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It is necessary to improve the performance of the object detection algorithm in resource-constrained embedded devices by
lightweight improvement. In order to further improve the recognition accuracy of the algorithm for small target objects, this paper
integrates 5× 5 deep detachable convolution kernel on the basis of MobileNetV2-SSDLite model, extracts features of two special
convolutional layers in addition to detecting the target, and designs a new lightweight object detection network—Lightweight
Microscopic Detection Network (LMS-DN).)e network can be implemented on embedded devices such as NVIDIA Jetson TX2.
)e experimental results show that LMS-DN only needs fewer parameters and calculation costs to obtain higher identification
accuracy and stronger anti-interference than other popular object detection models.

1. Introduction

Traffic congestion is a huge problem [1] facing the world in
the process of rapid urbanization. In order to avoid traffic
accidents, algorithms and embedded environment appli-
cations of drivers’ dangerous behavior detection [2], such as
handheld receiving and calling, have been studied exten-
sively [3–7]. Most of the research on object detection net-
works aims at improving accuracy [8] but ignores the
problems of model, calculation amount, and the number of
parameters. In 2014, Girshick et al. proposed a region-based
convolutional neural network (R-CNN) [9], which uses a
region-based recognition method to detect objects. In 2015,
two improved versions of R-CNN—Fast R-CNN [10] and
Faster R-CNN [11]—were proposed to realize end-to-end
detection of targets. Both models are two-stage algorithms
with higher accuracy than traditional algorithms, but the
detection speed is slow and cannot meet the real-time re-
quirements. In 2016, Redmon et al. proposed YOLO [12] and
YOLO9000 [13] and then proposed YOLOv3 [14]; the latter
greatly improved the detection effects of small objects when

compared to YOLO9000.)e YOLO series algorithm greatly
improves the detection speed because it combines the two-
stage task of sorting and identifying candidate box in Faster
R-CNN. However, the detection speed is relatively slow due
to the large number of parameters of YOLOv3. )e network
should be both accurate and fast, in order to realize the
operation of the object detection network on mobile devices.
Liu et al. then proposed an SSD [15] algorithm to realize the
regression detection of the whole image that improved the
speed but greatly reduced the accuracy of the detection of
small targets. YOLO, SSD, and the network derived from
them, as the representatives of the phase network, realize
end-to-end training. )ey only use a convolutional neural
network to directly predict the categories and positions of
different targets and improve the detection speed [16] by
sacrificing accuracy.

Tiny-Yolo, introduced in 2017, is widely used due to its
high speed and low memory consumption, but for devices
that do not have GPU, it is still difficult to use Tiny-Yolo for
real-time applications. In the same year, Andrew G. Howard
et al. proposed MobileNet [17] for mobile and embedded
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vision applications. In 2018, the network MobileNet-SSD,
derived from VGG-SSD, was proposed to dramatically re-
duce the parameters while greatly increasing the detection
speed, but the risk of missing and false detection of small
objects was extremely high in this. Several efficient mobile
neural networks for common object detection have been
proposed in the year recently, such as SqueezeNet [18],
ShuffleNet [19], and so on. In order to further enhance the
accuracy of small object detection and study the possibility
of the application of lightweight object detection network in
embedded devices, a new lightweight object detection net-
work is proposed in this paper, which especially improves
the detection ability of small target objects.

)e rest of this paper is organized as follows. Section 2
mainly introduces the related research on the application of
small target detection and deep learning network on em-
bedded devices. Section 3 introduces the overall structure of
MobileNetV2 and SSD. Section 4 presents the structure of
the new object detection network Lightweight Microscopic
Detection Network (LMS-DN) and explains the innovation
of the network. Section 5 provides and compares the ex-
perimental results with previous object detection networks
on the KITTI, VOC, and Safe_Imgs datasets. )e experi-
mental results demonstrate the efficiency improvement of
LMS-DN implemented on NVIDIA Jetson TX2. Finally, we
draw conclusions on this work in Section 6.

)e main contributions of this study are as follows:

(1) Based on MobileNetV2-SSDLite, a new object de-
tection network LMS-DN is proposed. Among them,
the basic networkMobileNetV2 is improved, and the
network MobileNet-I is proposed. In order to better
detect small objects, the other two layers of object
features are selectively extracted for detection.

(2) )is study does not require complex preprocessing
of driver status images and achieves considerable
results without user intervention.

(3) LMS-DN can be implemented in real time on
NVIDIA Jetson TX2 embedded devices and can be
used for practical testing of different lighting and
obstacle occlusion conditions.

