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Particle swarm optimization (PSO) algorithm is a swarm intelligent searching algorithm based on population that simulates the
social behavior of birds, bees, or fish groups. 0e discrete binary particle swarm optimization (BPSO) algorithm maps the
continuous search space to a binary space through a new transfer function, and the update process is designed to switch the
position of the particles between 0 and 1 in the binary search space. Aiming at the existed BPSO algorithms which are easy to fall
into the local optimum, a new Z-shaped probability transfer function is proposed to map the continuous search space to a binary
space. By adopting nine typical benchmark functions, the proposed Z-probability transfer function and the V-shaped and
S-shaped transfer functions are used to carry out the performance simulation experiments. 0e results show that the proposed
Z-shaped probability transfer function improves the convergence speed and optimization accuracy of the BPSO algorithm.

1. Introduction

0e particle swarm optimization (PSO) algorithm is one of
the widely used evolutionary algorithms inspired by animal
social behaviors [1, 2]. It has the search speed, high effi-
ciency, simple algorithm, and so on and has been widely
used in crystal structure prediction [3], medical detection
[4], grid scheduling [5], robot path planning [6], clustering
problem [7], neural network, and many other areas [8–10].
However, many optimization problems have binary
searching space, so it is necessary to develop binary opti-
mization algorithm to solve them.

0e binary particle swarm optimization (BPSO) algo-
rithm was proposed by Kennedy and Eberhart in 1997 [11].
Typical binary particle swarm optimization algorithm has
two different components: a new transfer function and a
different location update program. 0e transfer function is
used to map the continuous search space to a binary space,
and the update process is designed to switch the position of
the particle between 0 and 1 in the binary searching space.
0e original version of BPSO algorithm is prone to fall into

local extreme, so many scholars have made some im-
provements to BPSO algorithm. In 2008, Yin proposed a
new improved BPSO algorithm, which uses the new updated
position formula digital curve with the best polygon ap-
proximation [12]. In 2013, Wang et al. [13] used the average
information of the individual population and the individual
extremum of the particle swarm to determine the current
probability value of the particle and removed the influence of
the current value of the particle on the next generation. At
the same time, the greedy thought is added so that the al-
gorithm not only has the overall optimization characteristics
of the particle swarm optimization algorithm but also ac-
celerates the convergence speed of the algorithm. In 2014,
Luo [14] revised the sigm function, taking the particle ve-
locity as the correction term of the particle position, fully
considering the guiding effect between the particles, and
ensuring that the particle follows the optimization mode of
the algorithm and applies it to solve the vehicle. On the path
problem, the effectiveness of the algorithm is improved.
Similarly, many other algorithms reference transfer func-
tions, which are converted to binary versions by their

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 6502807, 21 pages
https://doi.org/10.1155/2020/6502807

mailto:wang_jiesheng@126.com
https://orcid.org/0000-0002-8853-1927
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6502807


successive versions. In 2013, Sharafi et al. [15] added a
transfer function in the tracking mode of cat swarm algo-
rithm, changed the meaning of velocity vector into the
probability of mutation in each dimension of cats, and
transformed continuous cat swarm algorithm into discrete
binary cat swarm algorithm. In 2014, Mirjalili et al. [16]
proposed a binary version of the bat algorithm, which is also
a probability value that maps velocity values to updated
locations using a transfer function. In the same year, Sabba
and Chikhi [17] proposed a discrete binary bat algorithm
(BINBA) for solving binary space optimization problems.
0e algorithm is based on the sigmoid function used by
Kennedy and Eberhart in the binary particle swarm opti-
mization algorithm proposed in 1997 [11]. BBA was tested
on an example of a multidimensional knapsack problem.
Compared with other bionic algorithms, the results have a
good application prospect. In 2017, Fei [18] proposed a
V-shaped transfer function to improve the binary bat al-
gorithm to ensure that the probability of reducing the po-
sition of the vector of the position vector of the bat is an
element equal to the current best position, and increasing the
probability of changing the element of their position vector
to the element of the bat is the element of the unequal
current optimal position, which helps to enhance the op-
timization of the binary bat algorithm. In 2015, Emary et al.
[19] proposed two new binary wolf optimization algorithms;
one of which is to use the sigmoid function to compress the
positions of consecutive updates, and then randomly these
values are thresholded to obtain an updated double-valued
gray wolf position. 0is method is used for binary gray wolf
optimization (BGWO) to find feature subsets to maximize
classification accuracy while minimizing the number of
affected features. In 2017, Panwar et al. [20] proposed a
heuristic binary method for solving the unit commitment
problem (UC). 0is method estimates the continuous and
valuable update of the wolves to the global optimal solution,
followed by the sigmoid transformation. 0e simulation
results show that BGWO has better performance in solving
small- and medium-sized system UC problems compared
with other existing heuristic and binary methods. In 2019,
Hussien et al. [21] modified the original version of WOA to
handle binary optimization problems. To this end, two
transfer functions (s-shaped and v-shaped) are proposed to
map a continuous search space to a search space. In order to
illustrate the function and performance of the proposed
binary whale optimization algorithm (BWOA) and apply it
to 22 objective functions, 3 engineering optimization
problems, and a worldwide sales problem, the results are
obtained and the validity is verified. In the same year, Reddy
et al. [22] mapped the binary natural PBUC problem to a
continuous, real-valued whale position/locationmapped to a
binary search space through various transformation func-
tions. 0ey introduced three variants of BWOA, using a
hyperbolic function, an inverse tangent function, and a
sigmoid transfer function, respectively. 0e convergence
characteristics, quality of the solution, and consistency of the
results of different BWOA variables are discussed, and the
superiority and statistical significance of the proposed
method over the existing methods are given.

