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When some attributes of a formal context can be decomposed into some subattributes a model of layered concept lattice to
improve the efficiency of building concept lattice with complex structure attribute data is studied, the relationship between
concept lattice and layered concept is discussed. Two algorithms are proposed: one is the roll-up building algorithm in which the
upper concepts are built by the lower concept and the other is the drill-down algorithm in which the lower concepts are built by
the upper concept. -e examples and experiments show that the layered concept lattice model can be used to model complex
structure attribute data, and the roll-up building algorithm and the drill-down algorithm are effective. -e layered concept lattice
model expands the scope of the research and application of concept lattice, the roll-up building algorithm, and drill-down
algorithm of layered concept lattice to improve the efficiency for building concept lattice.

1. Introduction

Humans usually describe and recognize objective things
from different levels and different granularity. -ere is a
process of deepening the attribute characteristics of objective
things, and hence the knowledge concepts at different levels
or at different granularity are obtained [1, 2]. Granular
computing is a kind of useful mathematical method for
processing complex structure data, and the idea of granular
computing fits perfectly with the hierarchical and granular
thinkingmode of “from coarse to fine, fromwhole to part” in
the process of human cognition [3–5]. -e idea of granular
computing originated from professor Zadeh [6]. Since Lin
summarized relevant studies and introduced the term
granular computing in 1998 [7], the thinking and methods
of granular computing have appeared in many fields, such as
rough set, fuzzy set, evidence theory, cluster analysis, ma-
chine learning, data mining, and knowledge discovery. In
recent years, research studies on granular computing have
been extensive and many meaningful results have been
obtained. For example, Yao studied the basic problems and
methods of granular computing [3], Lin studied the granular

structure and representation [7], Pedrycz studied the
granular computing methodology, mathematical frame-
work, and information granulation algorithm [8], and
Zhang and Zhang studied the quotient space [9].

Concept lattice is the key data structure of formal
context analysis, and it is also a kind of basic data structure
suitable for knowledge representation and knowledge
discovery [10]. -ere have been many studies on basic
theory of concept lattice [11] and algorithms to accelerate
the construction of concept lattice [12–14], and concept
lattice has been widely applied in many fields including
data mining [15], knowledge discovery [16], information
retrieval, and information extraction [17, 18]. -eory and
application research of concept lattice are inseparable from
the structure analysis of concept lattice and the model
extension of concept lattice. -e existing concept lattice
models and their extension models are established on the
relation between objects and attributes, they handle only
the simple type of data, and there is no model that has been
able to handle data with complex structures. For example,
by using a fuzzy set on the basic language set [19], Wolff
represented attribute values with fuzzy language variable
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values in a formal context, classified objects according to
the scale, and then built concept lattice based on the scale
[20]. Burusco and Fuentes discussed the concept lattice
structure based on L-fuzzy concept set and proposed a
method to build concept lattice in this case [21]. Consid-
ering that Burusco and Fuentes’ models cannot handle
continuous membership values and have high computa-
tional complexity, Qiang et al. proposed a fuzzy conceptual
lattice model that can handle continuous membership
values, and based on this model, they discussed the ex-
traction of fuzzy rules and the clustering of fuzzy concepts
[22]. Ali and Samir introduced the real interval formal
context, established the real interval concept lattice, and
built the classifier on the real interval concept lattice for
data classification [23]. Qu et al. aimed to establish the
relationship between formal concept analysis and rough set
theory, obtained derivative formal context that can be
induced by the notion of nominal scale and plain scaling
and the technique of plain scaling in an information sys-
tem, and proved that some core notions in rough theory
such as partition, upper and lower approximation, inde-
pendence, dependence, and reduction can be reinterpreted
in derivative formal context. -ey pointed out that the
rough set model can be extended by using plain scaling, but
they have not further studied the concept lattice structure
in the derivative formal context [24].

Due to the complexity of research objects, complex
structural data are widely used in practical applications. For
example, in the field of network intelligent information
processing, it is necessary to analyze the correlation among
characters, time, action, environment, and other elements
through text, image, audio, video, etc. -ese elements are
usually expressed in different types of data [25]. In partic-
ular, under big data environment, the remarkable feature of
data is the diversity of types and the complexity of structures.
An application often deals with both structured data and
semistructured, unstructured data such as text, images,
audio, video, video, and Web. In order to apply formal
concept analysis to study knowledge representation and
knowledge discovery in big data environment, the first thing
to do is to extend the existing concept lattice model. In the
process of extending the concept lattice model in big data
environment, the attribute values used to describe the
characteristics of unstructured data, such as text, images,
audio, video, and Web, include word values, text values,
vector values, and their composite values, in addition to the
usual number value and character value [26, 27]. On formal
context analysis on complex structural data, Zhi proposed a
generalized concept lattice model for heterogeneous data
analysis by discussing the partial order composition on
heterogeneous datasets [28, 29]. However, Zhi’s concept
lattice model for heterogeneous data is only considered at
the same level and at the same granularity, which does not
reflect the idea of hierarchy and granularity of human
thinking. -erefore, to describe human thinking process
from a mathematical perspective or to apply the concept
lattice theory to describe the human thinking process, we
need to build the concept lattice model at different levels and
different granularity.

In order to satisfy the need for describing in detail the
knowledge concept on unstructured dataset, the thinking of
granular computing is applied to the formal concept analysis
of data with complex structure. -e layered structure of
attribute data is fully considered, and a layered concept
lattice model with layered and three-dimensional structure is
built in the complex structure data environment. -e re-
lation between concept lattice of original formal context and
layered concept lattice of layered formal context is discussed.
-e roll-up building algorithm in which the upper concept is
built by the lower concept and the drill-down algorithm in
which the lower concept is built by the upper concept are
proposed. -e examples and experiments show that the roll-
up and the drill-down algorithms are effective.

