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An electroencephalogram (EEG) is a test that records electrical activity of the brain using electrodes attached to the scalp, and it
has recently been used in conjunction with BMI (Brain-Machine Interface). Currently, the analysis of the EEG is visual, using
graphic tools such as topographic maps. However, this analysis can be very difficult, so in this work, we apply a methodology of
EEG analysis through data mining to analyze two different band frequencies of the brain signals (full band and Beta band) during
an experiment where visually impaired and sighted individuals recognize spatial objects through the sense of touch. In this paper,
we present details of the proposed methodology and a case study using decision trees to analyze EEG signals from visually
impaired and sighted individuals during the execution of a spatial ability activity. In our experiment, the hypothesis was that
sighted individuals, even if they are blindfolded, use vision to identify objects and that visually impaired people use the sense of

touch to identify the same objects.

1. Introduction

The human brain is a multifaceted structure that is capable of
storing large amounts of information, transforming it,
learning and making complex decisions, and providing us
with the ability to discover and influence the world [1]. In
this sense, neuroscience is an interdisciplinary science that
joins different areas of knowledge with the intention of
interpreting the nervous system as a whole. The BMI (Brain-
Machine Interface) is an application that allows commu-
nication between an individual and an external device such
as a computer without any muscle movements created by the
brain [2]. These devices communicate directly through brain
impulses, such as those captured in an EEG (electroen-
cephalogram). The EEG is based on records of electrical
brain activity that are measured on the surface of the scalp.
These high-temporal-resolution systems are able to measure
brain signals in milliseconds, generating a large amount of
data.

There are different neuroscience studies based on BMI
systems. Some of them study how to provide a better quality

of life for people with severe motor problems [3], rehabil-
itation of stroke victims [2], robotic systems movement, and
classification of teaching objects related to the students level
of attention [4]. The most commonly practised application
of EEG is to monitor and study EEG records visually [5].
Graphical analysis can be very useful, but sometimes it is not
sufficient because the amount of data is too large and thus
can be very difficult to analyze [6].

To facilitate this process, this work uses a data-mining-
based methodology to analyze EEG signals [7]; more spe-
cifically, we use decision trees algorithms to analyze brain
signals. Decision trees are very easy to read, and through
them it is possible to understand which area of the brain was
activated or how many times a pattern occurred [8].

To show how the methodology works, we present a case
study that exploits the spatial ability of visually impaired and
sighted people. Both groups had to identify spatial objects in
a controlled environment. Our hypothesis is that each group
would use different brain areas to perform such activities
because visually impaired individuals tend to compensate
for the sense of sight with other senses [9].
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A BMI-EEG, typically, records brain signals in the range
of 0.1Hz to 100Hz. Wave forms are subdivided into
bandwidths known as Alpha, Beta, Theta, and Delta to
signify the majority of the EEG [5]. In this work, we are
particularly interested in analyzing the Beta frequency band
because it is associated attention, visual precision, and co-
ordination states.

In this work, we compare the full band frequency and the
Beta band frequency used as input of two decision tree
algorithms, J48 and Random Tree. We have two goals in this
paper: firstly, we present the complete proposed method-
ology, initially presented in [7], and all analysis of the data to
validate our hypothesis; secondly, we analyze that there is a
best algorithm and a best input band frequency to use data-
mining-based methodology to analyze EEG signals.

This paper is organized as follows. Section 2 presents the
theoretical background used for the development of the
methodology and the case study. Section 3 shows the pro-
posed methodology used. In Section 4, the first case study
and the generated models (decision trees) are presented.
Section 5 presents the second case study that uses modu-
lation of amplitude. Finally, in Section 6, we discuss the
results of this research.

2. Theoretical Basis

2.1. Brain and Actions. The brain is the main component of
the nervous system. It is responsible for all mental operations,
such as concentration, thinking, learning, and motor control.
These capabilities are implemented through neurons in ways
that can currently be explained by neuroscience.

The human brain is divided into two hemispheres, right
and left. Initially, there was a belief that there was one
dominant hemisphere, and the other was dominated.
However, this concept has become outdated, and now there
is a belief that there are actually two specialized hemispheres.
Thus, each hemisphere is responsible for a set of functions
that ultimately work together. Anatomists usually divide the
brain into major regions, called lobes, whose boundaries are
not always precise but transmit an initial idea of regional
location. There are five lobes: four external and one internal,
located in the lateral sulcus [10]. The four external lobes are
the frontal lobe, which is located in the forehead; the parietal
lobe, which is located under the cranial bone of the same
name; the temporal lobe, which is associated with the
temple; and the occipital lobe, which is located in the oc-
cipital cranial bone. The fifth lobe, the insular lobe, can only
be seen when the lateral sulcus is opened [10, 11]. There are
many other structures situated in the central nervous system
(CNS), but in this work we investigate only the four visible
lobes because the BMI system that we used does not have
access to the insula lobe.

