurst et al. [21] investigated the role of texture contrast,
Bruce and Tsotsos [22], Li et al. [23], and Oliva et al. [24]
used information theory for predicting salient regions of the
natural images (for more details, see [1, 25]). Recently, the
strength of deep neural networks to solve different tasks such
as object recognition, object detection, and speech recog-
nition have been shown in a wide range of studies. It has
been proven that these networks can generalize well over
different tasks [26]. In contrast to the classic models of
bottom-up attention which mostly use low level features,
models with deep structures incorporate high level features
to predict human gaze map (Kümmerer et al. [27–30]), and
they successfully reduced the gap between model prediction
and ground-truth [31].

Evaluating these models, their final saliency maps are
being compared with human eye locations in a free-viewing
task. Many methods were defined to evaluate saliency maps
such as Kullback–Leibler (KL) Divergence [32, 33], Nor-
malized Scanpath Saliency (NSS) [12, 21], Area Under Curve
(AUC) [11, 34], Correlation [35, 36], and Mutual Infor-
mation [36].

Almost all attention models share a similar architecture
and are organized into these three stages [11]:

(1) Extraction: extracting different “feature channels”
over the whole image plane

(2) Activation: forming “activation maps” by processing
on the feature channels

(3) Normalization/Combination: normalizing and in-
tegrating the activation maps into a “final saliency
map”

In the first stage, features such as color, intensity,
orientation, and motion, are extracted from an input
image. *en, in the next stage, some computational al-
gorithm, which may be inspired from biology, is used to
form the activation maps for each channel. Most of these
algorithms have been implemented in a center-surround
manner to establish concentric center-surround receptive
field such as those in the brain. In order to simulate the
receptive field of these neurons, models use Difference of
Gaussian (DoG) filters [13, 37] or Pyramidal Gaussian
Levels [38]. Finally, a normalization scheme is applied to
activation maps which are in turn combined into a final
saliency map.

A central problem in computational models of attention
is that of combining feature maps into a final saliency map

[1, 32, 39]. Knowledge on the effect of each basic feature in
attraction of human attention may shed a light on the so-
lution of this problem. *e effect of basic features can in-
herently be different or can be controlled by top-down
signals. Itti [40] investigated the contribution of low-level
saliency in dynamic scenes and mainly focused on bottom
up and top down attention. He showed that motion and
flicker are better correlated with human saccades than color,
intensity, and orientation, but not as good as all features
combined. Frintrop et al. [41] designed a goal-directed
model that weighted feature channels by using top-down
cues that search for predefined objects in training dataset.
Parkhurst et al. [21] also did some experiments on contri-
bution of low-level factors in allocation of first saccade. In
terms of inherent importance of basic features, Nothdurft
[42] studied the role of orientation, motion, and color in
preattentive attention. He reported a lack of importance of
features in feature discrimination. Designing psychophysical
experiments, he showed that the contrast is most infor-
mative feature for preattentive feature discrimination.
However, this question still remained unanswered that
which feature will first attract human attention when all
present with the same detectability in an image
simultaneously.

In this paper, we aimed to compare the inherent im-
portance of low-level features in attraction of human at-
tention. We investigated how different basic features
compete with each other to attract human gaze. Our purpose
was to find the inherent contribution of each feature in
attraction of human attention. In psychophysical experi-
ments, using simple synthetic images, we compared the
probability of the attraction of attention in a co-presence of
100% detectable features. In addition, analyzing the output
of two basic models of attention (Itti classic model [13] and
GBVS model [43]) on four large dataset of natural images
and human saccadic pattern on those images, we compared
the ability of a single feature to predict human saccadic
points. Using an optimization algorithm, we suggested a
general static weight for feature combination in order to gain
a better performance in prediction of human saccade
landing points. *ese weights are not goal dependent and
just depend on the nature of the features. *e results were
consistent with our psychophysics findings. Both results
attributed a stronger role for orientation in the attraction of
attention.