2. Preliminary

In this section, we summarize some basic notions and
conclusions on concept lattices. For more details of these
notions and conclusions, we refer the reader to Ganter and
Wille’s works “Formal Concept Analysis” [10].

Definition 1. A formal context is a tripletK � (G, M, I), where
I⊆G × M is a binary relation between G and M. -e elements
in G and M are called objects and attributes, respectively.
(g, m) ∈ I or gIm indicates the object g has the attribute m.

Definition 2. Let K � (G, M, I) be a formal context. For a set
A⊆G of objects, we define a set of attributes common to all
objects in A as

α(A) � m ∈M | gIm, ∀g ∈ A􏼈 􏼉. (1)

Correspondingly, for a set B⊆M of attributes, we define
the set of objects that have all attributes in B as

β(B) � g ∈ G | gIm, ∀m ∈ B􏼈 􏼉. (2)

In brief, we also denote α( a{ }), β( m{ }) as α(a), β(m).

Proposition 1 (see [10]). For A, A1, A2 ⊆G and B, B1,

B2 ⊆M,

(1) A1 ⊆A2⟹ α(A2)⊆ α(A1), B1 ⊆B2⟹ β(B2)⊆ β
(B1)

(2) A⊆ β(α(A)), B⊆ α(β(B))

(3) A⊆ β(B)⟺B⊆ α(A)

(4) α(A1 ∪A2) � α(A1)∩ α(A2),
β(B1 ∪B2) � β(B1)∩ β(B2)

(5) α(A1 ∩A2)⊇ α(A1)∪ α(A2),
β(B1 ∩B2)⊇ β(B1)∪ β(B2)

(6) (β(α(A)), α(A)) and (β(B), α(β(B))) are concepts

Definition 3. Let K � (G, M, I) be a formal context. For
A⊆G and B⊆M, if α(A) � B and β(B) � A, then a pair
(A, B) is called a formal concept of formal context K, and A

and B are called the extent and the intent of (A, B), re-
spectively. -e set of all concepts of formal context K is
denoted as C(K).
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Definition 4. Let (A1, B1) and (A2, B2) be two formal
concepts of a given formal context K. (A1, B1) is called a
subconcept of (A2, B2) if A1 ⊆A2(or equivalently B1 ⊇B2),
which can be denoted by (A1, B1)≤ (A2, B2).

Obviously, the subconcept relation ≤ is a partial order
on C(K). Since ≤ is a partial order, we can adopt the
definition of neighboring nodes of order theory here. Let C1
and C2 be two concepts of a given formal context K. We say
C1 is a lower neighbor (or a child) of C2 and C2 is an upper
neighbor (or a parent) of C1, if C1 ≤C2 and there is no other
concept C3 with C3 ≠C1, C3 ≠C2, and C1 ≤C3 ≤C2.

Theorem 1 (see [10]). ,e set C(K) of all formal concepts
of context K together with partial order ≤ makes a
complete lattice, which is called a concept lattice of K and
is denoted as (C(K), ≤ ); the upper and lower bound
operations are

∧t∈T At, Bt( 􏼁 � ∩ t∈TAt, α β ∪ t∈TBt( 􏼁( 􏼁( 􏼁,

∨t∈T At, Bt( 􏼁 � β α ∪ t∈TAt( 􏼁( 􏼁, ∩ t∈TBt( 􏼁.
(3)

3. Layered Concept Lattice Model and Its Roll-
Up Algorithm to Build the Upper
Concept Lattice

According to the analysis in the introduction, when we
discuss the concept lattice theory and application of complex
data structure, the problem of data attribute stratification is
often encountered. For example, on the basis of the dis-
cussing new energy vehicles at coarse-grained, we often need
to discuss the problem of new energy vehicles at a finer
granularity to meet the needs of practical application: hybrid
vehicles and pure electric vehicles. In terms of the concept
lattice, when the new energy attribute is decomposed into
lower hybrid power and pure electric power attributes, we
need to analyze the formal concept in the layered formal
context.

In this section, we give the definition of layered
formal context and layered concept lattice, discuss their
properties, and propose a roll-up building algorithm of
layered concept lattice in a normal layered formal
context.

3.1. LayeredConceptLatticeModelandRoll-UpAlgorithm,eory

Definition 5. Let K � (G, M, I) be a formal context. If every
attribute in M can be represented as a subset, which means
that

M � m1, m2, · · · , ml􏼈 􏼉,

mk � mk1, mk2, · · · , mkik
􏽮 􏽯, k � 1, 2, · · · , l,

(4)

then K � (G, M, I) is called a layered formal context and mk

is called a layered attribute. In a layered formal context
K � (G, M, I), the lower attributes corresponding to the
layered attribute mk are denoted as

mk � mk, mk1( 􏼁, mk, mk1( 􏼁, · · · , mk, mkik
􏼐 􏼑􏽮 􏽯. (5)

If ik � 1, then mk � mk, which is actually not a layered
attribute.

By using the formal context K � (G, M, I), we can in-
troduce a new layered formal context K � (G, N, J), where
N � ∪ l

k�1mk, and the relation J between objects and at-
tributes is defined by gJ(mk, mki)⟺gImk. For the con-
venience of expression, we also call K the upper formal
context, K the lower formal context, C(K) the upper concept
lattice, and C(K) the lower concept lattice accordingly.

A layered formal context K � (G, M, I) is normal if for
every layered attribute gImk iff there is a unique iff there is a
unique lower attribute mki such that gJ(mk, mki).

In this paper, we only discuss the normal layered formal
context. -e following conclusion is obvious.

Proposition 2. Suppose that K � (G, M, I) is a layered
formal context. ,en,

β mk, mk1( 􏼁, β mk, mk2( 􏼁, · · · , β mk, mkik
􏼐 􏼑􏽮 􏽯, (6)

is a partition of β(mk).