Each lobe has specialized functions. The occipital lobe is
primarily concerned with the sense of vision, and it is di-
vided into multiple distinct visual areas, the largest of which
is the primary visual cortex. The parietal lobe is partially
dedicated to the sense of touch and is responsible for body
sensitivity functions and spatial recognition. The temporal
lobe contains the primary auditory cortex; it processes audio
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data, language understanding, specific aspects of vision, and
some aspects of memory. Finally, the frontal lobe is re-
sponsible for cognitive actions, memory, and movement
[10, 11]. Table 1 presents the brain areas and their main
functions.

2.2. Visual Impairment. Visual impairment to any degree
impairs a person’s ability to orient themselves and move in
space with security and independence [12]. An individual
may be born without visual capacity or lose it during their
life. Because spatial information does not reach a visually
impaired individual through vision, he or she perceives the
world using other senses: hearing, smell, touch, and taste [9].

Among the senses, hearing is extremely important be-
cause it is through hearing that that which cannot be seen
can be interpreted (understood) through language, for ex-
ample, helping a child with visual impairment to understand
that there is a separate external reality [9, 12]. However, it is
necessary that sighted individuals describe what is visual;
thus [9] reminds us that sighted individuals are less ac-
customed to perceiving the world through the other senses,
which requires the visually impaired individuals to make
frequent “adjustments” to what s/he knows through her/his
perceptions and what s/he knows through speech from those
who are around him/her. In this context [13] states that
“some visually impaired individuals become very sensitive to
the nuances of inflection, volume, resonance and various
intensities of speech sounds of others that go unnoticed to
sighted individuals.” This does not mean that the visually
impaired have a super capacity but rather that they use in-
depth hearing [9].

Hearing also plays an important role in differentiating
stimuli and detecting obstacles, as in the echolocation
phenomenon. Through the location of objects based on
sounds that are often not heard by sighted individuals,
hearing may provide the visually impaired with indications
of the direction and distance of objects [14]. To [14], touch is
considered the most appropriate way to provide the dis-
placement of reference in space that has left or never existed
due to lack of vision, and it is through this that most of the
knowledge space should be built; [15], in his findings, states
that “identification through touching objects is not simply
done by touching them and exploring them, it is necessary to
develop a tactile sensitivity to them and/or know them.”

Other senses, such as taste and smell, also contribute to
the expansion of visually impaired individuals’ knowledge of
their local living spaces and social relations and their day to
day activities. The odors of where they have been provide
possible knowledge of the objects that make up the place
[15]. Smell helps people, visually impaired or not, realize,
(re)know, and study the various objects that make up the
landscape of a site, whether natural or artificial.

However, taste can provide a sense of tasting flavors with
or without food and drink. According to [15], taste stim-
ulates socialization when conducting meetings in environ-
ments where food is present, such as restaurants.

In this context, the use of each of the senses should not be
considered separately. In [16], identification of a held object
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TaBLE 1: Brain regions, electrodes, and main functions, adapted from [10, 11].

Brain region Electrodes

Proprietary functions

Frontal lobe FC2, and FC6

Temporal T7, TP9, T8, and T10
lobe

Parietal lobe CP6

Occipital 01, Oz, and 02

lobe

P7, P3, Pz, P4, P8, POY, PO10, CP1, CP2, CP5, and

Fpl, Fp2, AFz, F7, F3, Fz, F4, F8, FC5, FC1, FCz, Executive functions (management of cognitive/emotional resources

in a given task)
Perception of biological motion

Somatosensory perception, spatial representations, and tactile
perceptions

View images (including during a dialogue)

was much more efficient if the individual used the largest
possible number of methods for the recognition rather than
a single method.

2.3. BMI (Brain-Machine Interface) Systems. BMI systems
consist of tools that enable communication based on neural
activity generated by the brain without a need for any other
type of brain signals, such as muscle movement. These use
electrical signals detected on the scalp of the surface cortical
or subcortical areas. The goal of BMIs is to provide inter-
action between the user and an external device, such as a
computer, switch, or prosthesis [2].