2. Related Work

Driver’s handheld call detection can be regarded as the
detection of small target mobile phone, which has become a
challenging problem in the field of target detection. If an
object is only a small part of an image (less than 0.1% of the
image area), it is considered a small target. By analyzing the
previous target detection networks (such as R-CNN, R-FCN
[20], etc.), it can be said that a large number of convolution
layers are used in the network structure to extract image
features [21] dynamically. At the same time, the pool layer is
designed to gradually reduce the size of the feature map that
further reduces the calculation cost and prevents the model
from overfitting. In this process, the resolution of the image
is obviously reduced, and the information loss for small
objects is very high. In view of the above problems, many
researchers are focusing on the study of small target

detection. Chen et al. proposed TSSD in 2017, which reused
the pyramidal feature hierarchy calculated by convolution
networks and used each layer of feature maps for detection,
but it requires high computational capacity and memory of
the computers. Krishna and Jawahar add deconvolution
layers to the RPN to restore low-resolution images to high
resolution, thus improving the detection effect for small
targets. Lin et al. proposed FPN [22], which can be predicted
on different feature maps by merging high-level semantic
information and low-level location information. )is
method is very important in small target detection. In the
same year, Guimei et al. proposed the feature-fused SSD [23]
based on SSD, which fused different levels of features into
context information, which is helpful in detecting small
objects. IoU threshold is very important for sample selection.
If the IoU threshold is too high, the quality of a positive
sample will be very high, but the quantity will be very small,
and the imbalance in the sample proportion will have a large
influence on the final outcome. If the IoU threshold is low,
the number of samples will increase, but the quality of
samples will decrease. How to balance this relationship, that
is, how to select a good IoU, is very important for the de-
tection results.)e cascade R-CNN, proposed by Cai et al. in
2018, continuously raised the threshold of IoU through a
multistage structure, while ensuring the number and quality
of samples, and finally trained a high-quality detector. Singh
et al. proposed SNIP, which pretrained the image and then
fine-tuned it using the original sampled image, and used the
fine-tuned model to predict the original sampled image, thus
making the input distribution as close to the model’s pre-
trained distribution as possible. Zhishuai Zhang proposed
DES on the basis of SSD, added semantic segmentation
branch and global activation module, and carried out high-
level target detection features by learning the semantic re-
lationship between feature channels and target categories.

Artificial intelligence and machine learning need a
powerful computing platform for its implementation. )e
computing module is mostly placed at back end. An em-
bedded system is developed for special equipment; one of its
characteristics is high cost, so hardware resources are lim-
ited. In the face of some special scenes such as automobile
driving, the real-time requirement of embedded equipment
is high. NVIDIA launched a high-performance Jetson TX2
embedded board to speed up the layout of deep learning on
terminal devices. )e chip will be used in urban security,
smart drones, ocean observations, intelligent agriculture,
and industrial and commercial robots. Jetson TX2 really
solves the real-time positioning and map building (Simul-
taneous Localization and Mapping, SLAM) computing re-
quirements. )ere are several case studies about CNN-based
object detection algorithms for embedded platforms. Mao
et al. implemented the detection algorithm Fast R-CNN on
Jetson TK1. )ey applied SVD to the FC layer, and by
adopting a more effective approach to regional recom-
mendations, simplified the Fast R-CNN model. Both the
CPU and GPU were employed to achieve the parallel
computing of region proposal and CNN classification.Wang
et al. customized the design parameters of the object de-
tection framework, to maximize the algorithm energy
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efficiency on the Jetson TX1 platform.)ey achieved a trade-
off between CNN accuracy and efficiency by adjusting the
input size and hyperparameters of the CNN model. Yu et al.
summarized the optimization technology of energy-saving
target detection based on CNN on different hardware
platforms. )ey applied SVD decomposition and Wino-
grad’s algorithms to reduce CNN computational complexity.
)e aforementioned works mainly focused on the design of
the algorithm to reduce the computational complexity of the
CNN model, which is often at the expense of accuracy loss.
)is paper proposes a lightweight model LMS-DN that
needs only a few parameters. )e calculation costs to obtain
higher identification accuracy are lower than other popular
object detection models. LMS-DN can capture the location
information of small objects to improve the accuracy of
mobile phone detection while running on NVIDIA Jetson
TX2 embedded devices in real time.