Example 1. Table 1 shows a simplified layered formal context
K � (G, M, I), where a �“off-road vehicle,” b � “midrange
vehicle,” c � “new energy power vehicle” which is a layer
attribute, c1 � “hybrid power,” and c2 � “pure electric power.”

-e formal context K induced by K is shown in Table 2.
When a formal concept K contains layered attributes,

the upper concept lattice C(K) is closely related to the lower
concept lattice C(K). Hence, we can start with the lower
concept lattice C(K) by rolling up the lower attributes mk of
some lower concepts to an upper attribute mk and then
building a upper concept; this is easier than building the
concept lattice directly from the formal context K.

Theorem 2. Suppose that K � (G, M, I) is a layered formal
context, K � (G, N, J) is the corresponding lower formal
context of K, and C(K) and C(K) are upper concept lattice
and lower concept lattice, respectively. If (A1, B1), · · · ,􏼈

(Aα, Bα)}⊆C(K) contain the same layered attribute mk and
are the nearest subconcepts of a node concept, then

(1) (A1, B1), · · · , (Aα, Bα) can be rolled up as a new
concept (A(k), B(k)), where A(k) � A1 ∪ · · · ∪Aα and
B(k) � ((B1 − mk)∩ · · · ∩ (Bα − mk))∪ mk􏼈 􏼉.

(2) ,e lower concepts (Ai, Bi)(i � 1, · · · , α) are all
updated into (Ai, (Bi − mk)∪ mk􏼈 􏼉), respectively.

Proof. It is worth pointing out before proving that a concept
(Ai, Bi) in C(K) may contain both nonlayered attributes and
lower attributes in the form of (mk, mkl). In the following,
we prove the theorem by four steps.

(1) Prove equation α(A(k)) � m ∈M | gI m,∀g ∈􏼈

A(k)} � B(k).

Let ml ∈ α(A(k)). -en, for each
g ∈ A(k) � A1 ∪ · · · ∪Aα, we have gIml. If ml � mk, then
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obviously ml ∈ B(k). If ml ≠mk, then because (Ai, Bi)(i �

1, · · · , α) are concepts and gIml for each g ∈ Ai, we have that
ml ∈ Bi(i � 1, · · · , α). So, ml ∈ (B1 − mk)∩ · · · ∩ (Bik

− mk).
-is means that ml ∈ B(k). Hence,

α A
(k)

􏼐 􏼑 � m ∈M | gIm, ∀g ∈ A
(k)

􏽮 􏽯⊆B
(k)

. (7)

Suppose that ml ∈ B(k). If ml ∈ mk􏼈 􏼉, then ml � mk.
Hence, mk are the layered attributes of concepts (A1, B1), · · · ,

(Aik
, Bik

), so α(Ai) � m ∈ N |{ gJm, ∀g ∈ Ai} � Bi, (i �

1, · · · , α). -us, for each g ∈ A(k) � A1 ∪ · · · ∪Aα, there exists
i0 such that g ∈ Ai0

, so gJ(mk, mki0
), and gImk. -is shows

that gImk for each g ∈ A(k) � A1 ∪ · · · ∪Aα. -is means that
mk ∈ α(A(k)). If ml ∈ (B1 − mk)∩ · · · ∩ (Bα − mk), then
ml ≠mk is not a layered attribute and ml ∈ Bi, (i � 1, · · · , α).
Since (Ai, Bi), (i � 1, · · · , α) are concepts, we have gIml for
each g ∈ A(k) � A1 ∪ · · · ∪Aα. Hence, ml ∈ α(A(k)). -us,
B(k) ⊆ α(A(k)) � m ∈M | gIm, ∀g ∈ A(k)􏼈 􏼉.

(2) Prove equation β(B(k)) � g ∈ G | gI m,􏼈

∀m ∈ B(k)} � A(k).

At first, we prove β(B(k))⊆A(k). Let us assume
g ∈ β(B(k)); then, for every m ∈ B(k) � ((B1 − mk)∩ · · ·

∩ (Bα − mk))∪ mk􏼈 􏼉, we have gIm. Hence by gImk, we
know that there are some i such that gJ(mk, mki), so gJmk,
and let i0 be the subscript of biggest concept (Ai0

, Bi0
) in

these concepts, where the biggest concept means that the
concept contains as many object elements as possible and as
fewer attribute elements as possible. -us, from (Ai0

, Bi0
)

being the biggest concept, we obtain that

g ∈ β Bi0
􏼐 􏼑 � g ∈ G | gJ mk, mki( 􏼁,∀ mk, mki( 􏼁 ∈ Bi0

􏽮 􏽯 � Ai0
.

(8)

-is means that g ∈ A(k). -erefore,

β B
(k)

􏼐 􏼑 � g ∈ G | gIm, ∀m ∈ B
(k)

􏽮 􏽯⊆A
(k)

. (9)

Secondly, we prove A(k) ⊆ β(B(k)). Let g ∈ A(k); then,
there are some i such that g ∈ Ai, and let i0 be the subscript
of biggest concept (Ai0

, Bi0
) in these concepts. Hence,

g ∈ Ai0
� β(Bi0

), and for each m ∈ Bi0
, gJm. -is shows that

g ∈ g ∈ G | gIm, ∀m ∈ B(k)􏼈 􏼉, and then g ∈ β(B(k)).
-erefore,

A
(k) ⊆ β B

(k)
􏼐 􏼑 � g ∈ G | gIm, ∀m ∈ B

(k)
􏽮 􏽯. (10)

From (1) and (2) we know that (A(k), B(k)) is a concept.

(3) Prove that the concepts (Ai, Bi) ∈ C(K)(i �

1, · · · , α), which are not rolled up, are updated new
concepts (Ai, (Bi − mk)∪ mk􏼈 􏼉)(i � 1, · · · , α).