2. Material and Methods

We compared the effect of some early visual features (color,
intensity, and orientation) on human visual attention. De-
signing psychophysics task and using some evaluation
methods, we investigated which of these features may have
more contribution in the visual attention. In the psycho-
physics task, we used simplified artificial stimuli to be able to
control the feature strength. We made a competition be-
tween 100% detectable features in order to investigate
whether there is an inherent importance in any basic feature
to attract human attention. Using some evaluation methods
on the feature maps of some attention models, the effects of

2 Computational Intelligence and Neuroscience



these early features in natural images were considered. We
used wide range of images in terms of their context to
minimize the effect of context dependency.

2.1. Psychophysics Task on Synthetic Images. In this experi-
ment, we aimed to find out whether the competition of 100%
detectable feature for attraction of human attention has a
special winner or not. Before designing a competition task
between different modalities of features, we should be sure
that each feature is 100% detectable in first saccade when it is
present alone.

Our stimuli contained some red horizontal bars as
distractors and one or more target (depend on the experi-
ment phase) bars on a gray background. *e gray back-
ground was chosen to ensure neutrality. Subjects were
instructed to report the first target they detect. *e positions
of the targets were out of their fovea. Targets differed from
distractors just in one basic feature: color, intensity, or
orientation. *e task had two phases performed by 15
subjects (21–42 years old, 7 females and 8 males). In the first
phase, stimulus contained one target bar. *is phase was
designed to set the parameters of stimulus such as bar size,
presentation time, and features’ value in a way to make a
same detectability for all features. *e second phase was the
main experiment. In this phase, stimulus contained more
than one target with each differed in one feature. We in-
vestigated which feature will win the competition and attract
human attention sooner.

In the first phase, or so-called the control phase, each
stimulus contained one target. *is phase was implemented
to make targets in different modalities 100% detectable.
Choosing maximum contrast between a feature of target and
distractors, we searched for a bar size and a presentation
time which make the target of each modality 100% de-
tectable. Proportion of correct responses averaged on all
subjects and all trials is our measure of detectability. *e size
of bars and the presentation time spanned a range of 7× 7 to
37× 37 pixels in steps of two pixels and 100–300ms in step
50ms, respectively. *e sizes of bars corresponded to those
receptive field of cells in visual cortex (V1’s simple and
complex cells) which also were being used in computational
models [44, 45]. Figure 1 illustrates the base bars that were
used in the first phase for different features.*ere were three
types of stimuli corresponding to the three different targets.
In each type, target differed from distractors just in one
feature. For each type of stimulus, a separate task was
implemented to obtain the proper bar size and presentation
time. So, we had three separated parts in the first phase.
Below, stimuli which were used in each part will be described
in detail.

For all stimuli, just one feature of the target was in
strongest contrast with the distractors while other features
were the same between target and distractors. For ex-
ample, for the color feature, our stimuli contained a green
horizontal bar as the target and some red horizontal bars
as distractors (the target was the same as distractors in
terms of intensity and orientation). *e values chosen for
color representation were taken from the opponent model

(Red vs. Green) as implemented in attention models such
as Itti. At the biological level, these opponent colors are
coupled in neural representation in visual cortex [46]. For
the intensity feature, the target bar had a color similar to
distractors, but with an intensity near minimum (the
target was the same as distractors in terms of orientation).
For the orientation feature, in each stimulus, the target
was located vertically among horizontal distractor bars
(the target was the same as distractors in terms of intensity
and color). Figure 2 depicts three sample stimuli that were
used in the three different parts of the first phase. For each
size of bars (7 × 7 to 37 × 37 with step 2) and each pre-
sentation time (100–300ms with step 50), we made 10
stimuli that were presented to subjects randomly. All
stimuli had size of 900 × 900 pixels. *e target bar was set
in different random locations with 250–360 pixels far from
the center of stimuli (where subject fixated) to be sure that
the target is out of the fovea. Each presentation contained
300ms ISI, 1000ms a fixation point (center of screen), and
100–300ms duration for stimulus. Participants were
seated in a dark room, 50 cm away from a 19’ CRTmonitor
connected to a computer [Intel Core i7 (2.4 GHz, 8 G
RAM)] in resolution 1280 ×1024 pixels. We used MAT-
LAB software (MathWork Inc., 2010) and stimuli were
presented by the Psychophysics Toolbox [47]. Subjects
were instructed to report as soon as they detect the targets
by pressing related keys on the keyboard. Figure 3 il-
lustrated the procedure of stimuli presentation.