3. Methodology

3.1. MobileNetV2 Lightweight Network. MobileNetV2 is an
improvement upon MobileNetV1. MobileNetV2 can reduce
the number of parameters and improve the operational
speed more effectively, with the use of depth separable
convolution and the incorporation of residual connection,
providing an effective model for mobile and embedded
visual applications. Depth separable convolution is a de-
composable convolution operation that can be divided into
two smaller operations: Depthwise Convolution and
Pointwise Convolution. )e first step uses single-channel
convolution to check the convolution of each channel of the
input data. In the second step, N Point convolution with the
same depth as the input data is used to check the results
separated in the previous step and combine them to generate
new results, as shown in Figure 1.

Table 1 shows the main structure ofMobileNetV2, where
t represents the “expansion” multiple, C represents the
number of output channels, N represents the number of
repeats, and S represents the stride length. )e core of
MobileNetV2 is the bottleneck residual block (inverted
residuals), as shown in Figure 2, which forms the “expan-
sion” to “convolutional layer extracts features” to “com-
pression” structure. Expansion layer uses 1× 1 convolution
kernel in order to map the low-dimensional space to the
high-dimensional space. Among them, one super parameter
is the dimension expansion multiple, which defaults to 6.
After the depth separable convolution layer, it is projection
layer, and 1× 1 convolution kernel is also used in order to
remap the high-dimensional features to the low-dimensional
space. )e function of the inverted residual module is to
transform the input data into high dimensions and then
extract features through deep decomposition and
convolution.

3.2. Single Shot MultiBox Detector. Single Shot MultiBox
Detector (SSD) is an object detection network [6] that can
directly predict the target category and position. In the
previous model, the standard architecture network used for
image classification was called the basic network, and then

some additional layers were added, and the feature maps
output by six different convolutional layers were fused to
achieve comprehensive detection. Figure 3 shows the SSD.
VGG16 [4] forms the basic network of the algorithm. )e
two full connection layers are changed into the convolu-
tional layer, and another four convolutional layers are added
to construct the network structure. )e six convolutional
layers involved in feature map fusion will produce a certain
number of borders, which are together called the default box.
)e calculation formula of default box size is as follows:

Sk � Smin +
Smax − Smin

m − 1
(k − 1), k ∈ [1, m], (1)

where Smin is 0.2, Smax is 0.95, through aspect ratio A to
adjust the default box. In the calculation of loss function,
SSD uses the sum of two terms, including positioning loss
function and regression loss function. Total loss function:

L(x, c, l, g) �
1
N

Lconf(x, c)( 􏼁 + αLloc(x, l, g). (2)

N is the number of matched default boxes. x represents
whether the matched boxes belong to category p, and the
value is {0, 1}. g is the ground truth box; c refers to the
confidence of the checked target belonging to category P.

4. Proposed LMS-DN

LMS-DN is proposed in order to meet the requirements of
real-time detection [24] and to further enhance the ex-
traction of features of small objects. )e first part of the two-
part LMS-DN is the improved basic classification network,
MobileNet-I (the network structure is shown in Figure 4),
and the second part is the improved SSDLite network.
MobileNet-I borrows from inception [25] structure ex-
pansion features to extract sensing field, integrates 5× 5
depth separable convolution, and adjusts the overall
structure of MobileNetV2. )e MobileNet-I model contains
5× 5 depth convolution compared to the previous studies
that typically used only a 3× 3 kernel. In fact, a 5× 5 kernel
does save resources for deeply separable convolutions rather
than two 3× 3 kernels. Formally, given the input shape (H,
W, M) and output shape (H, W, N), let C5×5 and C3×3,
respectively, represent the calculation cost of depth sepa-
rable convolution of 5× 5 and 3× 3:

C5×5 � H∗W∗M∗ (25 + N),

C3×3 � H∗W∗M∗ .7(9 + N),

C5×5 < 2∗C3×3, (if N> 7).

(3)

For the same effective receptive field, when the input
depth is N >7, a convolution kernel with 5× 5 has less
computation than two cores with 3× 3. Remove the last
pooling layer of MobileNet-I and add an auxiliary con-
volutional layer to connect the base network and SSDLite
networks. SSDLite replaces some standard convolution in
the SSD prediction layer with Deep separable Convolution.
According to the feature extraction mechanism of small
target and the characteristics of different convolutional
layers, LMS-DN extracted two additional features of special
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convolutional layers to detect the target, and that is very
effective for detecting small target objects such as mobile
phones. )us, Figure 5 shows the overall structure of LMS-
DN that is formed.

