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In recent decades, more teachers are using question generators to provide students with online homework. Learning-to-rank
(LTR) methods can partially rank questions to address the needs of individual students and reduce their study burden. Un-
fortunately, ranking questions for students is not trivial because of three main challenges: (1) discovering students’ latent
knowledge and cognitive level is difficult, (2) the content of quizzes can be totally different but the knowledge points of these
quizzes may be inherently related, and (3) ranking models based on supervised, semisupervised, or reinforcement learning focus
on the current assignment without considering past performance. In this work, we propose KFRank, a knowledge-fusion ranking
model based on reinforcement learning, which considers both a student’s assignment history and the relevance of quizzes with
their knowledge points. First, we load students’ assignment history, reorganize it using knowledge points, and calculate the
effective features for ranking in terms of the relation between a student’s knowledge cognitive and the question. )en, a similarity
estimator is built to choose historical questions, and an attention neural network is used to calculate the attention value and update
the current study state with knowledge fusion. Finally, a rank algorithm based on a Markov decision process is used to optimize
the parameters. Extensive experiments were conducted on a real-life dataset spanning a year and we compared our model with the
state-of-the-art ranking models (e.g., ListNET and LambdaMART) and reinforcement-learning methods (such as MDPRank).
Based on top-k nDCG values, our model outperforms other methods for groups of average and weak students, whose study
abilities are relatively poor and thus their behaviors are more difficult to predict.

1. Introduction

Educational data mining is an emerging discipline, con-
cerned with developing methods for exploring the unique
and increasingly large-scale data that come from educational
settings and using those methods to understand students
and the settings which they learn in better. In recent years,
physical bricks and mortar classrooms are starting to lose
their monopoly as a place of learning.)e Internet has made
online learning possible, and many researchers and edu-
cators are interested in online learning to enhance and
improve students’ learning outcomes while mitigating the
reduction in resources [1]. Online learning platforms

include Coursera, MOOC, andUdacity. Online assignments,
such as quizzes, practice exercises, virtual labs, online lit-
erature searches, and simulations, play a critical role in
online learning [2].

One of the most important tasks of an online assignment
system in educational data mining is to find suitable
questions for students according to their ability. An online
assignment system can make learning more efficient. It can
evaluate study performance and identify at-risk students,
who can be given further help. For example, from a log of
assignment results, we can identify topics that a student has
poorly mastered and recommend to them related questions
to improve their knowledge. )us, the task is to rank a large
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number of questions and recommend only relevant ques-
tions to students.

An automated process for producing an online assign-
ment works as follows:

(i) Several questions, which are organized into an as-
signment, are assigned by a teacher weekly fol-
lowing the syllabus. Students are expected to finish
them on time.

(ii) )e system can check the answers automatically,
calculate the students’ marks, and generate a report
for each assignment.

(iii) Since the number of candidate questions is too large
to finish in one assignment, the recommendation
system should be able to choose suitable questions
and discard those that are too easy or too difficult.

Note that the goal of an assignment recommendation
task is not whether the question can be answered correctly;
that is, it is not a classification problem. Rather, questions
should be ranked according to the importance of the topic in
improving the student’s ability. )e aim is to find the
questions with the highest benefit for students.

In previous studies, this problem has been tackled by
supervised and semisupervised ranking methods [3–5]. In
particular, state-of-the-art reinforcement learning has been
used, which considers the problem as a process of sequential
decision-making and learns model parameters through
maximizing the rewards accumulated from all decisions [6].
MDPRank is a ranking model based on a Markov decision
process (MDP). It treats documents as states and ranks the
position of documents at each iteration. However, the
current MDPRank is imperfect if we apply it to our as-
signment recommendation system directly. It is obvious that
a student’s performance in an assignment not only depends
on the questions, such as the marks for each question, the
types of question, and the difficulty of each question, but also
depends on their current knowledge, especially for those
questions with similar knowledge points. Other researches
[7, 8] are close to our recommend target but both of them are
based on study cognition and semantic content of questions,
which is more complex than our situations

In this article, we illustrate our motivation in Figure 1,
which shows the relations between questions from different
assignments. Our intuition is that the ranking is influenced
by two dimensions: how questions have been answered in
the same assignment and how questions were answered in
previous assignments.

Based on the above intuition, we propose a knowledge-
fusion ranking system using an attention network, KFRank,
which can improve the reliability and accuracy of ranking
using the relations between knowledge points. Compared
with the state-of-the-art learning-to-rank (LTR) and rein-
forcement-learning methods, our KFRank method has the
following advantages:

(i) KFRank considers the ranking problem as having
multilevel dimensions and generates effective cog-
nitive features for learning models.

(ii) KFRank utilizes knowledge points and integrates
them during training. We build a cluster of ques-
tions using the knowledge points and generate an
attention network to pretrain the terms in ques-
tions. )ese are represented in vectors of questions
in the classification phase.