One of the most commonly used techniques for cap-
turing neural activity in BMI systems is EEG. The EEG is
based on brain electrical activity records performed through
electrodes applied to the scalp.

The signals that are captured by the EEG equipment
measure potential differences between regions of the cortex.
These differences are due to the flow of ions between dif-
ferent neurons in the brain. When the neuron is activated, it
polarizes, generating an action potential that can be prop-
agated to other neurons, thus generating the flow of in-
formation. Thus, EEG records, collected on the surface of the
scalp, show the electrical activity of the brain [17].

The records obtained through the electrodes present the
intensity of brain waves, which can vary between 0 and
200 vy frequency bands, ranging from 0.3 Hz to 100 Hz.

The resulting signal of an EEG shows peaks related to the
existence of electrical activity, showing a very general spatial
location of this activity because this signal is the sum of the
activity of a large number of neurons that communicate with
each other [18].

2.4. Brain Waves. Brain waves can be classified using their
frequency, amplitude, shape, and electrodes position on the
scalp. EEG applications focus on a narrow band, from 0.1 Hz
to 100 Hz. EEG signals are classified based on their fre-
quency band [5].

(i) Delta waves (8): They are in frequency band from
0.5Hz to 3.5Hz. They are slower than the others,
and they generally occur in deep sleep and, some-
times, when in mental comma state.

(ii) Theta waves (6): They are in the frequency band
from 3.5Hz to 7.5 Hz. They appear during creative
thought, stress, and deep meditating state.

(iii) Alpha waves («): They are in frequency band from
7.5Hz to 12 Hz. They dominated calm and relaxed
mental states.

(iv) Beta waves (f3): They are in the frequency band from
13Hz to 30Hz, and they are associated with at-
tention, visual precision, and coordination states.

(v) Gamma waves (y): They have frequency higher than
30 Hz. Motor functions, simultaneous work, and
other multitasking occur in this range of frequency.

2.5. Decision Trees. The decision tree model is a supervised
classification technique based on the division of a complex
problem into several subproblems, repeating this process
recursively to generate a tree. In a decision tree, each leaf
node receives a class label; nonterminal nodes, which include
the root node and other internal nodes, contain attribute
testing conditions to separate records that have different
characteristics [6].

In the late 1970s and early 1980s, J. Ross Quinlan de-
veloped ID3 (Iterative Dichotomiser 3), an algorithm to
generate a decision tree. Some years later, he proposed the
C4.5 algorithm as an optimized version of ID3. According to
[19], C4.5 serves as a basis for new supervised methods. The
J48 algorithm is an extension of the C4.5 classification al-
gorithm, arising from the need to recode the algorithm into
the Java language because C4.5 was originally written in the
C language [20]. The algorithm always uses the best locally
evaluated step, without concern as to whether this step will
produce the best solution, and it divides a problem into
several subproblems by creating subtrees between the root
and the leaves [21].

In general, the classification algorithms aim to search for
models that reach the highest precision or the lowest error
rate when applied to the test set.

Random Tree is a randomly induced tree from a set of
possible trees, using m random attributes on each node; each
tree has an equal chance to be sampled, and it can be
generated efficiently, and the combination of large sets of
Random Trees usually leads to accurate models [22].

3. Proposed Methodology

This paper aims to present a methodology for the use of
decision trees as a means to understand brain activity from a
case study with the recognition of spatial objects. Thus, seven
steps are proposed, as presented in Figure 1.
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FIGURE 1: Proposed methodology in this work. In each step a
sequence of actions is performed.

6. Generated
templates

(i) Problem: This stage consists of defining the prob-
lem or hypothesis to investigate its truth.

(ii) Data collection: There are different methods of
measuring brain activity, one of which is electro-
encephalography. This step consists of defining the
tools and protocols for the collection of brain
signals.

(iii) Preprocessing: In this stage, the collected EEG data
undergo a series of processes that allow the use of
software for data mining (DM).

(iv) Choice of technique: The choice of a technique
means choosing the DM algorithm that best applies
to the problem.

(v) Execution: This step refers to the definition of the
parameters that must be used for the application of
the DM algorithm.

(vi) Generated templates: MD tools allow researchers to
view extracted patterns or models that summarize
the structure and information in the data.

(vil) Analysis: The results obtained through the gener-
ated models are analyzed and validated. For this, it
is important to include specialists in the field of
study to validate and guarantee the consistency of
the results.