At first, we prove equation α(Ai) � m ∈M | gI m,􏼈

∀g ∈ Ai} � (Bi − mk)∪ mk􏼈 􏼉.
Let ml ∈ α(Ai); then, for every g ∈ Ai, we have gIml. If

ml � mk, then certainly ml ∈ (Bi − mk)∪ mk􏼈 􏼉. If ml ≠mk,
then from that (Ai, Bi) is a concept and gImq for every
g ∈ Ai, we have ml ∈ Bi. Hence, ml ∈ Bi − mk. -is shows
that α(Ai) � m ∈M | gIm, ∀g ∈ Ai􏼈 􏼉⊆ (Bi − mk)∪ mk􏼈 􏼉.

Conversely, let ml ∈ (Bi − mk)∪ mk􏼈 􏼉. If ml ∈ mk􏼈 􏼉,
namely, ml � mk is a layered attribute, then by (Ai, Bi) being
a concept, we obtain that

Bi � α Ai( 􏼁 � mk, mki( 􏼁 ∈ N | gJ mk, mki( 􏼁,∀g ∈ Ai􏼈 􏼉.

(11)

Hence, by gJ(mk, mki)⟺gImk, we know mq ∈ α(Ai). If
mq ∈ Bi − mk, then mq ≠mk and mq ∈ Bi. Since (Ai, Bi) is a
concept, we have gImq for every g ∈ Ai; hence, mq ∈ α(Ai).
-erefore,

α Ai( 􏼁 � m ∈M | gIm, ∀g ∈ Ai􏼈 􏼉⊇ Bi − mk( 􏼁∪ mk􏼈 􏼉.

(12)
Secondly, we prove the following equation:

β Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁 � g ∈ G | gIm,∀m ∈ Bi − mk( 􏼁∪ mk􏼈 􏼉􏼈 􏼉 � Ai.

(13)
Let g ∈ β((Bi − mk)∪ mk􏼈 􏼉); then, gIm for every

m ∈ (Bi − mk)∪ mk􏼈 􏼉. Since (Ai, Bi) is a concept, we know
β(Bi) � g ∈ G | gJm, ∀m ∈ Bi􏼈 􏼉 � Ai. Hence, by gJ(mk, mki)

⟺gImk, we have

β Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁 � g ∈ G | gIm,∀m ∈ Bi − mk( 􏼁∪ mk􏼈 􏼉􏼈 􏼉⊆Ai.

(14)
Conversely, let g ∈ Ai. -en, since (Ai, Bi) is a concept,

we have β(Bi) � g ∈ G | gJm, ∀m ∈ Bi􏼈 􏼉 � Ai. If m ∈ Bi is
not a layered attribute, then the relation between g and m

does not change before and after rolling up. If m ∈ Bi is a
layered attribute and its form is (mk, mkj), then by gJ(mk,

mki)⟺gImk, we have gIm for each m ∈ (Bi− mk)∪ mk􏼈 􏼉.
-erefore,

Ai ⊆ β Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁 � g ∈ G | gIm,∀m ∈ Bi − mk( 􏼁∪ mk􏼈 􏼉􏼈 􏼉.

(15)

(4) Prove that the partial order among (Ai, (Bi − mk)

∪ mk􏼈 􏼉)(i � 1, · · · , α) is the same (Ai, Bi)(i �

1, · · · , α).

Table 1: Layered formal context K.

G a b
c

c1 c2

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 1 1 0
6 1 1 0 1

Table 2: Formal context K induced by K.

G a b (c, c1) (c, c2)

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 1 1 0
6 1 1 0 1

4 Computational Intelligence and Neuroscience



By the structure of (A(k), B(k)), for i � 1, · · · , α, we have

Ai, Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁≤ A
(k)

, B
(k)

􏼐 􏼑. (16)

If two concepts (Ai, Bi) and (Aj, Bj) are in C(K) with
order (Ai, Bi)≤ (Aj, Bj), then the following also holds:

Ai, Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁≤ Aj, Bj − mk􏼐 􏼑∪ mk􏼈 􏼉􏼐 􏼑. (17)
□

3.2. ,e Description and Analysis of Roll-Up Algorithm.
In order to simplify the presentation below, we introduce the
following two terms: parallel lower subconcepts and linear
lower subconcepts. Let (A1, B1), · · · , (Aα, Bα) be the lower
subconcepts under node concept (A, B). If there is no partial
order relation between each other, then (A1, B1), · · · ,

(Aα, Bα) is called parallel lower subconcepts. If there is linear
partial order relation among them, then (A1, B1),

(A1, B1), · · · , (Aα, Bα) is called linear lower subconcepts.
Because this paper only discusses the normal layered formal

context and in a normal layered formal context an object will
not have two lower attributes of one layer attribute, a concept
will not contain more than two lower attributes except the
empty concept (object set is empty set). Hence, every concept in
the linear lower subconcepts only contains the same lower
attribute, and different attributes among different subconcepts
are nonlayer attributes. On the basis of this analysis, we can
present a roll-up building algorithm of building a concept lattice
based on attribute fusion. -e process of rolling up from C(K)

to C(K) involves the fusion of attributes, and the partial order
in the concept lattice is defined according to the negative in-
clusion of the attribute subset.-us, the rolling up is carried out
from top to bottom, that is, start with the concept of having
fewer attributes.-emethod of rolling up is to roll up the lower
concept of node concept (A, B) in the lower concept lattice
C(K) in a linear or parallel lower subconcepts, insert the new
concept obtained from rolling up into the bottom of node
(A, B), and update the node concept (A, B) and its related node
concept accordingly (given in Algorithm 1).