0is shows that the transfer function is the most important
part of the binary version of the algorithm. In this paper, a new
Z-shaped transfer function is proposed and applied to the
particle swarm optimization algorithm. 0e simulation results
show that the new transfer function improves the convergence
speed and optimization precision of the algorithm. 0e
structure of this paper is organized as follows. Section 2 in-
troduces the standard particle swarm algorithm. Section 3
introduces the binary particle swarm algorithm. Section 4
proposes a new Z-shaped transfer function. In Section 5, the
effectiveness of the improved algorithm is verified by simu-
lation experiments on typical test functions. Section 6 sum-
marizes the full text and proposes future research directions.

2. Particle Swarm Optimization Algorithm

0e particle swarm optimization (PSO) algorithm is an
intelligent optimization algorithm proposed by Kennedy
and Eberhart and Beheshti and Shamsuddin [1, 2] in 1995. It
simulates the bird’s flight foraging behavior and optimizes
the swarm through collective collaboration between birds. In
the PSO algorithm, the potential solution to each optimi-
zation problem is a bird in the search space, named as a
particle. Later, Shi and Eberhart added a new impact factor
w, which improved the detection and exploratory, and
formed the current standard particle swarm optimization
algorithm [23]. All particles have an appropriate value de-
termined by an optimized function, and each particle has a
velocity that determines the direction and distance of their
flight. 0en, the particle follows the current optimal particle
to search in the solution space.

0e particle’s velocity and position are updated by

vi d � w∗ vi d + c1r1 pi d − xi d( 􏼁 + c2r2 pg d − xi d􏼐 􏼑,

xi d � xi d + vi d,
(1)

where vi d is the velocity of the ith particle in the dth di-
mension, pi d is the optimal position of the ith particle so far,
xi d is the position of the current ith particle in the dth di-
mension, pg d is the optimal position that the particle swarm
has searched so far, and w is the inertia weight. In this paper,
the linear decreasing weight is used, namely,
wmax − ((t∗ (wmax − wmin))/tmax), where wmax represents the
maximum value of inertia weight, wmin represents the
minimum value of inertia weight, t represents the current
number of iterations, and tmax represents the maximum
number of iterations.0is principle is still used in binary PSO
algorithm. r1 and r2 are two randomly generated acceleration
weight coefficients between [0, 1], c1 and c2 are acceleration
factors, and the value 2 is taken in this paper [24].

0ere are three parts in the velocity updating formula of
particles. 0e first part is inertia or momentum, which re-
flects the movement habit of particles, and represents the
tendency of particles to maintain their previous velocity.0e
second part is the cognitive part, which reflects the particle’s
memory or recall of its own historical experience, and
represents that the particle tends to approach the optimal
position of its own history. 0e third part is the social part,
which reflects the collective historical experience of
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cooperation and knowledge sharing among particles, and
represents the tendency of particles to approach the optimal
historical position of the community.

3. Binary Particle Swarm
Optimization Algorithm

In the binary particle swarm optimization (BPSO) algo-
rithm, the velocity update equation has not changed, but a
new velocity transfer function has been introduced to map
the original continuous search space to the binary search
space.0e transfer function concept was originally proposed
by Kennedy and Eberhart [11], which allows PSO algorithm
to run in the binary searching space. In this version, particles
can only be zero or 1 by taking their position vector. 0e
effect of velocity is to indicate the probability that the bits
take 0 or 1, so they propose a Sigmoid transfer function, as
shown in equation (2), which can convert all real values of
velocity into probability values [0, 1]:

T v
k
i (t)􏼐 􏼑 �

1
1 + e− vk

i
(t)

, (2)

where vk
i (t) represents the velocity of particle i at iteration t

in k dimension.
After converting the velocity to a probability value, the

position vector can be updated with the probability of its
velocity by

x
k
i (t + 1) �

0, If rand<T vk
i (t)( 􏼁,

1, If rand≥T vk
i (t)( 􏼁,

⎧⎨

⎩ (3)

where vk
i (t) represents the velocity of particle i at iteration t

in k dimension.
0e flowchart of BPSO algorithm is shown in Figure 1.