4. First Case Study: Identification of
Geometric Objects

Our study applies a decision tree as a means of providing
EEG signal analysis. In this case study, the methodology
proposed in Section 3 is applied for the EEG analysis of
congenitally blind individuals and individuals with regular
vision during the activity of identifying geometric objects.
Next, the seven steps are applied within the proposed
scenario.

4.1. Problem. For people without visual impairment, spatial
analysis tasks, such as the identification of objects or people
and location and movement in space, are naturally domi-
nated by the sense of sight. Visual signals are sent to and
processed in the occipital lobe. Therefore, people who are
born without vision or lose their vision over time have a
compromised visual sense, and they need to use other senses
as a way to overcome the obstacle of the absence of vision. In
[14, 16], touch is considered to be the most appropriate sense
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to provide displacement references in space. This sense is
processed in the parietal lobe.

According to [23], “there is a common perceptual system
to both the tactile and the visual sense: a sighted person uses
a combination of sense, but in a blind person, they access
only the tactile sphere.”

This case study’s research question is as follows: do
sighted people and visually impaired people use different
brain areas when the spatial ability is activated?

The hypothesis is that sighted people and visually im-
paired people use different areas of the brain to “visualize”
spatial objects. In sighted people, primarily the occipital lobe
is activated. In the visually impaired people, primarily the
parietal lobe is activated.

4.2. Data Collection. To perform this case study, the brain
signals of 4 individuals, 2 sighted and 2 visually impaired,
were collected. The individuals were asked to identify dif-
ferent 3D solid geometric shapes to activate their spatial
abilities. There were three different objects: cube, rectangular
prism, and pyramid.

All tests were performed with the approval of CEPAS
(Research Ethics Committee at the Health Area in
Brazil—CCAAE: 344172114.3.0000.5324), which pro-
vides models of documents and standards that must be
followed. Some of these documents include the form of
referral, a model of the TCLE (informed consent terms), and
the terms of the commitment for the use of the data.

All experiments were performed in accordance with
relevant guidelines and regulations. And all participants
signed the informed consent form.

4.2.1. Tools Used for the Acquisition of Brain Signals

(i) actiCHamp: The actiCHamp tool was developed by
Brain Vision, LLC (https://brainvision.com/). It is a
modular amplification system that incorporates
large components for electrophysiological analysis,
such as EEG, event-related brain potentials (ERP),
and BMI. It was used in conjunction with actiCAP,
which is a cap with 32 electrodes that is placed over
the persons scalp. The actiCAP uses the channels of
the international “10-20” system. The actiCAP is
connected to the actiCHamp amplifier to transmit
the signals captured by the electrodes. Figure 2 shows
how the electrodes are distributed throughout the
cap. Figure 2 represents the international “10-20”
system, with 35 electrodes, but the actiCAP equip-
ment is slightly different since it has only 32 elec-
trodes. Electrodes Cz, C3, and C4 are missing on the
actiCAP equipment. The location of each electrode is
calculated to be at the intersection of the lines be-
tween the standard cranium landmarks, as shown in
Figure 2. The name of each electrode indicates the
corresponding region of the brain: FP indicates the
prefrontal lobe; F, frontal lobe; T, temporal lobe; C,
the central groove; P, parietal lobe; and O, occipital
lobe. The number or the second letter identifies the
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FIGURE 2: Location of the electrodes in the actiCAP, according to
the international 10-20 system.

hemispheric location: Z is the zero line in the center
of the head; even numbers represent the right
hemisphere; odd numbers represent the left hemi-
sphere. The numbers are displayed in ascending
order with increasing distance from the center
[24, 25].

(ii) OpenViBE: OpenViBE is a software platform

dedicated to designing, testing, and using BMI
systems. The configuration for use with actiCHamp
is predefined, and the software communicates au-
tomatically with the signal capturing tool. Open-
ViBE presents a very simple interface in which the
user can set the features that meet the needs of the
task through an algorithm (automaton). Figure 3
shows the scenario created for the acquisition of the
brain signals and visual monitoring of the same; the
automaton that follows the left side ending in the
“signal display” is performed only at the level of
monitoring tests, and, commenting further, the
algorithms do not interfere with the signal acqui-
sition. The data were recorded in GDF format (for
each of the 32 electrodes, a column with the signal
values is stored), and the preprocessing stage was
then performed to enable the use of the same data in
other tools. Each box of the automaton is explained
below:

(a) Acquisition client box allows the acquisition of

signals through the actiCAP electrodes.