Results determined the proper bar size and presen-
tation time which made the target bar 100% detectable.
Since the detection of intensity did not reach to maximum
performance, we declined this feature in the other parts of
the experiment. *e first bar size and stimulus

Figure 1: Size of bars in the control phase. Size of different bars that
were used in the first phase (control phase) of psychophysics task is
shown.
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presentation, by which all subjects could detect the target
100% correctly, were chosen for the next steps of the
experiment.

In the second phase, main experiment, we aimed to find
the most salient feature for the first saccade in a competitive
attention task (CAT). All stimuli contained two targets:
orientation and color target bars (for details of why the
intensity feature was discarded, see Section 3). *is phase
contained two parts. In the first part, features’ value of the
target set in the previous phase was used (vertical bar for the
orientation target and green bar for the color target). In the
second part, the angle of the orientation bar in different
stimuli varied in the range of 0° (horizontal) to 90° (vertical)
with steps of 10°.*e targets were located symmetrically with
the same distance from center of stimulus (as in the control
phase). *us, the targets were located on the opposite sides
of a diagonal of a circle. *e diagonal was selected randomly
among all possible diagonal of a fix circle. Figure 4 illustrates
samples of the stimuli. *e paradigm of the second phase
was similar to the first phase. After 300ms presentation of
the stimulus, subjects were asked to report whether they
detected the color target, the orientation target, both of
them, or none of them. *ere were three keys labeled: color,

orientation, and wave.*ey were instructed to press both the
orientation and color keys for the detection of both targets
and the wave key when they failed to detect any target. It
should be noted that the timing of presentation allowed
subjects to saccade just one time.

In order to confirm the obtained results for overt at-
tentions, we designed another experiment in which we lo-
cated one, two, or three dots in each target bar randomly and
asked the subjects to report the number of dots beyond the
type of the target (Figure 5). Dots were countable only if
subjects make saccade to the target bar (overt attention).
Results were quite similar to the main and control
experiment.

2.2. Evaluation Methods with a Computational Approach on
Natural Images. In order to measure the effect of each
feature in the attraction of visual attention on natural im-
ages, we applied some evaluation and computational metrics
on the feature and saliency maps that extracted from them.
We used activation maps of Itti and GBVS models as feature
maps for our experiments. *ree feature maps (Color, In-
tensity, and Orientation) were computed and extracted for

(a) (b)

(c)

Figure 2: Stimuli of the first phase of psychophysics task. (a) Color, (b) intensity, and (c) orientation features.
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all images of four datasets. First and second stages of models
were run on dataset to obtain feature maps, so our approach
is focused on the third stage. Note that, in natural images
usually all features with different strength compete with each
other to attract human attention. In order to be independent
of the context of images, we used four different datasets with
different contexts. Here, we investigated which feature map
had usually the maximum similarity with the human sac-
cadic pattern for his first 5 saccades. Finally, we measured
the importance of each feature map for predicting the hu-
man saccadic pattern for each image and also for each
dataset.

In order to investigate the similarity of each individual
feature with human saccadic map, we used correlation and
mutual information (as linear and nonlinear measures of
similarity). AUC (area under the ROC curve) were used to
measure the ability of each single feature in prediction of
human density map. To compute human density map, a
Gaussian filter was applied on saccadic map which was
obtained from eye-tracking data (for more information, see
[11, 22]). Similarity measurements were also applied to
feature channels to find more redundant ones. Finally, in
order to quantify the effect of each feature map in the
construction of the saliency map, we employed LSE (Least

Which feature 

do you detect? 
300ms
(ISI) 

1000ms
(Fixation)

300ms
(Stimulus) 

Decision-making

Figure 3: Psychophysics experiment procedure. For each stimulus, subjects were presented by 300ms ISI, 1000ms fixation point in center of
screen, and 100–300ms stimulus presentation; subjects reported whether they detected the target or not by pressing different keys on the
keyboard. After subjects’ response, the procedure was repeated.