According to the experimental analysis, the original BPSO
has some shortcomings, such as premature convergence and
easy to fall into local optimal, so it has been continuously
improved since BPSO was proposed. In 2008, Lee et al.
proposed another modification of BPSO algorithm [25],
which allows the continuous update velocity and position of
PSO algorithm. In this improvement, they replace the ve-
locity with the displacement in the transfer function. 0e
probability formula is described as follows:

T x
k
(t)􏼐 􏼑 �

1
1 + e− xk

i
(t)

, (4)

where xk
i (t) represents the position of particle i at iteration t

in k dimension.
0e corresponding position updating formula is defined

as follows:

x
k
i (t + 1) �

0, If rand<T xk
i (t)( 􏼁,

1, If rand≥T xk
i (t)( 􏼁,

⎧⎨

⎩ (5)

where xk
i (t) represents the position of particle i at iteration t

in k dimension.
0is transfer function is named as S-shaped transfer

function, and a set of S-shaped transfer functions are formed
by changing parameters, whose expressions and graphs are
shown in Table 1 and Figure 2, respectively [24]. It can be

seen from Figure 3 that the velocity value of s1 is larger than
that of s2, and the saturation speed is also accelerated.
Similarly, when the speed becomes smaller, as shown in s3
and s4, the saturation speed will decrease. To sum up, the
change probability of position vector increases with the
increase of slope of these functions. 0erefore, when the
velocity is the same, the probability value returned by s1 is
the largest. In the following Section 5, the influence of
different slopes on solving the function optimization
problem will be studied.

Start

Swarm initialization

Update speed according to
equation (1)

The probability of a change in the
position vector element is calculated

according to equation (4)

Update the elements of the position
vector according to the rules in equation (5)

Terminating conditions
satisfied

End

Y

Figure 1: Flow chart of BPSO algorithm.

Table 1: S-shaped transfer functions.

Experiment name Name Expression
BPSO1 s1 T1(x) � (1/(1 + e− 2x))

BPSO2 s2 T2(x) � (1/(1 + e− x))

BPSO3 s3 T3(x) � (1/(1 + e(− x/2)))

BPSO4 s4 T4(x) � (1/(1 + e(− x/3)))
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In 2009, Rashedi et al. proposed a new transfer function
named as V-shaped transfer function and a new position
update strategy [26]. 0e formula is described as follows:

x
k
i (t + 1) �

xk
i (t + 1)( 􏼁

− 1
, If rand<T xk

i (t)( 􏼁,

xk
i (t), If rand≥T xk

i (t)( 􏼁,

⎧⎨

⎩ (6)

where xk
i (t) represents the velocity of particle i at iteration t

in k dimension and (xk
i (t + 1))− 1 is the complement of

xk
i (t).
According to the characteristics of V-shaped transfer

function, a series of V-shaped transfer functions are pro-
posed by using different functional equations, whose ex-
pressions and graphs are shown in Table 2 and Figure 3,
respectively.

According to Figure 3, this function is a symmetric
function. When the absolute value of velocity is larger, the
probability of particle position change is higher. For dif-
ferent V-shaped functions, it is easy to find that when the
slope of the function is higher, the probability of the particle
position change is higher. In other words, when the velocity
is constant, the function with higher slope has a higher
probability of the returned particle change. Similarly, the
influence of different slopes on the processing of function
optimization problems will be analyzed in Section 5.

4. Improved Binary Particle Swarm
Optimization Algorithm

Based on the characteristics of binary particle swarm opti-
mization algorithm, the continuous search space is mapped to
the discrete binary space.0e purpose of the transfer function
is to represent the probability that the element of the position
vector goes from 0 to 1, so the transfer function must be a
bounded function of [0, 1]. In addition, when the velocity
value is 0, the probability of change should be relatively small
because when the particle finds the optimal value, the velocity
should be reduced to 0, and the probability of the position
change of the particle should be 0. According to the char-
acteristics of transfer function, a new Z-shaped transfer
function is proposed, which is defined as follows:

T x
k
i (t)􏼐 􏼑 �

��������

1 − axk
i
(t)

􏽱

, (7)

where xk
i (t) represents the velocity of particle i at iteration t

in k dimension and a is a positive integer. By changing the
value of a, a set of Z-shaped function families is obtained,
whose expressions and figures are shown in Table 3 and
Figure 4, respectively.

As shown in Figure 4, the mapping function is an
asymmetric mapping function. 0e asymmetric mapping
function basically satisfies the absolute value of the velocity
to determine the mapping probability of the particle position
vector variation, so the convergence speed is fast. When the
parameter Di mparticle � Di mFunction × 15 changes, the slope
of the function also changes. 0e larger
Di mparticle � Di mFunction × 15, the smaller the slope of the
function. 0at is to say, when the speed is the same, the
probability that the returned particle position of the pa-
rameter Di mparticle � Di mFunction × 15 is small changes is
larger.