-e time complexity of Algorithm 1 is related to the
number of layered attributes and the number of lower at-
tributes in the layered context. In the following, we assume
that the number of layered attributes in K is l, the number of
node in C(K) is s, and the maximum number of lower
attributes of all layered attributes is r. -e computing
number at Step 1 is r, and its time complexity is O(r). -e
time complexity at Step 2 is O(r log2 r); it is equal to the time
complexity of r concept sorting. At Step 3, in the worst case,
the number of linear lower subconcepts under a node in
Ck(K) is l, and the number of computing in rolling up is l,
but the total number of computing of all nodes in rolling up
is not more than s. Hence, the time complexity at Step 3 is
O(s). -e time complexity of Step 4 and Step 5 is the same as
that of Step 3, which is also O(s). -e computing number at
Step 6 does not exceed s − r, so the time complexity at Step 6
is O(s − r). -e time complexity analysis at Step 7 has been
included from Step 3 to Step 6. -erefore, the time com-
plexity of Algorithm 1 is O((r + r log2 r + s + (s−

r))l) � O(l(2s + r log2 r)).

-e following example illustrates the application of the
roll-up building algorithm in building concept lattice.

Example 2. Consider the layered formal context K as shown
in example 1; the induced formal context by K is shown in
Figure 1.

Steps 1 and 2. -e concepts containing lower attributes in
C(K) are arranged in ascending order according to the number
of attributes of concepts, Ck(K) � (35, (c, c1)),􏼈 (46, (c, c2)),

(5, ab(c, c1)), (6, ab(c, c2)), ({}, ab(c, c1)(c, c2))}.

Step 3. -ere are no linear lower subconcepts in this
example.

Step 4. -e concept of parallel lower concepts (35, (c, c1)),
(46, (c, c2)) below node concept (U, {}) is rolled up into a
new concept (3456, c) and inserted below node (U, {}). -e
upper bound node of the new node concept (3456, c) and the
node concepts (156, a), (256, b) which do not contain lower
attributes are also (U, {}).

-e parallel lower concept (5, ab(c, c1)), (6, ab(c, c2))

below node concept (56, ab) is rolled up into a new concept
(56, abc).

Step 5. After Step 4 is completed, there is no lower concept
to be rolled up. -ere is only one layered attribute in this
example, and the algorithm ends.

Figure 2 shows the concept lattice C(K) obtained after
the rolling up.

4. Drill-Down Algorithm to Build the Lower
Concept Lattice

In this section, a drill-down algorithm to build lower layered
concept lattice C(K) based on the upper concept lattice
C(K) is presented.

4.1. Drill-Down Algorithm ,eory

Definition 6. Let K � (G, M, I) be a layered formal context
and b ∈M. -en, (β(b), α(β(b))) is called an attribute
concept.

Proposition 3. (β(b), α(β(b))) is the largest concept con-
taining attribute b.

Proof. Obviously, (β(b), α(β(b))) is a concept containing
attribute b. If (A, B) is another concept containing attribute
b, then by b{ }⊆B and Proposition 1, we have
β(b)⊇ β(B) � A. Hence, (A, B)≤ (β(b), α(β(b))). □

Theorem 3. Let K � (G, M, I) be a layered formal context
and K � (G, N, J) be the lower formal context. Suppose that
mk is a layered attribute; then,

mk � mk, mk1( 􏼁, mk, mk2( 􏼁, · · · , mk, mkik
􏼐 􏼑􏽮 􏽯, (18)
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is the lower attribute corresponding to mk, and (β(mk, mkj),

α(β(mk, mkj))) are attribute concepts corresponding to the
lower attributes (mk, mkj)(j � 1, 2, · · · , ik). (A, B) ∈ C(K) is
a concept and for every j ∈ 1, 2, · · · , ik􏼈 􏼉, there is no child
(X, Y) of (A, B) with A∩ β(mk, mkj)⊆X; then, for every
A∩ β(mk, mkj), j ∈ 1, 2, · · · , ik􏼈 􏼉,

(1) If A∩ β(mk, mkj) � A, then (A, B) is updated to
(A, (B − mk􏼈 􏼉)∪ (mk, mkj)􏽮 􏽯)

(2) If A∩ β(mk, mkj)≠A, then a new concept
(A∩ β(mk, mkj), (B − mk􏼈 􏼉)∪ (mk, mkj)􏽮 􏽯) is added
as a child of (A, B)

Proof
(1) is a special case of (2), so we only prove (2).

Firstly, we prove that if A∩ β(mk, mkj)≠φ, then
(A∩ β(mk, mkj), (B − mk􏼈 􏼉)∪ (mk, mkj)􏽮 􏽯) are concepts
(j � 1, 2, · · · , ik); hence, we need to prove two equations:

α A∩ β mk, mkj􏼐 􏼑􏼐 􏼑 � m ∈ N | gJm,∀g ∈ A∩ β mk, mkj􏼐 􏼑􏽮 􏽯

� B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏼑,

(19)

β B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏼐 􏼑 � g ∈ G | gJm, ∀m ∈ B(􏼈

− mk􏼈 􏼉􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏽯

� A∩ β mk, mkj􏼐 􏼑.

(20)

Since (A, B) is a concept, we know α(A) � B. By
Proposition 1, we have that

α A∩ β mk, mkj􏼐 􏼑􏼐 􏼑⊇ α(A)∪ α β mk, mkj􏼐 􏼑􏼐 􏼑

� B∪ α β mk, mkj􏼐 􏼑􏼐 􏼑

⊇ B − mk􏼈 􏼉( 􏼁∪ α β mk, mkj􏼐 􏼑􏼐 􏼑.