(a) (b)

Figure 4: Stimuli of Competitive Attention task (CAT).*is phase made a competition between the color and orientation targets, while the
distractors had red color, the color target was green. In addition, the orientation target as red was the distractor but with different angels.*is
phase characterized which feature attracted the human attention first.
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Square Error) and GA (Genetic Algorithm) to determine the
weights of their linear combination with the aim of maxi-
mizing AUC between the combined map and the human
density maps. Using LSE, we found the importance of each
feature in each image, and while using GA, we found the
importance of each feature for all images of a dataset.

2.2.1. Dataset. Four dataset of natural images were used in
the computational experiments. *ey are constructed by
Judd et al. [48], Ehinger et al. [49], and Ramanathan et al.
[50].

*e Bruce & Tsotsos dataset (Toronto dataset) contains
120 natural images and saccadic eye-tracking data from 11
subjects. Images were presented for four seconds for eye-
tracking data collection. All images had a size of 511× 681
pixels (32° × 24°). For each image, saccades of all 11 subjects
were collected and a binary saccadic map with the same size
as the original images was made. *e value of the pixels that
were saccade landing positions were set to 1 and the rest
were set to 0. After applying a Gaussian Filter on each
saccadic map, human density map was being produced.
*ese maps indicate the more probable positions for saccade
[22].

*e second dataset has been gathered by Ehinger et al.
and consisted of 912 images of urban environments, half
containing a pedestrian (target present) and half without
(target absent). Images had a resolution of 800× 600 pixels
(23.5° ×17.7°). Participants were instructed to decide as
quickly as possible whether a person was present in the
scene. Eye movements of 14 observers were recorded [49].

*e third dataset (MIT dataset) contains 1003 natural
image (36° × 27°), which were observed by 15 subjects for 3
seconds. *e dataset had saccadic eye-tracking data, but we
used the abovementioned method to make human density
map for all images [48].

*e forth dataset contains 758 semantically images that
are collected from Flicker, Photo.net, Google, and emotion-
evoking IAPS. Images are in 1024× 728 resolution (26° ×19°)
and each of which was viewed by an average of 25 subjects
for 5 seconds [51].

Figure 6 shows some images of these dataset and cor-
responding feature and human density maps. First dataset
had both saccadic eye-tracking data and human density
map; but other three dataset had just eye-tracking data. So,
for our experiments, we used the method mentioned in
[11, 22] to construct human density maps.

2.2.2. Correlation Method. In order to be able to compute
the correlation between maps, we used 2D correlation [36].
2D correlation between two images can be computed using
the below equation:

CA,B �
􏽐

m−1
i�0 􏽐

n−1
j�0 aijbi,j

􏽐
m−1
i�0 􏽐

n−1
j�0 a2

i,j􏼐 􏼑 􏽐
m−1
i�0 􏽐

n−1
j�0 b2i,j􏼐 􏼑􏽮 􏽯

1/2, (1)

where A and B are the two images and n and m are the
number of pixels of rows and columns. Here, A and B are
different maps. We calculated correlation between two
feature maps and between each feature map and human
density map.

2.2.3. Mutual Information Method. Mutual information is
used in information theory as a measure of statistical de-
pendence between two random variables. It measures the
amount of information that one variable contains about the
other one. In image processing, it can measure the ability of
an image to explain another image [52]. *e mutual in-
formation measure is computed as below:

MI (A, B) � H(A) + H(B) − H(A, B), (2)

(a) (b)

Figure 5: Stimuli of additional experiment of psychophysics task. In the second phase, an additional task was carried out to confirm results
of CATfor overt attention. Stimuli in this experiment had target bars, which were marked with one, two, or three dots randomly. Dots were
countable only if subjects make saccade onto them.
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where H is Shannon’s Entropy [53], and for m given events
occurring with probabilities pi . . . pn, it is defined as follows:

H � 􏽘
m

i�1
pilog

1
pi

� − 􏽘
m

i�1
pilogpi. (3)

For an image, the entropy is calculated from the image
intensity histogram in which the probabilities are the his-
togram values. It will have the maximum value if all levels of
intensity have equal probability of occurrence and the
minimum value (zero) if the probability of one level oc-
currence is 1 and the probability of all others occurring is
zero. H (A, B) is joint entropy that can be calculated using
joint histogram of two images. If the images are totally
unrelated, then the joint entropy will be the sum of the
entropies of individual images. *e more similar the images
are, the lower the value of the joint entropy is. In our
analysis, mutual information determines the quantity of
information that each channel has in common with other
channels and human density map.