5. Simulation Experiments and Result Analysis

5.1. Selection of Test Functions. 0e process of mapping
continuous search space to discrete search space using the
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Figure 2: S-shaped transfer functions.
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Figure 3: V-shaped transfer functions.

Table 2: V-shaped transfer functions [24].

Experiment name Name Expression
BPSO5 V1 T5(x) � |erf((

��
π

√
/2)x)|

BPSO6 V2 T6(x) � |tanh(x)|

BPSO7 V3 T7(x) � |(x)/
�����
1 + x2

√
|

BPSO8 V4 T8(x) � |(2/π)arctan((π/2)x)|
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proposed transfer function is shown in Figure 5. To rep-
resent each continuous variable in binary, 15 bits are
adopted. It should be noted that each function variable
retains a bit of its sign. 0erefore, the particle size is cal-
culated by

Dimpracticle � DimFunction × 15. (8)

According to equation (8), when the test function has 5,
10, and 30 dimensions, the corresponding particle sizes are
75, 150, and 450, respectively. In order to evaluate the
improved BPSO algorithm based on the Z-shaped transfer
functions, the simulation experiments were carried out by
using the nine benchmark functions proposed in the CEC
special conference. 0e expressions of the benchmark
functions and the three-dimensional graphics are shown in
Table 4 and Figure 6, respectively.

5.2. PerformanceComparison of Z-ShapedTransfer Functions.
In order to test the performance of the Z-shaped transfer
function, the parameters of the Z-shaped transfer function
are set as 2, 5, 8, and 20, respectively, and the influence of
different parameter settings on the simulation experiments is
analyzed. In order to further verify the optimization accu-
racy of Z-shaped transfer function, each test function was
run 10 times, and the best, worst, average, and STD values of
9 functions in 5 and 30 dimensions were recorded,

respectively. 0e maximum number of iterations is
Max iter � 500. 0e simulation results of D � 5 and D � 30
are shown in Figures 7 and 8, respectively, and the statistical
results are shown in Tables 5 and 6, respectively.

It can be seen from Figure 7 and Table 5 that when the
test functions have 5 dimensions, changing the parameters
has no effect on the final convergence results, and the final
convergence results are the same. However, the rate of
convergence will be different. In the function convergence
curves, it can be seen that increasing the value of parameters
can improve the convergence speed of the algorithm, but it is
not the case that the larger the parameters are, the faster the
convergence speed will be. In the convergence curves of F1,
F2, F3, F7, and F9, the transfer function whose parameter is
set to 20 has the fastest convergence speed. In the conver-
gence curves of F4, F5, and F8, the transfer function with
parameter set to 8 has the fastest convergence speed.

It can be seen from Figure 8 and Table 6 that when the
test functions have 30 dimensions, changing the size of
parameters has no obvious influence on the convergence
speed of the algorithm, but has an influence on the final
convergence result. In the functions F1, F2, F3, F4, F5, F7, F8,
and F9, the parameters are set to 5, 8, and 20, and the effect is
better when the parameter is 2, that is to say that increasing
the parameter can improve the accuracy of the algorithm.
However, when the parameters are set to 5, 8, and 20, the
results are the same. 0at is to say, it is not the case that the
larger the parameters setting, the better the performance.
When the parameters are set to a certain size, increasing the
parameters will not improve the accuracy of the algorithm.

5.3. Performance Comparison of Z-Shaped, S-Shaped, and
V-Shaped Transfer Functions

5.3.1. Test Function Results and Analysis. To further in-
vestigate the validity of the Z-shaped transfer function, the
Z-shaped transfer function is compared to the S-shaped and
the V-shaped transfer function. 0rough the above analysis,
it can be concluded that when the parameter of the Z-shaped
transfer function is set to 5, the convergence precision and
convergence speed are optimal. 0erefore, in this set of
simulation experiments, the parameter of the new Z-shaped
transfer function is set as 5, the selected 12 test functions
have 10 dimensions, and the maximum number of iterations
is 500. 0e simulation results and numerical analysis are
shown in Figure 9 and Table 7, respectively.

It can be seen from the convergence curves that the pro-
posed new transfer function improves the convergence speed of
the algorithm. According to the data shown in Table 7, the new
transfer function improves the accuracy of the BPSO algorithm.
In particular, for functions F1, F2, F3, and F7, the optimal value
of the function can be accurately derived. Similarly, for functions
F8, the accuracy is 15 orders of magnitude higher than other
transfer functions. For the composite functions F10 ∼ F12,
BPSO10 improves the convergence accuracy and convergence
speed of the algorithm, but the optimal value of the function

Table 3: Z-shaped transfer functions.