(21)

Conversely, let mq ∈ α(A∩ β(mk, mkj)). -en, for each
g ∈ A∩ β(mk, mkj), we have gJmq. In the following, we
discuss it in two cases:

Input: a lower concept lattice C(K) of layered formal context K induced by formal context K.
Output: an upper concept lattice.
Step 1. For k � 1, 2, . . . , l, select all lower concepts containing layered attribute mk and form lower concept set Ck(K) to be rolled up.
Step 2. -e concepts in Ck(K) are sorted in ascending order according to the number of lower attributes contained within it. When
the number of lower attributes is the same, the concepts containing fewer nonlower attributes are ranked ahead.
Step 3. From top to bottom, roll up the lower concepts in C(K). For the linear lower subconcepts under node concept (A, B) in
Ck(K), the rolling-up method is as follows: combine the linear lower concepts (A1, B1), . . . , (Aβ, Bβ) containing mk into a new
concept (A(k), B(k)), where A(k) � A1 ∩ · · · ∩Aβ, B(k) � ((B1 − mk)∪ · · · ∪ (Bβ − mk))∪ mk􏼈 􏼉, and insert (A(k), B(k)) to node (A, B)

below. If node concept (A, B) contains subconcepts with nonlower attributes, then node (A, B) is updated to be the common upper
bound of (A(k), B(k)) and other concepts (excluding lower attributes in mk) under node (A, B).
Step 4. For the parallel lower subconcepts and lower subconcepts under node concept (A, B) in Ck(K), the rolling-up method is as
follows: combine the parallel lower concepts (A1, B1), . . . , (Aβ, Bβ) containing mk into a new concept (A(k), B(k)), where
A(k) � A1 ∪ · · · ∪Aα, B(k) � ((B1 − mk)∩ · · · ∩ (Bα − mk))∪ mk􏼈 􏼉, and insert (A(k), B(k)) to node (A, B) below. If node concept
(A, B) contains subconcepts with nonlower attributes, then node (A, B) is updated to be the common upper bound of (A(k), B(k))

and other concepts (excluding lower attributes in mk) under node (A, B).
Step 5. If the node concept (A, B) has both the parallel lower subconcepts and the linear lower subconcepts, then linear lower
subconcepts are fused firstly; the method of fusion is to replace the linear lower subconcepts with the minimum concept in these
linear lower subconcepts and then roll up the parallel lower subconcepts by Step 4 secondly.
Step 6. Update the subconcept (Cj, Dj), which is not rolled up from Step 3 to Step 5 but it contains the lower attribute of mk, to a new
concept (Cj, (Dj − mk)∪ mk􏼈 􏼉).
Step 7. Repeat from Step 3 to Step 6 until the concept in C(K) does not contain the lower attribute of mk (namely, Ck(K) is an empty
set).
Step 8. Repeat from Step 1 to Step 7 until C(K) does not contain any layered attribute. Algorithm is completed.

ALGORITHM 1: Roll-up building algorithm of layered concept lattice.

(156, a)

(U, {})

(256, b) (46, (c, c2))(35, (c, c1))

(56, ab)

({}, ab (c, c1)(c, c2))

(6, ab (c, c2))(5, ab (c, c1))

Figure 1: Concept lattice C(K) of formal context K.

(156, a)

(U, {})

(256, b)

(56, abc)

(3456, c)

Figure 2: Concept lattice C(K) after rolling up.
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(i) mq ∈ mk: if mq ≠ (mk, mkj), then there is i≠ j such
that mq � (mk, mki). By Proposition 2
β(mk, mk1), · · · , β(mk, mkik

)} is a partition of β(mk),
we know that for every g ∈ β(mk, mkj), g and
(mk, mki) have no relation J. -is contradicts gJmq

for each g ∈ A∩ β(mk, mkj).-us,mq ∈ (mk, mkj)􏽮 􏽯.
(ii) mq ∉ mk: if mq ∉ B − mk􏼈 􏼉, then obviously mq ≠mk,

and hence mq ∉ B. Because (A, B) is a concept
containing attribute mk, there exists g ∈ A such that
g and mq have no relation J.-e set of all elements of
A that has no relation J with mq is denoted as A0. If
A0 ∩ β(mk, mkj) is an empty set, then for any
g ∈ β(mk, mkj) and g ∈ A, g and mq have no relation
J. -is contradicts gJmq for each g ∈ A∩
β(mk, mkj). Hence, there is g0 ∈ A0 ∩ β(mk, mkj)

such that g0 and mq have no relation J. -is also
contradicts gJmq for each g ∈ A∩ β(mk, mkj).
-erefore, if mq ∉ mk, then mq ∈ B − mk􏼈 􏼉.

-is proves that

α A∩ β mk, mkj􏼐 􏼑􏼐 􏼑 � B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯. (22)

Since (A, B) is a concept, we have β(B) � A. By Prop-
osition 1 we obtain

β B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏼐 􏼑 � β B − mk􏼈 􏼉( 􏼁∩ β mk, mkj􏼐 􏼑

⊇ β(B)∩ β mk, mkj􏼐 􏼑􏼐 􏼑

� A∩ β mk, mkj􏼐 􏼑.

(23)

Conversely, let

g ∈ β B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏼐 􏼑 � β B − mk􏼈 􏼉( 􏼁∩ β mk, mkj􏼐 􏼑.

(24)

From g ∈ β(mk, mkj), we know gJ(mk, mkj). By
gImk⟺gJ(mk, mkj), we have gImk. From
g ∈ β(B − mk􏼈 􏼉), we know gIm for each m ∈ B − mk􏼈 􏼉.
Hence, gIm for every m ∈ B. -is shows that g ∈ β(B) � A,
and hence g ∈ A∩ β(mk, mkj). -erefore,

β B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏼐 􏼑⊆A∩ β mk, mkj􏼐 􏼑. (25)

-is proves that

β B − mk􏼈 􏼉( 􏼁∪ mk, mkj􏼐 􏼑􏽮 􏽯􏼐 􏼑 � A∩ β mk, mkj􏼐 􏼑. (26)

Next, we prove that the partial order among concepts
(Ai, Bi)(i � 1, · · · , α) is the same as the partial order among
(Ai, (Bi − mk)∪ mk􏼈 􏼉)(i � 1, · · · , α).