As can be seen in Figure 5, in addition to the six feature
maps extracted previously, LMS-DN also selects feature
maps of the “expansion” layer in two convolution units,
BnConv5_4 and BnConv6_2 for convolution, permutation,
and flattening, and then merge the output for detection
through the splicing layer. )e reasons for the additional
extraction of two feature maps of convolutional layers are as
follows:

(1) From the above definition, when the input image
resolution is 300× 300, the resolution of small ob-
jects should not be greater than 30× 30. In the deep
learning model, the deeper the network layer is, the
stronger is the ability to extract image features. In
order that the features of small objects could be
optimally learned without losing information about
them, we decide to extract the feature map of the
“expansion” layer of the convolution unit
BnConv5_4 with an image no greater than 30× 30.

(2) )e resolution of the convolution unit BnConv6_2 is
19×19. As the transition layer of convolution units
BnConv5_4 and BnConv7_1, BnConv6_2 has in-
formation that is more global, and with better feature
extraction capability, it is more conducive to
detecting small targets in images.

5. Experimental Results and Analysis

5.1. Dataset and Experimental Settings. In this paper, the
experimental platform for Intel Core I5 7200U processor,
NVIDIA GTX 1080 8G memory, software environment for
Ubuntu16.04, Caffe’s [26] deep learning framework, using
VOC2007 and VOC2012 datasets [27], KITTI dataset [28] to
training models and test the performance of LMS-DN, and
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Figure 1: Depth separable convolution. (a) Standard convolution filters. (b) Depthwise convolution filters. (c) 1× 1 convolution filters called
pointwise convolution in the text of depthwise separable convolution.

Table 1: Structure of MobileNetV2.

Input Operator t c n s
2242 × 3 Conv2d — 32 1 2
1122 × 32 Bottleneck 1 16 1 1
1122 ×16 Bottleneck 6 24 2 2
562 × 24 Bottleneck 6 32 3 2
282 × 32 Bottleneck 6 64 4 2
142 × 64 Bottleneck 6 96 3 1
142 × 96 Bottleneck 6 160 3 2
72 ×160 Bottleneck 6 320 1 1
72 × 320 Conv2d 1× 1 — 1280 1 1
72 ×1280 avgpool 7× 7 — — 1 —
1× 1× 1280 Conv2d 1× 1 — k — —

1 × 1 “Expansion” layer

3 × 3 Depthwise convolution

1 × 1 “Projection” layer

+

BN Relu6

BN Relu6

B N

Figure 2: Inverted residual.
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other popular object detection networks have been de-
scribed. Finally, the Safe_Imgs collected in the driver video
monitoring platform have been used to detect the handheld
call of the driver through LMS-DN.

VOC2007 and VOC2012 datasets are divided into 20
target object categories and 21 background categories. In this
paper, both VOC2007 and VOC2012 are taken as training
datasets while VOC2007 test sets alone are used for testing.

KITTI datasets contain real image data that have been
collected from urban, rural, and highway scenes and are
annotated in eight categories. In this paper, in KITTI dataset,
person sitting is merged into a pedestrian. )e dataset
consists of seven categories: car, van, truck, tram, pedestrian,
background, and so on. Of the 7,400 tagged images, 6,660
were used as training sets and 740 as test sets.

All images of the Safe_Imgs dataset are from the driver
video monitoring platform [29], as shown in Figure 6. )e
safe driving and talking video of driving of 30 drivers were
selected in the data, out of which the driving videos of 15
drivers were selected as the verification set. Using OpenCV
to capture the collected videos at 10 frames per second
with a resolution of 300 × 300, 5,500 images of the training
dataset were obtained, and 550 images of the dataset were
verified. LabelImg [30] was used to generate an XML file
corresponding to the sample after annotation.

5.2. Performance Evaluation Indicators. )ere are many
evaluation criteria for the object detection algorithm.
According to the emphasis of different standards, this paper
uses detection accuracy, detection efficiency, and model size
to evaluate the object detection model. )e accuracy, pre-
cision rate, recall rate, mean average precision (mAP) were
used to evaluate the performance of the target detection
model in all categories on the dataset. )e calculation
methods of these indexes are as follows:

accuracy � 1 −
a

m
􏼒 􏼓 × 100%,

precision �
TP

TP + FP
× 100%,

recall �
TP

TP + FN
× 100%.