Experiment name Name Expression
BPSO9 Z1 T9(x) �

�����
1 − 2x

√

BPSO10 Z2 T10(x) �
�����
1 − 5x

√

BPSO11 Z3 T11(x) �
�����
1 − 8x

√

BPSO12 Z4 T12(x) �
������
1 − 20x

√
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Figure 4: Z-shaped transfer functions.
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cannot be found, which will be the focus of future research and
learning. In other functions, it also improves the convergence
speed and convergence precision of the algorithm compared to
other transfer functions.

5.3.2. Nonparametric Test Analysis. In order to verify the
stability of the algorithm, we perform a nonparametric test on
the optimal value of the test function. In this work, Wilcoxon
rank sum test [27] is used as a nonparametric statistical test to
determine the importance of the results. Table 8 depicts the
5% p value obtained from this test. It can be seen from Table 8
that the p values for all test functions are much less than 0.05,
highlighting the significant advantages of BPSO10 over other
versions of the binary particle swarm algorithm based on the
p value (less than 0.05) algorithm.

5.4. ComparisonwithOtherVersions of BinaryParticle Swarm
Algorithms. In order to further investigate the effectiveness
of the transfer function, this paper compares the test results
of BPSO10 with other recent binary particle swarm versions.
Firstly, it was compared with the binary algorithm
(BPSOGSA) proposed by Mirjalili et al. [28] based on
particle swarm optimization algorithm and gravity search
algorithm. 0e dimension of the test function was 5, and the
comparison result was shown in Table 9. At the same time, it
also proposed binary hybrid topology particle swarm op-
timization (BHTPSO) and binary hybrid topology particle
swarm optimization quadratic interpolation (BHTPSO-QI),
proposed by Beheshti et al. [29], and swarm optimization
algorithm based on genetic algorithm is put forward by the
quantum-behaved particle swarm optimization (SOGA) by
Sun et al. [30] are compared. 0e dimension of the test
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Figure 5: Procedure of mapping continuous search space to discrete search space.
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function was 8 dimensions, and the comparison result is
shown in Table 10.

It can be seen from the data in Tables 9 and 10 that when
the test function is 5 or 8 dimensions, the test results of the
newly proposed z-type transfer function are significantly
higher than those of BPSOGSA, BHTPSO, BHTPSO-QI, and
SOGA proposed in recent studies. In particular, in the test

functions F1, F2, and F3, BPSO10 can still accurately find the
optimal value, and the STD data shows that the value is 0,
indicating that the algorithm is very stable and has strong
robustness. Among other test functions, BPSO10 also im-
proves the optimization accuracy of the algorithm to varying
degrees. 0erefore, the newly proposed z-type transfer
function has good optimization ability.

Table 4: Test functions.

Function Dim Rang Fmin

F1(x) 􏽐
n
i�1 x2

i
5, 8, 10, 30 [− 100, 100] 0

F2(x) 􏽐
n
i�1 |xi| + 􏽑

n
i�1 |xi| 5, 8, 10, 30 [− 10, 10] 0

F3(x) � 􏽐
n
i�1(􏽐

n
j− 1 xj)

2 5, 8, 10, 30 [100, 100] 0
F4(x) � 􏽐

n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 5, 8, 10, 30 [− 30, 30] 0
F5(x) � 􏽐

n
i�1[(xi + 5)]2 5, 8, 10, 30 [− 100, 100] 0

F6(x) � 􏽐
n
i�1 (ixi)

4 + random[0, 1) 5, 8, 10, 30 [− 1.28, 1.28] 0
F7(x) � 􏽐

n
i�1[x2

i − 10 cos(2πxi) + 10] 5, 8, 10, 30 [− 5.12,− 5.12] 0
F8(x) � − 20 exp × (− 0.2

���
1/n

√
􏽐

n
i�1 xi) − exp(1/n 􏽐

n
i�1 cos(2πxi)) + 20 + e 5, 8, 10, 30 [− 32, 32] 0

F9 � (π/n) 10 sin(πy1) + 􏽐
n− 1
i�1 (yi − 1)2[1 + 10 sin2(πyi + 1)] + (yn − 1)2􏽮 􏽯 + 􏽐

n
i�1 u(xi, 10, 100, 4)

yi � 1 +
xi + 1
4 5, 8, 10, 30 [− 50, 50] 0

u(xi, a, k, m) �

k(xi − a)m xi > a

0 − a<xi < a

k(− xi − a)m xi < − a

⎧⎪⎨

⎪⎩
F10 [24]:

10 [− 5, 5] 360

f1∼f2 �Rotated Expanded Scaffer’s FF Function
Where FF is Shifted Rosenbrock.
f3∼f4 �Rastrigin’s Function
f5∼f6 � FF4 Function
f7∼f8 �Weierstrass Function
f9∼f10 �Griewank’s Function
σ � [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]