2.2.4. Area under Curve. Area under curve (AUC) is the area
under Receiver Operating Characteristic (ROC) curve. ROC
is used in signal detection theory, medical decision-making,
machine learning, and other scientific fields to show the
evaluation of a binary classifier system as its discrimination
threshold is varied [25, 54]. *is criterion is widely used for
measuring the performance of attention models. Here, we
employed AUC to measure the performance of each feature
channel in prediction of human density map and also to
define a benefit function in GA.

2.2.5. Least Square Error. Least Square Error (LSE) is a
method to find optimum parameters which minimize the
error between a predicted and desired signal [55]. Equation
(4) shows the combination formulation of final saliency map
using features, where X is the extracted feature map,W is the
weight matrix, and S is the final saliency map. Each feature
map is reshaped to a vector and all features together con-
struct the matrix, X, or feature matrix which then are

multiplied by a weight to construct the saliency map. Here,
we want to find the weights in which S represents human
density map. So, replacing S with human density map
(equation (5)) and using the Least Square Error (LSE)
method, optimal weights will be achieved through equation
(6):

X nRow∗nCol( )×3[ ] × W[3×1] � S nRow∗nCol( )×1[ ], (4)

X nRow∗nCol( )×3[ ] × W[3×1] � D nRow∗nCol( )×1[ ], (5)

Wbest � X
T
X􏼐 􏼑

−1
X

T
D, (6)

where nRow and nCol are number of rows and columns of
feature maps, respectively. *e values of best weights can be
interpreted as a quantity which explains the importance of
each feature map on creating the best saliency map, that is,
the most similar one to human density map for image X.
Here, we look for the importance of each channel in final
saliency map of each image. In other words, for each image,
LSE will find a set of weights.*en, we can count the number
of images in which, for example, orientation (or intensity or
color) channel has most effect in their saliency map.

2.2.6. Genetic Algorithm. Genetic Algorithm is an evolu-
tionary algorithm that looks for one optimum point in a
wide search space [56]. In our implementation, we searched
for optimum weights of equation (4), defining the average of
AUC of S (final saliency map) with respect to D (human
density map) as the benefit function. We should note that,
with the GA method, considering the average AUC of a
dataset, we found a set of weights which can maximize the
AUC of a whole dataset. In other words, we assume that
there is a static weight for each channel which does not
change image by image. In this approach, after optimization,
GA suggests the best 3 weights in order to achieve the best
AUC in whole dataset. Our GA starts with 60 random
chromosomes as initial population. Each chromosome
contains three genes corresponding to three different
weights (weights of each channel). Algorithm applies the

Figure 6: Dataset: some images of four datasets and their corresponding maps are shown. From left to right each row contained, re-
spectively, original image, color feature map, intensity feature map, orientation feature map, final saliency map, and human density map.
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weights in each chromosome to equation (4) and calculates
the AUC for each image. Averaging AUC across all images,
60 single AUC value corresponding to each chromosome
will be achieved. *en, it selects 30 chromosomes which
cause best AUC’s as the parents of next generation. Using
mutation and crossover as generation production methods
second population will generate. *e numbers of population
in all generation is 60. *e goal of the algorithm is to
maximize the mean AUC of dataset. In order to avoid falling
into local optima, some chromosomes of each generation
reproduce randomly. In this way, algorithm obtained the
optimum weights of feature channels for constructing a
saliency map that follows human behavior in attention
mechanisms.

3. Results

3.1. Psychophysics Results. In the control phase of psycho-
physics task as mentioned in material and methods, first we
searched for a bar size and a presentation time which make
the target bar 100% detectable (independent of target fea-
tures). We found that targets in stimuli with bars in level 10
(25× 25) and with 300ms presentation time can be detected
in 100% of trials. *e detection of intensity target did not
reach 100% in any sizes even for 300ms presentation time.
So, in the next step of the experiment, we used only color and
orientation as targets.