(4)

where a is the number of misclassified samples,m is the total
number of samples, TP (true positive) refers to a positive
sample that is predicted to be positive by the model, FP (false
positive) refers to a negative sample that is predicted to be
positive, and FN (false negative) refers to a positive sample
that is predicted to be negative. Frames per second (FPS) was
used to evaluate the detection efficiency; and MB (MByte)
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was used to evaluate the size of the model. By weighing these
performance indexes, the algorithm which is more suitable
for embedded transplantation is discussed.

5.3. Results and Analysis. We conducted comparative ex-
periments from the five aspects given below, in order to
prove that the proposed model and algorithm have better
detection effect, especially in the detection of small objects:

(1) )is section makes a comparison of the effects of
different combination models by controlling vari-
ables and using different basic networks and SSD
structures. )e base network experiment was con-
ducted on KITTI datasets using a combination of
MobileNet, MobileNetV2 andMobileNet-I, and SSD
structures.
)e results are shown in Table 2. Comparing the
results of lines 1 and 2, it is evident that when SSD is
used in all detection networks and MobileNetV2 is
used as the basic network, the network model size
can be effectively reduced by 3.3MB, and the de-
tection accuracy is unaffected. Compared to lines 2
and 3, the results show MobileNet-I as the basic
network, compared to MobileNetV2. By comparing
the results of lines 2 and 3, it can be seen that
MobileNet-I, as the basic network, has more 5x5
depth separable convolution with a slightly reduced
model size compared with MobileNetV2, while
imitating the inception structure to introduce Sin-
Conv convolution unit, and the model size is slightly
reduced. )is suggests that the depth of the network
reaches a certain degree—a 5× 5 convolution kernel
than two 3× 3 convolution kernels with less amount
of calculation. In addition, MobileNet-I as a base
network has a higher detection accuracy than

MobileNetV2, with MAP improving by 1.3%, indi-
cating that MobileNet-I is also better than Mobile-
NetV2 in feature extraction.

(2) In this section, experiments were carried out on
KITTI, VOC, and Safe_Imgs datasets using several
popular lightweight object detection net-
works—MobileNet-SSD, MobilenetV2-SSDLite, and
LMS-DN—as proposed in this paper.

)e experimental results on the VOC and KITTI
data sets are shown in Tables 3 and 4. It can be seen
from the tables that the basic network, MobilenetV2,
can reduce the size of the model while improving the
accuracy. By comparing the results of the first and
second lines, it can be seen that MobilenetV2-
SSdLite reduces the size of the model while attaining
higher accuracy than MobileNet-SSD. By comparing
the results of lines 2 and 3, it can be seen that when
compared with MobilenetV2-SSDLite, MAP of
LMS-DN proposed in this paper improved by 1.4%
and 2.6%, respectively, under the condition that FPS
of model size was slightly enlarged while actual FPS
slightly decreased. Higher recognition accuracy was
obtained with fewer parameters and calculation costs
in comparison to MobilenetV2-SSDLite. )e effect
diagram of MobilenetV2-SSDLite and LMS-DN on
KITTI dataset is shown in Figure 7. As can be seen
from the diagram, under MobilenetV2-SSDLite,
many cars with small proportions in the figure have
not been detected, whereas when LMS-DN improved
after SSDLite, there has been a great improvement on
the detection of small target objects, and target ve-
hicles at a long distance can be detected.

)e experimental results on the Safe_Imgs data set
are shown in Table 5. LMS-DN achieves 86.2%

Figure 6: Safe_Imgs dataset.
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accuracy, 4.9% higher thanMobileNet-SSD and 3.5%
higher than MobileNetV2-SSDLite at the cost of less
model size. At the same time, there are varying
degrees of improvement in the accuracy rate and
recall rate.
According to the above experimental results, im-
provements to SSDLite cause LMS-DN to detect
smaller target objects than MobilenetV2-SSDLite.

(3) To analyze the performance of MobileNetV2-
SSDLite and LMS-DNmodels, the Safe_Imgs dataset
was used to compare the accuracy of the two models

under different thresholds under the same experi-
mental conditions in this section.
As shown in Figure 8, it can be seen that the de-
tection performance of MobileNetv2-SSDLite de-
creases significantly when the threshold increases
gradually from 0.25 to 0.55. However, for LMS-
DN, when the threshold value is 0.55, the accuracy
rate still reaches 82.60%, indicating that LMS-DN
has a good anti-interference capability. Figure 9
shows the detection results of a threshold value of
0.4.

Table 2: Detection results of different basic networks.

Network Dataset Model size (MB) mAP (%)
MobileNet-SSD KITTI 25.1 46.8
MobileNetV2-SSD KITTI 21.8 47.0
MobileNet-I-SSD KITTI 21.5 48.3

Table 3: Results on the VOC0712 dataset.