(b) GDF file writer records the values of the electrical

signals in GDF format.

(c) Signal display allows the brain signals to be followed

through a wave chart.

VY

[ Keyboard stimulator ]
YL

Sound player
V-V
GDF file writer

\4
Stimulation listener
In|Out|Set

V
Signal display
In|Out|Set

FIGURE 3: Automaton used for recording and monitoring brain
signals.

(d) Keyboard simulator allows you to select ON/OFF
keys.

(e) Sound player emits a sound signals according to the
command of the keyboard signal (01—ON;
02—OFF).

(f) Stimulation listener records the events performed; in
this case, it marks the times at which each sound
signal was performed.

4.3. Collecting Brain Signals

(1) Brain signals were collected from 2 sighted and 2
visually impaired individuals.

(2) The cap was placed on the subject’s head, where the
32 actiCAP electrodes were coupled.

(3) Start of the collection stage: This stage consisted of
the signals of each electrode reaching impedance
necessary to perform the collection of the signals.
The actiCAP electrodes allow visualization through a
colored light that varies between yellow: low; orange:
medium; and green: good. In addition, it offers a
panel that presents the values of this impedance.

(4) The person was instructed to feel and identify the
object that was placed in her/his hand at the end of a
sound signal. For the object identification, three
objects of geometric shapes were made available:
cube, rectangular prism, and pyramid. Six repetitions
were performed, in which the subject probed and
identified the objects 18 times. The interval between
the repetitions was, on average, 10 minutes, and each
repetition contained a sequence different from the
previous order of the objects.

(5) When the object name was verbalized, step (4) was
executed again.

4.4. Preprocessing. The data went through four stages of
preprocessing, as follows.

4.4.1. Conversion from GDF File to CSV File. The signals
were recorded with OpenViBE, without the use of filters,
directly as GDF (graph data format). The filters were applied



when the data were translated into CSV (comma-separated
value) format. For the data conversion in OpenViBE, an
algorithm was used to transform GDF data to CSV data, and
a filter was applied. Preprocessing was performed for a better
reading of the data.

4.4.2. Data Labeling. Each line of the CSV file was labeled
with the objects used in the collection, that is, the cube, the
rectangular prism, or the pyramid, because the decision tree
is a supervised algorithm. Through the analysis of the rec-
ords of the sonorous signal start and end of the collection,
each time interval was labeled according to the subject that
was analyzed and identified by the person.

4.4.3. Data Cleaning. After labeling the data, columns and
lines that were not required for the application of the
technique were removed. The column for time and the line
for the channels were removed.

4.4.4. Transformation of CSV Data to ARFF. The data were
adapted to the ARFF format, which is the standard Weka
(https://www.cs.waikato.ac.nz/ml/weka) format. This format
describes a list of instances that share a set of attributes. This
format was developed to be used specifically in Weka. In
summary, the ARFF files have two different sections: the
header, which contains the names of the relations along with
a list of attributes and their types, and information data.

4.5. Definition of the Technique. The J48 algorithm was
chosen because it is a decision tree technique developed to be
used in Weka. The decision tree technique has, as its strong
point, efficiency of time and processing, in addition to
presenting an intuitive means of analyzing the results, be-
cause it shows, as the final structure of the classifier, a simple
symbolic representation that is usually easy to interpret,
facilitating the understanding of the problem under analysis
[26]. The ease and the form of the symbolic representation
were fundamental factors for the choice of this technique
because the work is aimed at understanding the data through
the decision tree and not just the efficiency of the
classification.

4.6. Execution of the Technique. From the data recorded,
different tests were performed using the decision trees. These
tests were based on the variation of the following parameters:
number of channels, signal values, and the order of the
execution of the tasks.

The test used for the final analysis presents the models
generated from the grouping of the data, with the highest
values of each group for each of the 32 channels. Six models
were generated for each sample, using windows (the number
of values to maximize) of 25, 50, or 100 values, varying the
percentage of the minimum number of objects of the leaf
(1% or 10%).
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4.7. Generated Templates. From the application of the
methodology proposed in Section 3, decision tree models
were generated for each of the four people. Persons 1 and 2
are sighted, and Persons 3 and 4 are congenitally visually
impaired.