In the second phase, we made a competition between
color and orientation features as described in Section 2. All
stimuli contained both color and orientation targets with
their maximum contrast with distractors. In 84% of trials,
orientation was detected as the first point of interest, while in
less than 5% of trials, color won the competition. Other trials
were those which subjects could not detect any target or
rarely reported presence of both of targets. As illustrated in
Figure 7, the stimuli in which the orientation target has the
angle near to the horizontal bar, the color target can attract
the attention of subjects more often. As the angles of ori-
entation targets increased above 30°, the orientation target
draws the attention of subjects more frequently and the
detection of color target decreases exponentially.

3.2. Computational (Evaluation) Results. Psychophysical
results showed that orientation feature was more effective in
attraction of human attention in comparison with other
features. In the computational part of our study, the impact
of each feature in attracting human attention in natural
images was investigated. Since natural images contain all
features simultaneously, we can examine the effect of each
feature in competition with other ones. For this goal, as
mentioned in Section 2, we used correlation, MI, AUC, LSE,
and Genetic Algorithm to determine the importance of each
feature in prediction of the saliency map.

First, using correlation and mutual information, we
checked the similarity between each feature map and human
density map and also the similarity between each two feature
maps. For each image, we computed three indicators for
pairwise similarity between feature maps (Intensity vs.

Color, Intensity vs. Orientation, and Color vs. Orientation)
and three indicators for comparison of each feature map and
human density map. We benefited the bar charts to show
results. *e length of the bars shows the percentage of
images which takes the maximum value for that certain
indicator. *en, using AUC, the contribution of each feature
channel in the prediction of human saliency map (density
map) was computed. Results show that how much each
feature map can represent the human saliency map. Finally,
we quantified the effects (weights) of different features in
construction of the saliency map by LSE and GA methods.
Although we used both Itti and GBVS models to extract
basic visual features because of likeness of results, we just
reported one of them (Itti model).

Correlation: correlation between each feature map and
density map has been shown in Figure 8. In most of the
images of all dataset, the correlation between the orientation
and density map obtained the maximum value. *ere was
approximately the same number of images for which the
correlation of intensity and color maps with density map
took the maximum values. Table 1 presented the overall
average correlation for each dataset between each feature
channel and density map. As shown in Figure 9, color and
intensity maps are usually the most correlated maps, while
orientations and color maps are usually the least correlated
maps.

Mutual Information: results of applying mutual infor-
mation to the maps were presented in Figures 10 and 11, and
Table 2. Here, we can also see that the color and intensity
maps usually have most information in common. *ere are
just a few number of images whose orientation and color
maps have the most equivalent information. Similar to
correlation we can see that, in most cases, orientation is the
feature which carries the most information about density
maps.
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Figure 7: Results of competition task. Responses of subjects when
stimuli contained both color and orientation features. Horizontal
axis indicated the angle of orientation bars that changed from 0° to
90° with step 10°. Vertical axis showed the percentage of target
detection.
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Table 1: Correlation: average of correlation between each feature map and density map over all dataset’s images. Rows are different datasets,
and columns labeled color, intensity, and orientation show the average correlation between outputs of feature map of Itti model and human
density map. Small columns show if the average of correlation of each map is significantly different with two other maps. NS stands for not
significant (p> 0.05), S stands for significant difference (0.001<p< 0.05), and HS stands for high significant difference (p< 10−5).