λ � [5∗ 5/100; 5/100; 5∗ 1; 1; 5∗ 1; 1; 5∗ 10; 5∗ 5/200; 5/200]

F11 [24]

10 [− 5, 5] 360

All settings are the same as F10

xj �
xj |xj − o1j|< 1/2
round(2xj)/2 |xj − o1j|≥ 1/2

􏼨 for j� 1, 2, . . ., n

Except round(x) �

a − 1 if x≤ 0& b≥ 0.5
1 if b< 0.5
a1 x> 0& b≥ 0.5

⎧⎪⎨

⎪⎩

Where a is x’s integral part and b is x’s decimal part.
F12 [24]

10 [− 5, 5] 260

f1 �Weierstrass Function
f2 �Rotated Expanded Scaffer’s FF Function
Where FF is Shifted Rosenbrock.
f3 � FF4 Function
Where FF is Rastrigin’s Function
f4 �Ackley’s Function
f5 �Rastrigin’s Function
f6 �Griewank’s Function
f7 �Noncontinuous Expanded Scaffer’s FF Function
Where FF is Shifted Rosenbrock.
f8 �Noncontinuous Rastrigin’s Function
f9 �High Conditioned Elliptic Function
f10 � Sphere Function with Noise in Fitness
σi � 2, for i� 1, 2, . . ., n
λ � [10; 5/20; 1; 5/32; 1; 5/100; 5/50; 1; 5/100; 5/100]
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Figure 7: Continued.
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Figure 7: Convergence curves of the benchmark functions under D � 5. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8. (i) F9.
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Figure 8: Continued.
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Figure 8: Convergence curves of the benchmark functions under D � 30. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8. (i) F9.

Table 5: Numerical results under D � 5.

Function Arithmetic Best Worst Ave Std

F1

BPSO9 0.0000 0.0000 0.0000 0.0000
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F2

BPSO9 0.0000 0.0000 0.0000 0.0000
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F3

BPSO9 0.0000 0.0000 0.0000 0.0000
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F4

BPSO9 74.0000 74.0000 74.0000 0.0000
BPSO10 74.0000 74.0000 74.0000 0.0000
BPSO11 74.0000 74.0000 74.0000 0.0000
BPSO12 74.0000 74.0000 74.0000 0.0000
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Table 5: Continued.

Function Arithmetic Best Worst Ave Std

F5

BPSO9 18.7500 18.7500 18.7500 0.0000
BPSO10 18.7500 18.7500 18.7500 0.0000
BPSO11 18.7500 18.7500 18.7500 0.0000
BPSO12 18.7500 18.7500 18.7500 0.0000

F6

BPSO9 0.0039 0.0836 0.0279 0.0219
BPSO10 0.0002 0.0130 0.0044 0.0043
BPSO11 0.0001 0.0043 0.0018 0.0013
BPSO12 0.0001 0.0024 0.0010 0.0008

F7

BPSO9 0.0000 0.0000 0.0000 0.0000
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F8

BPSO9 8.8818E − 16 8.8818E − 16 8.8818E − 16 0.0000
BPSO10 8.8818E − 16 8.8818E − 16 8.8818E − 16 0.0000
BPSO11 8.8818E − 16 8.8818E − 16 8.8818E − 16 0.0000
BPSO12 8.8818E − 16 8.8818E − 16 8.8818E − 16 0.0000

F9

BPSO9 1.3744 1.3744 1.3744 0.0000
BPSO10 1.3744 1.3744 1.3744 0.0000
BPSO11 1.3744 1.3744 1.3744 0.0000
BPSO12 1.3744 1.3744 1.3744 0.0000

Table 6: Numerical results under D � 30.

Function Arithmetic Best Worst Ave Std

F1

BPSO9 2.0000 7.0000 4.2000 1.4697
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F2

BPSO9 2.0000 8.0000 4.5000 1.9621
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F3

BPSO9 9.0000 2683.0000 1517.0000 890.0239
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F4

BPSO9 449.0000 2041.0000 1205.2000 434.1667
BPSO10 449.0000 449.0000 449.0000 0.0000
BPSO11 449.0000 449.0000 449.0000 0.0000
BPSO12 449.0000 449.0000 449.0000 0.0000

F5

BPSO9 118.5000 124.5000 120.9000 1.9596
BPSO10 112.5000 112.5000 112.5000 0.0000
BPSO11 112.5000 112.5000 112.5000 0.0000
BPSO12 112.5000 112.5000 112.5000 0.0000

F6

BPSO9 210.8445 1124.7927 618.0885 271.3089
BPSO10 0.0001 0.0526 0.0216 0.0155
BPSO11 0.0000 0.0132 0.0042 0.0039
BPSO12 0.0004 0.0049 0.0018 0.0012