4.7.1. Person 1. The channels that presented significant
activity in the model shown in Figure 4 were TP10, CP6,
FP1, F7, FP2, O1, and F3. The channels FP1, F7, FP2, and F3
correspond to the frontal lobe, as presented in Table 1, and
this area is responsible for the executive functions and
management of cognitive resources. The TP10 channel
belongs to the temporal lobe, which addresses the perception
of biological movements. The CP6 channel belongs to the
parietal lobe and is responsible for the tactile sense. The O1
channel belongs to the occipital lobe where the image
processing takes place.

4.7.2. Person 2. Figure 5 shows the relevant activity channels
F3, OZ, T7, FT9, and TP9. The frontal lobe channels F3 and
FT9 are responsible for cognitive functions and reasoning;
T7 and TP9 are in the temporal lobe, which is responsible for
the perception of biological movements; and the occipital
lobe OZ channel involves visual perception as well as the
recognition of objects.

4.7.3. Person 3. The channels with relevant activity (in
Figure 6) were TP9 and T7 in the temporal lobe, FZ and F7 in
the frontal lobe, and CP6 in the parietal lobe. The analysis
performed in Table 1 shows that the main functions involved
in object recognition are perception of biological move-
ments (temporal lobe, TP9 and T7); tactile sensation (pa-
rietal lobe, CP6); and the frontal area (FZ, F7), responsible
for decision-making and movement planning.

4.7.4. Person 4. In the tree generated for Person 4 (Figure 7),
who is congenitally visually impaired, significant activity is
observed in channels O2 and P3. These channels involve two
large areas, the occipital lobe (O2), which is responsible for
visual ability, and the parietal lobe (P3), which is used for
tactile function.

4.7.5. Data Analysis. According to [23], there is a common
perceptual system shared between the tactile and visual
sense, in which individuals with normal vision can achieve
insights from a combination of senses that are accessible to
the visually impaired only from tactile information.
Therefore, the hypothesis of this work is that visually im-
paired and sighted people use different areas of the brain to
“visualize” spatial objects. Sighted people use the occipital
lobe, which is responsible for visualization, and visually
impaired people primarily use the parietal lobe, an area
responsible for tactile perception.

To verify the hypothesis in question, we performed tests
using a decision tree with the J48 algorithm in the DM
software Weka. The trees generated through the execution of
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TP10 < 80.4

CP6 >93.6

TP10 > 80.4

FP1>9.03

F7>9.36

FP2>1.52

01<97.6

FIGURE 4: Tree generated from algorithm J48 referring to the data of
Person 1, a sighted person.

F3 <857
0Z<98.6

T7<95.6

FTo<9.92 [ cube (140.0/86.0)

F3>85.7

TP9<90.8

FIGURE 5: Tree generated from algorithm J48 referring to the data of
Person 2, a sighted person.

the J48 algorithm did not present high accuracy rates (45% in
average—see Table 2) in a classification task. However, the
main goal of this work was not to classify the data; it is
important to note that, for the analysis of the case studies in
this work, the higher rate was taken into account for the
selection of the trees that were presented. However, the
accuracy rate is not a determinant for the understanding of
the electrode paths because the intention is to analyze the
generated trees and to understand the brain activities during
the identification of the geometric objects.

Table 3 presents a summary of the areas that had some
channel in the tree branches generated for each person.
Based on Table 3, we can see that the sighted individuals

TP9 < 756
CP6 < 431
FZ <280
TP9 < 94.1 _
TP9 > 94.1
F7 <200
FZ>92.1
TP9 > 756 ({Cube (173.0/840))

FIGURE 6: Tree generated from algorithm J48 from the data of
Person 3, a congenitally visually impaired person.

02<99.3

FIGURE 7: Tree generated from algorithm J48 from the data of
Person 4, a congenitally visually impaired person.

TaBLE 2: Comparison of classification accuracy between algorithms
with full frequency band and only Beta band.

P Full band Only Beta band
erson

J48 (%) Random Tree (%) J48 (%) Random Tree (%)
1 46.19 49.08 36.34 48.23
2 44.19 49.47 44.74 42.70
3 43.00 41.85 37.68 46.63
4 45.54 45.44 41.73 44.61

TABLE 3: Brain areas that were present in each individual’s model.
The letter X indicates the areas that presented the channels in the
branches of the generated trees, and NDA indicates that the area
did not present channels in the branches of the trees of the gen-
erated models.

Area Person 1 Person 2 Person 3 Person 4
Frontal X X X NDA
Temporal X X X NDA
Parietal X NDA X X
Occipital X X NDA X

(Person 1 and Person 2) used the occipital lobe to identify
spatial objects, supporting the hypothesis that sighted in-
dividuals activate the occipital lobe.
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FiGgure 8: Configuration of J48 and Random Tree algorithms in Weka.