At first, for i � 1, · · · , α, by the construction of
(A(k), B(k)), we have

Ai, Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁≤ A
(k)

, B
(k)

􏼐 􏼑. (27)

Secondly, if (Ai, Bi)≤ (Aj, Bj) in C(K), then we also
have

Ai, Bi − mk( 􏼁∪ mk􏼈 􏼉( 􏼁≤ Aj, Bj − mk􏼐 􏼑∪ mk􏼈 􏼉􏼐 􏼑. (28)
□

4.2. ,e Description and Analysis of Drill-Down Algorithm.
According to -eorem 3, started with the upper concept
lattice C(K), inserted some new concepts, modified some
concepts and deleted some concepts, we can obtained lower
concept lattice C(K). In the following, we propose a drill-
down algorithm to build lower concept lattice based on
attribute decomposition (given in Algorithm 2).

-e time complexity of Algorithm 2 is analyzed below. In
the following, we assume that the number of layered at-
tributes in K is l, the number of node concepts in C(K) is s,
and the maximum number of lower attributes is r. -e
Bordat algorithm building concept lattice of formal context
(G, M, I) is improved by Chen in [12], and the time
complexity of the improved algorithm is less than
O(|G||M|2). -en, in the worst case, the time complexity of
Step 1 is O(|G|r2). -e time complexity of Step 2 is O(sr).
-e time complexity of Step 3 is O(r2). -erefore, the time
complexity of algorithm 2 is O((|G|r2 + sr +

r2)l) � O(l((|G| + 1)r2 + sr)).
-e following example illustrates the application of the

drill-down building algorithm in building the concept
lattice.

Example 3. A layered formal context K � (G, M, I) is
shown in Table 3, and the concept lattice of K is shown in
Figure 3.-e lower formal context K � (G, N, J) induced by
K is shown in Table 4.

-e concept lattice of K is shown in Figure 4.

Step 1. Layered attribute c has three lower attributes, and the
corresponding lower attribute concepts are (1256, (c, c1)),
(3, b(c, c2)), (4, b(c, c3)).

Step 2. -ere are four concepts in C(K) that contain the
layered attribute c. According to Step 2 in Algorithm 2,
(U, c) is updated into three new concepts (1256, (c, c1)),
(3, b(c, c2)), (4, b(c, c3)); (34, bc) is updated into two new
concepts (3, b(c, c2)), (4, b(c, c3)); (156, ac) is updated into
a new concept (156, a(c, c1)).

Step 3. Two lower attribute concepts (3, b(c, c2)),
(4, b(c, c3)) can be combined into a new concept (34, b) and
inserted above (3, b(c, c2)), (4, b(c, c3)).

Step 4. -ere is only one layered attribute, and the algorithm
ends.

-e purpose of the roll-up building algorithm is to build
the upper concept lattice C(K) on the basis of lower concept
lattice C(K), and the drill-down building algorithm is to build
the lower concept lattice C(K) on the basis of the upper
concept lattice C(K). From the point of view of granular
computing, roll-up building algorithm helps us recognize
concepts from fine-grained to coarse-grained, while drill-down
building algorithm help us recognize concepts from coarse-
grained to fine-grained. -erefore, from the human cognitive
thinking process, roll-up and drill-own building algorithms are
reversed, and then there is a question to be discussed: whether
there is reducibility between these two reverse algorithms.

Now, we consider example 3.
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Example 4. In the layered formal context of example 3, by
using the drill-down algorithm, we obtain the lower concept
lattice C(K) as shown in Figure 4. Now, we run the roll-up
building algorithm on C(K).

Steps 1 and 2. -e concepts containing lower attributes in
C(K) are arranged in ascending order according to the
number of attributes contained in the concepts as follows:
C′(K) � 1256, (c, c1), (3, b(c, c2)), (4, b(c, c3)), (156, a􏼈 (c,

c1)), ({}, ab(c, c1)(c, c2)(c, c3))}.

Step 3. -e linear lower subconcepts (1256, (c, c1)),
(156, a(c, c1)) below node concept (U, {}) are rolled up into
a new concept (156, ac), and the node concept (U, {}) is
replaced by (U, c), which are the parent concept (upper
bound node) of the new concept (156, ac) and the concept
(34, b) that does not contain lower attributes.

Step 4. -e parallel lower subconcepts (3, b(c, c2)),
(4, b(c, c3)) below node concept (34, b) are rolled up into a
new concept (34, bc). -ere are no other concepts below

(34, b) that do not contain lower attributes (c, c2), (c, c3),
and then (34, b) is updated into (34, bc).

Step 5. -e lower attributes (c, c1), (c, c2), (c, c3) in the
minimum node concept (empty concept) ({}, ab(c, c1)

(c, c2)(c, c3)) are integrated, and then we obtain the mini-
mum concept ({}, abc).

Step 6. -ere is only one layered attribute, and the algorithm
ends.

After C(K) is rolled up, the concept lattice is exactly the
same as shown in Figure 3. -is also shows that the rolling-up

Input: a concept lattice C(K) of formal context K containing layered attributes.
Output: the lower concept lattice C(K).
Step 1. For each lower attribute of a layered attribute mk, k ∈ 1, 2, . . . , l{ }: mk � (mk, mk1), (mk, mk2), . . . , (mk, mkik

)􏽮 􏽯, build all
attribute concepts: (A∩ β(mk, mkj), (B − mk􏼈 􏼉)∪ α(β(mk, mkj)))(j � 1, 2, . . . , ik).
Step 2. -e concept (A, B) containing layered attribute mk is updated to some new concepts
(A∩ β(mk, mkj), (B − mk􏼈 􏼉)∪ α(β(mk, mkj))), which contain lower attributes (mk, mkj), j � 1, . . . , ik, respectively, where
A∩ β(mk, mkj) is not an empty set. -e concepts that do not contain the layered attribute mk remain the same.
Step 3. If some concepts with lower attributes obtained from Step 2 can be combined, then these concepts are combined and a
concept and is inserted above them.
Step 4.-e node concepts that are connected to (A, B) and are also not updated in C(K) are connected to the updated node concepts.
Step 5. For each layered attribute mk(k � 1, . . . , l), repeat from Step 1 to Step 4 above.
Step 6. End of the algorithm.