Network Dataset Model size (MB) mAP (%)
MobileNet-SSD VOC0712 23.3 72.3
MobileNetV2-SSDLite VOC0712 19.7 72.6
LMS-DN VOC0712 20.5 76.2

Table 4: Results on the KITTI dataset.

Network Dataset Model size (MB) FPS mAP (%)
MobileNet-SSD KITTI 25.1 53 46.8
MobileNetV2-SSDLite KITTI 21.6 59 47.1
LMS-DN KITTI 22.5 58 49.7

(a) (b)

Figure 7: Effect comparisons on Safe_Imgs dataset. (a) LMS-DN. (b) MobileNetV2-SSDLite.

Table 5: Results on the Safe_Imgs dataset.

Network Dataset Model size (MB) FPS Accuracy (%) Precision (%) Recall (%)
MobileNet-SSD Safe_Imgs 18.6 59 81.3 90.6 80.6
MobileNetV2-SSDLite Safe_Imgs 17.5 65 82.7 92.8 83.5
LMS-DN Safe_Imgs 17.9 63 86.2 96.3 85.2
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(4) )e previous part proves that LMS-DN performs
better than other popular lightweight networks
through experiments. In this section, there is a
discussion on the network model that is more
suitable for porting to the embedded development
board, NVIDIA Jetson TX2.
)is experiment compares the average detection
time of LMS-DN and three other models for a single
image on Jetson TX2, as shown in Table 6. Although
the average detection time of LMS-DN is only 12MS
longer than that of MobileNetV2-SSDLite, it can still
meet the requirements of real-time detection of

mobile devices. Compared with the other two
models, LMS-DN can achieve higher detection ac-
curacy at almost the same speed. In summation,
LMS-DN stands out among many models because of

86.22% 86.20% 84.20% 82.55% 81.23% 80.02% 79.60%

82.73% 82.70% 81.52%

77.24% 75.76%

72.53%
70.84%

0.25 0.3 0.35 0.4 0.45 0.5 0.55

Ac
cu

ra
cy

 (%
)

�reshold

LMS-DN
MobilenetV2-SSDLite

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Figure 8: Accuracy of the networks in different thresholds.

Figure 9: Detection results (threshold� 0.40).

Table 6: Average time of single image detection by different models
on Jetson TX2.

Network Average time
VGG16-SSD 246
MobileNet-SSD 58
MobileNetV2-SSDLite 50
LMS-DN 56

Computational Intelligence and Neuroscience 9



(a) (b)

Figure 10: Illumination test.

Table 7: Results of different illumination detection.

Degree of light Accuracy (%) Number of test images
Normal 86.2 80
Bright 72.5 80
Weak 77.1 80

Figure 11: Occlusion test.
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both high precision and speed, which are more
suitable for the transplantation of embedded devices.

(5) LMS-DN was tested on NVIDIA Jetson TX2 for
different lighting and obstacle occlusion images in
this section.
Different lighting tests were carried out on the
NVIDIA Jetson TX2 development board. Some of
the renderings are shown in Figure 10, where (a) is
the low-light detection result diagram, and (b) is
the high-light detection result diagram. It can be
seen from the figure that the detection accuracy of
LMS-DN is still very high under the conditions of
strong and weak light. Table 7 shows the statistical
results of three different lighting types. In addition,
obstacle-blocking test was carried out on the de-
velopment board, and some picture effects were
obtained, as shown in Figure 11, and the statistical
results are shown in Table 8. LMS-DN can also
accurately detect the mobile phone with the target
object when the palm blocks most of it. To sum up,
according to the statistical data, the LMS-DN
model proposed in this paper can not only over-
come the influence of strong and weak light, but it
can also complete the real-time detection of targets
with high accuracy in case of certain interference of
obstacles.

6. Conclusions

)is paper proposes a lightweight network LMS-DN for the
driver’s active safety prevention and control system, which
can detect effectively and in real time on embedded devices.
)e network is improved on the basis of MobileNetV2-
SSDLite and tested using KITTI, VOC, and Safe_Imgs
datasets. )e experimental results show that considering the
factors such as accuracy, speed, and model size, the light-
weight driver handheld call detection network proposed in
this paper is more accurate and has stronger anti-interfer-
ence in the detection of small target objects than the previous
lightweight object detection networks. In future work, more
real-time tests will be conducted on the embedded platform
for different driving situations.
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