F7

BPSO9 1.0000 7.0000 4.9000 1.8682
BPSO10 0.0000 0.0000 0.0000 0.0000
BPSO11 0.0000 0.0000 0.0000 0.0000
BPSO12 0.0000 0.0000 0.0000 0.0000

F8

BPSO9 8.8818E − 16 0.4927 0.3065 0.1329
BPSO10 8.8818E − 16 8.8818E − 16 8.8818E− 16 0.0000
BPSO11 8.8818E − 16 8.8818E − 16 8.8818E− 16 0.0000
BPSO12 8.8818E − 16 8.8818E − 16 8.8818E− 16 0.0000

F9

BPSO9 1.2209 1.2811 1.2520 0.0176
BPSO10 1.2108 1.2108 1.2108 0.0000
BPSO11 1.2108 1.2108 1.2108 0.0000
BPSO12 1.2108 1.2108 1.2108 0.0000
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Figure 9: Continued.
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Figure 9: Convergence curves of the benchmark functions. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8. (i) F9. (j) F10. (k) F11.
(l) F12.
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Table 7: Numerical statistics.

Function Arithmetic Best Worst Ave Std

F1

BPSO1 20.0000 25.0000 23.7000 1.4177
BPSO2 28.0000 34.0000 30.8000 1.8330
BPSO3 36.0000 41.0000 38.4000 1.6852
BPSO4 38.0000 44.0000 42.1000 1.5780
BPSO5 2.0000 14.0000 7.7000 2.9343
BPSO6 4.0000 9.0000 5.7000 1.5524
BPSO7 3.0000 7.0000 5.0000 1.3416
BPSO8 2.0000 7.0000 4.0000 1.4142
BPSO10 0.0000 0.0000 0.0000 0.0000

F2

BPSO1 21.0000 28.0000 24.9000 1.9723
BPSO2 28.0000 35.0000 32.5000 2.1095
BPSO3 38.0000 42.0000 39.2000 1.1662
BPSO4 38.0000 43.0000 41.4000 1.7436
BPSO5 4.0000 12.0000 7.6000 2.3324
BPSO6 4.0000 10.0000 6.8000 1.8868
BPSO7 2.0000 7.0000 4.7000 1.6155
BPSO8 1.0000 6.0000 3.8000 1.6000
BPSO10 0.0000 0.0000 0.0000 0.0000

F3

BPSO1 2.0936E+ 04 2.9895E+ 04 2.4866E+ 04 3.0074E+ 03
BPSO2 3.5023E+ 04 4.7871E+ 04 4.0582E+ 04 4.5452E+ 03
BPSO3 4.0798E+ 04 7.7036E+ 04 6.3317E+ 04 9.7782E+ 03
BPSO4 6.1630E+ 04 8.7746E+ 04 7.4415E+ 04 7.9859E+ 03
BPSO5 9.2100E+ 02 7.8520E+ 03 3.2089E+ 03 1.9484E+ 03
BPSO6 2.6700E+ 02 4.6020E+ 03 2.1907E+ 03 1.3673E+ 03
BPSO7 9.2000E+ 01 3.1230E+ 03 1.0619E+ 03 1.0267E+ 03
BPSO8 1.5600E+ 02 2.5080E+ 03 1.0006E+ 03 8.4595E+ 02
BPSO10 0.0000 0.0000 0.0000 0.0000

F4

BPSO1 3651.0000 4256.0000 3899.0000 155.1722
BPSO2 4072.0000 4657.0000 4406.2000 159.0540
BPSO3 4163.0000 4971.0000 4750.7000 219.8095
BPSO4 4771.0000 5162.0000 4963.3000 103.9173
BPSO5 1828.0000 3047.0000 2207.5000 324.0522
BPSO6 1937.0000 2454.0000 2135.4000 210.8327
BPSO7 1643.0000 2650.0000 2179.6000 355.8585
BPSO8 1640.0000 2848.0000 2175.5000 386.0337
BPSO10 149.0000 149.0000 149.0000 0.0000

F5

BPSO1 85.5000 89.5000 87.5000 1.7889
BPSO2 97.5000 107.5000 102.5000 3.6056
BPSO3 105.5000 117.5000 112.3000 3.8158
BPSO4 115.5000 125.5000 119.9000 3.2000
BPSO5 37.5000 61.5000 52.1000 6.3906
BPSO6 45.5000 53.5000 50.3000 2.4000
BPSO7 41.5000 53.5000 47.7000 4.1425
BPSO8 43.5000 47.5000 45.5000 1.7889
BPSO10 37.5000 37.5000 37.5000 0.0000

F6

BPSO1 1174.2146 1680.9851 1489.1710 149.4409
BPSO2 1760.8619 2317.8085 1949.8876 155.5235
BPSO3 2496.6527 2707.5556 2584.3121 63.7418
BPSO4 2691.9604 2984.0308 2850.7730 103.5472
BPSO5 225.0052 567.0026 401.3030 109.7147
BPSO6 162.0050 665.0021 346.3023 133.7193
BPSO7 145.0009 504.0035 245.7022 113.2767
BPSO8 144.0011 482.0005 297.3014 114.2555
BPSO10 0.0001 0.0101 0.0035 0.0028
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Table 7: Continued.