Color I O Intensity C O Orientation C I
Bruce 0.3253 NS HS 0.2949 NS HS 0.5803 HS HS
Ehinger 0.1421 S S 0.1255 S HS 0.2814 S HS
NUSEF 0.0760 HS HS 0.1988 HS HS 0.3700 HS HS
Judd 0.2157 HS HS 0.2057 HS HS 0.3215 HS HS
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Figure 8: Correlation between features and density map. Horizontal axis indicates the four dataset used in computational experiments and
vertical axis shows the percentage of images which correlation between each of their feature maps and human density map get the maximum
value.
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Figure 9: Correlation between features and correlation between two feature maps. Horizontal axis indicates the four dataset used in
computational experiments, and vertical axis shows the percentage of images in which correlation between their feature maps gets the
maximum value. *e bars chart correlation between color and intensity, color and orientation, and intensity and orientation, respectively.
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Figure 10: Mutual information between features and density map. Horizontal axis indicated the four dataset used in computational
experiments and vertical axis showed the percentage of images which mutual information between each of their feature map and human
density map get the maximum value.
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Figure 11: Mutual information between two feature maps. Horizontal axis indicated the four dataset used in computational experiments,
and vertical axis shows the percentage of images which mutual information between their feature maps get the maximum value. *e bars
chart mutual information between color and intensity, color and orientation, and intensity and orientation, respectively.

Table 2: Mutual information. Average of mutual information between each feature map and density map over all dataset’s images. Small
columns show if the average of mutual information of each map is significantly different with two other maps. NS stands for not significant
(p> 0.05), S stands for significant difference (0.001<p< 0.05), and HS stands for high significant difference (p< 10−5).

Color I O Intensity C O Orientation C I
Bruce 0.4742 NS HS 0.4698 NS HS 0.6856 HS HS
Ehinger 0.4611 NS HS 0.4794 NS HS 0.6375 HS HS
NUSEF 0.3012 NS HS 0.3009 NS HS 0.5684 HS HS
Judd 0.2311 S HS 0.2726 S HS 0.4144 HS HS
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AUC: AUC is widely used to evaluate the performance of
attention models. Using this criterion, we evaluated the
ability of each feature map to predict the human density
map. Results show that, in most cases, the orientation map
has a better AUC values (Figure 12). Also, the average AUC
of the orientation map was always significantly greater than
the other maps, as shown in Table 3. Interestingly, in some
cases, orientation map has also a better performance than
the overall saliency map computed by each model.

LSE: we used LSE as an optimization method to obtain
the optimal weights in a linear combination of feature maps,
while the goal is to find a better representation of the human
density map for each individual image. Results support the
previous results obtained by correlation, mutual informa-
tion, and AUC.*e length of the bars in Figure 13 shows the
number of images in which each corresponding feature map
takes the strongest weight. Again the orientation map in
most of the images takes the strongest weight. Overall av-
erages of weights for each channel reported in Table 4. *e
orientation weight is significantly larger than weights of
other features in all datasets.

GA: we also used genetic algorithm to optimize the
weights in a linear combination of feature channels in order
to find if there are static weights independent of the input
image which can improve the overall AUC of a dataset.
Obtained weights can be used in attention models as pre-
defined static weights of each channel to simulate the effect
of inherent importance of each channel. We ran our genetic
algorithm 10 times and in all runs the same results were
obtained. Table 5 shows the optimal weights of feature
channels that were obtained using genetic algorithm (av-
eraged on 10 run). *e orientation channel takes significant
strongest weight in all datasets.

Deep structures: finally, we also tested how a deep
structure behaves in the absence of color and edges

information. Figure 14 shows the categorization perfor-
mance of the AlexNet on three categories (horse, butterfly,
and cat) of the animal classification dataset [57]. *e
AlexNet was fine tuned on 2100 intact colorful images of the
dataset (700 images in each category) and was tested on 90
new images (30 images for each category) in five different
conditions. In the first condition, we calculated the accuracy
of the model for the intact colorful images, the second one is
the model accuracy for gray level images (where the color
information was diminished), and the other three conditions
are the accuracy of the model for smoothed images (where
information about edges was diminish). We used three
different averaging filters with the size of 7× 7, 13×13, and
15×15 to decrease the strength of edges in the input image.
As shown in Figure 14, the performance of themodel is more
affected by removing the edges’ information (with sizes
larger than 7× 7) in comparison to color. *is supports the
hypothesis that orientation feature conveys more informa-
tion than the color feature even when features are extracted
with a deep structure.