The visually impaired people (Person 3 and Person 4) ac-
tivated electrodes that belong to the parietal lobe in the branches
of the generated trees, an area that is responsible for the tactile
perception, supporting the hypothesis that the congenitally
visually impaired use the parietal lobe to identify the object.

However, Person 4 (congenitally visually impaired)
activated the O2 (occipital lobe) channel in the generated
tree. The relevance of the brain signals in the occipital area
can be derived from the idea presented in [19] that the
activation of the occipital cortex often reflects the processing
of mental visual images triggered by other senses. Thus, the
occipital lobe, during touch identification, may serve as the
basis of cross-plasticity observed in congenitally visually
impaired individuals.

5. Second Case Study: Modulation of Amplitude

Using the same methodology and data collection, we have
changed just three steps in relation to the first case study: the
problem, the preprocessing, and the choice of technique.

(i) Problem: testing the amplitude modulation (the
Beta frequency band (f)) and discovering new
results.

(ii) Two hypotheses were defined for this second case
study, which will be compared to the results ob-
tained in the first case study.

(a) Random Tree has a higher classification accu-
racy than J48.

(b) Both algorithms will get a higher classification
accuracy using only the Beta frequency band.

TABLE 4: Activated areas of Person 1. T temporal area; P parietal
area; F frontal area; O occipital area.

Algorithm Full band Beta band
J48 T, P, F, O T, P, F
Random Tree P, F, O P,F, T, O

(iii) Preprocessing: Using the complete data from first
case study, we have used a filter to choose the Beta
frequency band (13 Hz to 30 Hz) and the data were
translated into CSV (comma-separated value)
format.

(iv) Choice of technique: The choice of a technique
means choosing the data-mining algorithm that best
applies to the problem. In this case study, we have
tested the data with two decision tree algorithms:
J48 and Random Tree. The configuration of these
algorithms is presented in Figure 8.

5.1. Generated Templates. Again, we present the data from
each person individually. The main comparison is about the
tull and Beta frequency bands.

5.1.1. Person 1. Table 4 shows the areas that were activated
during the activity using J48 and Random Tree algorithms
with “full” band and Beta band for Person 1.

For Person 1, the electrodes that showed significant
relevance (i.e., were activated) belong to the following areas
(Table 4): temporal, which deals with the perception of
biological movements; parietal, which is responsible for the
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tactile sense; frontal, responsible for executive functions and
management of cognitive resources; and occipital, where the
image processing takes place. As the subject is a sighted
person, the activation of the occipital lobes was expected,
based on the hypothesis of the first case study. However, with
the application of the J48 algorithm with the Beta band, the
occipital lobe was not stimulated at the time of the test.

5.1.2. Person 2. Table 5 shows the areas that were activated
during the activity using J48 and Random Tree algorithms
with “full” band and Beta band for Person 2.

For Person 2, the electrodes that showed significant
relevance (i.e., were activated) belong to the following areas
(Table 5): temporal, which deals with the perception of
biological movements; parietal, which is responsible for the
tactile sense; frontal, responsible for executive functions and
management of cognitive resources; and occipital, where the
image processing takes place. As the subject is a sighted
person, the activation of the occipital lobes was expected,
based on the hypothesis of the first case study. However, with
the application of the J48 algorithm with the Beta band, the
occipital lobe was not stimulated at the time of the test.

5.1.3. Person 3. Table 6 shows the areas that were activated
during the activity using J48 and Random Tree algorithms
with “full” band and Beta band for Person 3.

For Person 3, the electrodes that showed significant
relevance (i.e., were activated) belong to the following areas
(Table 6): temporal, which deals with the perception of
biological movements; parietal, which is responsible for the
tactile sense; frontal, responsible for executive functions and
management of cognitive resources; and occipital, where the
image processing takes place. As the subject is a blind
person, the activation of the parietal lobes was expected,
based on the hypothesis of the first case study, and this
hypothesis was confirmed.

5.1.4. Person 4. Table 7 shows the areas that were activated
during the activity using J48 and Random Tree algorithms
with “full” band and Beta band for Person 4.

For Person 4, the electrodes that showed significant
relevance (i.e., were activated) belong to the following areas
(Table 7): temporal, which deals with the perception of
biological movements; parietal, which is responsible for the
tactile sense; frontal, responsible for executive functions and
management of cognitive resources; and occipital, where the
image processing takes place. As the subject is a blind
person, the activation of the parietal lobes was expected,
based on the hypothesis of the first case study, and this
hypothesis was confirmed.