Function Arithmetic Best Worst Ave Std

F7

BPSO1 22.0000 28.0000 25.3000 2.2383
BPSO2 29.0000 34.0000 32.0000 1.4142
BPSO3 36.0000 40.0000 38.1000 1.0440
BPSO4 35.0000 44.0000 40.8000 2.7129
BPSO5 4.0000 9.0000 6.4000 1.4283
BPSO6 1.0000 11.0000 6.5000 2.6926
BPSO7 2.0000 7.0000 4.8000 1.9391
BPSO8 1.0000 6.0000 3.3000 1.4866
BPSO10 0.0000 0.0000 0.0000 0.0000

F8

BPSO1 1.4420 1.5979 1.5153 0.0418
BPSO2 1.6837 1.8667 1.7507 0.0513
BPSO3 1.8418 1.9625 1.9171 0.0450
BPSO4 1.9153 2.0532 1.9989 0.0400
BPSO5 0.4566 1.0066 0.7834 0.1726
BPSO6 0.6426 1.0066 0.8087 0.1022
BPSO7 0.3239 0.8457 0.6732 0.1405
BPSO8 0.3239 0.9028 0.6573 0.1738
BPSO10 8.88178E − 16 8.88178E − 16 8.8818E− 16 0.0000

F9

BPSO1 1.9687 2.2083 2.0753 0.0814
BPSO2 2.1886 2.4374 2.3050 0.0850
BPSO3 2.5578 2.7476 2.6494 0.0629
BPSO4 2.5683 2.7973 2.7120 0.0743
BPSO5 1.3666 1.6074 1.4911 0.0771
BPSO6 1.3666 1.5472 1.4309 0.0552
BPSO7 1.3666 1.5773 1.4690 0.0634
BPSO8 1.3365 1.4975 1.4068 0.0486
BPSO10 1.2108 1.2108 1.2108 0.0000

F10

BPSO1 833.4458 897.9789 859.9714 23.8603
BPSO2 797.1630 894.5194 855.8127 29.2840
BPSO3 822.1992 935.9137 871.3066 31.0668
BPSO4 801.6173 922.5607 860.1476 40.3582
BPSO5 819.9967 922.3191 864.5066 32.5671
BPSO6 798.7684 903.6756 848.3581 32.5885
BPSO7 803.2907 904.1978 862.3321 35.3385
BPSO8 833.7166 898.4921 865.7664 24.2585
BPSO10 732.3788 790.8776 764.5206 20.0896

F11

BPSO1 811.5518 896.1991 860.3674 26.4694
BPSO2 797.1630 905.6025 854.5382 29.9453
BPSO3 822.1992 935.9137 862.4550 36.2997
BPSO4 801.6173 888.0983 849.7746 28.6370
BPSO5 819.9967 922.3191 868.3163 29.5430
BPSO6 798.7684 903.6756 844.8258 35.6381
BPSO7 803.2907 904.1978 865.2761 29.1488
BPSO8 788.3447 898.6084 866.7004 37.5416
BPSO10 732.3788 790.5087 758.0837 22.0786

F12

BPSO1 761.2894 912.1116 863.0355 43.0973
BPSO2 803.8999 897.6278 850.4606 32.1798
BPSO3 835.9801 912.0372 878.0874 23.8546
BPSO4 772.1731 916.9646 858.7735 44.5248
BPSO5 765.3802 900.9199 859.8082 41.3350
BPSO6 810.4896 900.3629 856.8248 28.2321
BPSO7 820.4377 918.6237 873.2900 30.3881
BPSO8 811.3776 885.9333 852.6042 20.1360
BPSO10 693.7516 811.1792 758.9200 38.4465
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6. Conclusions

In this paper, a new Z-shaped transfer function is proposed
to improve BPSO algorithm. 0e simulation results on three
sets’ data show that the newly proposed Z-shaped transfer
function improves the convergence speed and convergence
precision of BPSO algorithm. In addition, by changing the
slope of the Z-shaped transfer function, it is found that when
the test function dimension is low, the slope has no effect on
the final convergence result, but it will affect the convergence
speed. When the test function dimension is high, the slope
has no effect on the convergence speed. However, it will
affect the convergence result. Combined with three sets of
experiments, it is found that when the parameter is set as 5,
the convergence speed is the fastest and the precision is
highest. In the future research, BPSO algorithm can be
improved by using the new transfer function as a direction of
exploration. In addition, certain family functions with dif-
ferent slopes are used for comparative study to find the
optimal algorithm.
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