ALGORITHM 2: Drill-down algorithm to build the lower concept lattice.

Table 4: Formal context K induced by K.

G a b (c, c1) (c, c2) (c, c3)

1 1 0 1 0 0
2 0 0 1 0 0
3 0 1 0 1 0
4 0 1 0 0 1
5 1 0 1 0 0
6 1 0 1 0 0

Table 3: Layered formal context K.

G a b
c

c1 c2 c3

1 1 0 1 0 0
2 0 0 1 0 0
3 0 1 0 1 0
4 0 1 0 0 1
5 1 0 1 0 0
6 1 0 1 0 0

(U, c)

({}, abc)

(34, bc) (156, ac)

Figure 3: Concept lattice C(K) of context K.

(1256, (c, c1))

(3, b (c, c2))

(U, {})

(34, b)

({}, ab (c, c1)(c, c2)(c, c3))

(4, b (c, c3)) (156, a (c, c1))

Figure 4: Concept lattice C(K) of formal context K.
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and drilling-down algorithms for layered concept lattice have
the reducibility.

5. Experimentation

-e previous example has shown that the roll-up building
algorithm and the drill-down building algorithm proposed
in this paper are effective. To further show the utility of
Algorithms 1 and 2, we implement two algorithms by using
MTLAB program language. -e computing environment is
a PC (Pentium Win7× 64, Intel (R) 3.4GHz, RAM 4GB).
-e validity verification about the roll-up building algorithm
is mainly to investigate the improvement on time con-
sumption by comparing building the concept lattice C(K)

from the lower concept lattice C(K) with building the
concept lattice C(K) directly from the formal context K.

In the experiment, the number of objects is set to 15000,
and the total number of attributes is set to 60 (including
lower attributes). -e number of lower attributes of each
layered attribute is set to 5, the number of layered attributes
is 2, 4, 6, 8, and 10, respectively, and the total number of
lower attributes correspondingly is 10, 20, 30, 40, and 50,
respectively, so the number of upper attributes in the lower
form context K is 52, 44, 36, 28, and 20, respectively.-e test
data with medium strength filling ratio (|I|/(|G||M|)) 20%
are randomly generated. If a layered attribute has no filling
value, then its corresponding lower attribute values are all 0.
If a layered attribute has filling value, then select randomly a
lower attribute to be assigned a value of 1. -e improved
Bordat algorithm proposed in [12] was adopted for building
context lattice directly. -e comparison on time con-
sumption building directly the concept lattice from the
dataset with building the concept lattice by using roll-up
building algorithm is shown in Figure 5, and the time saved
by using the roll-up building algorithm to build the concept
lattice is shown in Figure 6.

It can be seen from Figures 5 and 6 that using the roll-up
building algorithm to build concept latticeC(K) on the basis of
C(K) takes less time than building directly the concept lattice
C(K) from the formal context K. When the number of layered
attributes is relatively small, the effect of time saving by using
roll-up building algorithm is very obvious, and as the number
of layered attributes increases, the time saving decreases.

-e validity verification about the drill-down building
algorithm is mainly to investigate the improvement on time
consumption by comparing building the lower concept lattice
C(K) from the upper concept lattice C(K) with building the
concept lattice C(K) directly from the formal context K.

In the experiment, the number of objects is set to 15000,
and the total number of attributes is set to 60 (including
lower attributes). -e number of nonlayered attributes is set
to 10, the number of layered attributes is set to 2, 4, 6, 8, and
10, respectively, and the number of lower attributes of each
layered attribute is set to 5, so the total number of attributes
in the lower formal context K is 20, 30, 40, 50, and 60,
respectively. -e experimental environment and dataset are
the same as the roll-up building algorithm experiment. -e
comparison on time consumption building directly the
concept lattice from the dataset with building the concept

lattice by using drill-down building algorithm is shown in
Figure 7, and the time saved by using the drill-down building
algorithm to build the concept lattice is shown in Figure 8.
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Figure 5: Time comparison between building concept lattice by
using roll-up algorithm and building concept lattice directly.
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Figure 6: Saving time of roll-up building lattice.
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Figure 7: Time comparison between building concept lattice by
using drill-down algorithm and building concept lattice directly.
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It can be seen from Figures 7 and 8 that using the drill-down
building algorithm to build concept lattice C(K) on the basis of
C(K) takes less time than building directly the concept lattice
C(K) from the formal context K. When the number of layered
attributes is relatively small, the effect of time saving by using
drill-down building algorithm is very obvious, and as the
number of layered attributes increases, the time saving decreases.

6. Conclusion

-is paper applies the idea of granular computing to build
concept lattice in a formal context with complex structure at-
tribute data.When some attributes in a formal context aremade
up of some subattributes, a layered concept lattice model is
established, and the relation between the upper concept lattice
based on the original formal context and the lower concept
lattice based on the lower formal context is discussed. A roll-up
building algorithm that builds the upper concept lattice from the
lower concept lattice and a drill-down building algorithm that
builds the lower concept lattice from the upper concept lattice
are proposed; the time complexity of two algorithms is analyzed.
-e application of the algorithm and the reducibility of the roll-
up building algorithm and the drill-down building algorithm
are illustrated by some practical examples. Practical examples
and experiments show that the layered concept latticemodel can
be used to model complex structural data, and the roll-up
building algorithm and the drill-down building algorithm
proposed in this paper are effective. In future work, we will
discuss in detail the reducibility between the roll-up building
algorithm and the drill-down building algorithm, the roll-up
building algorithm and the drill-down building algorithm for
the layered concept lattice in a not-normal layered context.-is
paper does not discuss the relationship between layered attri-
butes from a quantitative point of view. It also may be another
possible research direction to use the analytic hierarchy process
to discuss the layered concepts in layered formal context from a
quantitative point of view.
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