5.1.5. Analysis Data. Table 2 summarizes the classification
accuracy for each algorithm applied to full frequency band
and Beta frequency band. The second column “J48” with full
band presents the data from first case study. The best
classification accuracy was obtained applying the Random

TABLE 5: Activated areas of Person 2. T temporal area; P parietal
area; F frontal area; O occipital area.

Algorithm Full band Beta band
J48 F T, 0P P, T, F
Random Tree P, T,F F T, O, P

TABLE 6: Activated areas of Person 3. T temporal area; P parietal
area; F frontal area; O occipital area.

Algorithm Full band Beta band
J48 T,P, F F,O0,P, T
Random Tree O, F TP F, O, P

TABLE 7: Activated areas of Person 4. T temporal area; P parietal
area; F frontal area; O occipital area.

Algorithm Full Band Beta Band
J48 O, p O, P F
Random Tree P,F,O T O,P, T, F

Tree algorithm to the full frequency band (49.47%). The
lower was using J48 with the Beta frequency band.

For Persons 1 and 2, the highest accuracy occurred using
Random Tree with the full frequency band. For Person 3, the
highest classification accuracy was Random Tree applied to
the Beta band. Only for Person 4, the highest accuracy was
obtained using J48.

Based in Table 2, only for Person 3, using the Beta band
improved the classification accuracy. For all other persons,
the highest classification accuracy was obtained using the full
frequency band.

6. Conclusions and Further Work

This work proposed a methodology of EEG analysis using
decision trees. To validate our methodology, Section 4 dis-
cusses and analyzes several trees, showing that they can be easy
to interpret and, consequently, very useful for interpreting
brain signals. Through decision trees, it is easy to see which
electrodes have a significant variation, and in how many cases
an electrode had a significant variation in each object.

One issue that can be raised is the accuracy of the
generated models. The accuracy was 45% in average. This
can be considered a low accuracy for a classification algo-
rithm such as the decision tree model, but to allow easy
understanding of the results, the output trees cannot be too
large. When the learning algorithm was set to create larger
trees, it was able to achieve an accuracy rate of 90% or higher,
but the output trees were too large and difficult to analyze.
Thus, to obtain easily understandable trees, a tree with very
specific knowledge is not desirable.

Based on the resulting decision trees, we observed that
sighted people had significant activity in the occipital lobe,
which is responsible for the sense of vision, even when they
were blindfolded. We believe that this happened because
they accessed visual memory to aid them in identifying the
objects.
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However, blind people showed no significant activity in the
occipital lobe in the models created by the J48 algorithm.
Therefore, our experience suggests that the brains of blind
people and people with normal vision have different ways of
carrying out spatial activities, even if they are placed under the
same conditions, since the sighted test subjects were blindfolded.

Afterwards, we extended the methodology by using two
classification algorithms: J48 and Random Tree, and they were
applied to different frequency bands, full frequency band and
Beta frequency band, to find out which algorithm and which
frequency would have the best results. The hypotheses are
summarized and discussed here according to the results.

(1) Random Tree has higher classification accuracy than
J48

(2) Both algorithms will get higher classification accu-
racy using only the Beta frequency band

The results suggest that using Random Tree can improve
the classification accuracy of EEG signals, compared to the
J48 algorithm. Thus, hypothesis number 1 was confirmed,
although not for all cases.

However, using Beta band frequency was no better than
using the full band. Therefore, hypothesis number 2 was not
confirmed. We supposed that it is because there is a loss of
information by ignoring the other bands.

Some further work needs to be done to confirm these
outcomes, such as the following:

(i) To apply other data-mining techniques, such as
SVM (Support Vector Machines), clustering, and
neural networks to compare classification accuracy;
remembering that the outcomes of these techniques
are not readable, we will need some kind of method
to explain these “Black Box” outcomes [27]

(ii) To apply temporal data-mining techniques, since
the collected data is directly related to time [28]

(iii) To apply statistical techniques of multivariate anal-
ysis to find out variables correlation, and then select
the most relevant variables (electrodes) to analyze

Also, both algorithms have as output a decision tree that
represents an algorithm to classify new instances. However,
as demonstrated by the first case study, decision trees are
very easy to read and to understand, so they can be used not
only to classify new instances, but also to easily and quickly
analyze what are the most significant electrodes activated
during a task.
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