4. Discussion

*ere are some studies which compared the role of early
visual features [21, 41, 58] on the saliency map. *ey
showed the effect of bottom-up attention in prioritizing a
feature map. Nothdurft [42] showed that the contrast in
each modality plays the most important role in priori-
tizing that modality. However, in this study, we investi-
gated how simultaneous presentation of 100% detectable
features affects the strength of each feature in the at-
traction of human attention. We showed that, although
color and orientation target, with a specific contrast, could
be detected in the first saccade, when they were appeared
alone, orientation attracted human attention in the first
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Figure 12: AUC between features and density map. Horizontal axis indicated the four dataset used in computational experiments, and
vertical axis showed the percentage of images in which AUC between each of their feature map and human density map gets the maximum
value.
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Table 3: AUC. Average of AUC between each feature map and density map over all dataset’s images. Small columns show if the average of
AUC of each map is significantly different with two other maps. NS stands for not significant (p> 0.05), S stands for significant difference
(0.001<p< 0.05), and HS stands for high significant difference (p< 10−5).

Color I O Intensity C O Orientation C I Saliency
Bruce 0.7993 NS HS 0.7894 NS HS 0.9211 HS HS 0.9217
Ehinger 0.7513 NS S 0.7442 NS HS 0.8265 S HS 0.8338
NUSEF 0.6677 S S 0.7299 S NS 0.7058 S NS 0.6750
Judd 0.5997 HS HS 0.7065 HS HS 0.8109 HS HS 0.7751
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Figure 13: LSE. Percentage of images in which the weights for each of their feature maps gets the maximum value. For each image, three
feature maps transformed to three vectors, density map transformed to a vector too, and then by using LSE, weight of each feature map for
constructing saliency map (here density map) was computed. Number of maximum weights that maps take were counted over all images
and reported in percentage.

Table 4: LSE. Average weights of each unique feature map.

Color Intensity Orientation
Bruce 0.1362 0.0561 0.4026
Ehinger 0.0987 0.0447 0.1923
Judd 0.0628 0.0023 0.1437
NUSEF 0.0141 0.0153 0.1724

Table 5: GA. Weights of feature channels that were obtained by applying genetic algorithm optimization on all images.

Color Intensity Orientation
Bruce 0.2174 0.2036 0.5368
Ehinger 0.0742 0.0631 0.9110
Judd 0.3638 0.1129 1.0825
NUSEF 0.2736 0.2458 0.5967
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saccade in nearly all trials when both features were
appeared together.

5. Conclusion

In this study, we performed psychophysics tasks with syn-
thetic stimuli and used some computational and evaluation
metrics on the basic features of natural images to investigate
the impact and contribution of early visual features in the
attraction of human attention. In psychophysics, we first
controlled the feature space to find 100% detectable feature.
*en, we compare their detectability in a task in which both
features were presented. Orientation almost always won the
competition and attracted human attention in his first
saccade. Moreover, using a wide range of natural images, we
first consider the similarity between each feature map and
human saccadic pattern or human density map. Orientation
feature map was most informative map to predict human
saccadic points. In addition, intensity and color maps were
most similar maps, while information in orientation map
was less predictable from other maps. *is observation may
tell us about the inherent importance of orientation feature
in natural images. Taking psychophysics and computational
results to account we may conclude that human attentional
system prioritizes orientation feature because it has more
information in comparison with intensity and color.

By using LSE and GA toward a linear combination of
feature maps, we searched for the weight of each feature map
in this integration. We used LSE to find the optimized
weights per image. *e goal was to achieve a best saliency
map for each image. *en, we showed the number of images
in which orientation or color or intensity weights get the
maximum value. Results of the LSE method showed that, in
most images, orientation weights get the maximum value.
On the contrary, in the GA method the goal was to achieve
the best average of AUC through the all images of dataset.

So, GA found three static weights which can improve the
average AUC of a whole dataset. Obtained weights can be
used in attention models as predefined static weights of each
channel to simulate the effect of inherent importance of each
channel. In other words, using LSE, we saw that there are
images in which other features (intensity and color) have
stronger effect, but in order to achieve a better overall
performance in a dataset (in terms of AUC) with three static
weights, using GA, we showed that orientation weight
should have a bigger value.

Although, it is believed that while familiar features
compete strongly for saliency, different modalities con-
tribute independently to the final saliency map, and our
results suggest that different modalities also compete in the
combination stage.
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