(iii) KFRank is based on an MDP but rebuilds the en-
vironment by considering multiple factors: ques-
tions in the current assignment and results from
previous similar assignments.

)e rest of the paper is organized as follows: first, we
formulate the problem and introduce the concepts used in
the assignment ranking problem in Section 2. Section 3 gives
the architecture of KFRank and proposes the attention
network for training. Next, in Section 4, we describe our
experiments with real-life datasets and compare the per-
formance of the proposed model with other methods. Re-
lated work is discussed in Section 5, and Section 6 concludes
the work.

2. Preliminaries

In this section, we first formally formulate the assignment
ranking problem and then briefly introduce the LTR and
reinforcement-learning methods for solving this problem.

2.1. Problem Definition

Definition 1. An assignment ω � (Q, p, t, λ), where
Q � q1, q2, . . . , q|q|􏽮 􏽯 is a set of questions, p is a unique
student, t is the assignment time, and λ is the score for q.

Definition 2. )e knowledge points of a question O are a set
of knowledge points oq, which belong to question q.

Definition 3. Our assignment ranking problem is to rank
questions in an assignment by predicting the performance of
each student based on the difficulty of the questions.
Questions higher in the list are relatively easier for a par-
ticular student than other questions.

2.2. Ranking Using Supervised Learning. LTR is a sorting
method based on supervised learning. )e user-item scoring
matrix is produced by a recommendation algorithm after
learning from a training set. Here, different sorting tech-
niques, such as pointwise [9], pairwise [10], and listwise [11],
can be used to obtain a sorting model. In the test phase, the
system generates an ordered list of items for target users
using the trained model.

LTR can be online or offline. In offline approaches, the
training set is produced by human assessors, which is time-
consuming and expensive. In contrast, an online LTR system
collects data when users interact with the system, such as by
clicking, moving a mouse, and entering a query string.
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2.3. Ranking Using Reinforcement Learning. Reinforcement
learning is a branch of artificial intelligence. It is good at
controlling an agent who can act autonomously in a specific
environment and continuously improve their behavior. Suit-
able problems for reinforcement learning involve learning how
to do tasks and how to map the environment into actions that
maximize the rewards. In reinforcement learning, the learner is
a decision-making agent who is not told what to do. Instead,
they attempt a task repeatedly to find the behavior that gives the
greatest reward. By giving each question a reward, rein-
forcement learning can learn how to rank them in an as-
signment as a closed-loop control problem.

3. The Kfrank Model

)ree aspects of the KFRank model are presented in this
section: (1) an MDP for ranking, (2) a knowledge-fusion
model for updating the environment, and (3) the archi-
tecture and algorithm (Algorithm 1) of KFRank.

3.1. Ranking Using an MDP. Analyzing study performance
can be formalized as an MDP, in which the construction of a
list of ranked questions can be considered as a sequential
decision-making process in which each time step corre-
sponds to selecting a question for a corresponding position.
We propose a tuple 〈S, A, T,R, π,L, χ〉 to illustrate
KFRank by states, actions, transition, reward, policy, history,
and rebuilder, which are defined as follows.

3.1.1. States. S is a set of states that represent the envi-
ronment of the current assignments. In ranking, the agent
should know the current positions as well as the remaining
questions. )us, state St for step t is [t, Xt], where in our
model X is initially treated as a given assignment ω, and Xt

are the questions still to be ranked Qt.

3.1.2. Actions. A are a discrete set of actions that an agent
can take in which available actions can depend on the state S,
denoted as A(st). At step t, at ∈ A(st) is used to calculate the
value of each q in ω and to select a question qm(at) for the
ranking position t + 1, where m(at) is the index of the
question selected by action at.

3.1.3. Transition. T(S, A) is a function that maps state St and
action At to a new state St+1 as S × A⟶ S. At step t, action
at selects qm(at) and removes it from Qt as follows:

st+1 � T st, at( 􏼁 � t + 1, Qt\ qm at( 􏼁􏼂 􏼃. (1)

3.1.4. Reward. )e state value function V: S⟶R is a
scalar evaluation, estimating the quality of the entire list of
ranked questions (an assignment) based on the input state S.
Here, we define the value function as DCG:

RDCG st,at( ) �

2ym at( ) − 1, if t � 0,

2ym at( ) − 1
log2(t + 1)

, if t � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where ym(at) is a relevance label for the current selected
question qm(at). In our model, we calculate ym(at)

according to a student’s performance and the difficulty of a
question. )e difficulty θ of q is defined as

q(θ) �
􏽐

N
k�1 q(r � 0)

􏽐
N
k�1 q(r � 1) + 􏽐

N
k�1 q(r � 0)

, (3)

where r � 0 means the result is wrong and r � 1 means the
result is right. )us, ym(at) is defined as

ym at( 􏼁 � V(q(r)) × q(θ). (4)

3.1.5. Policy. π is a function that takes a state as input and
outputs a distribution over all possible actions a ∈ A(s).
KFRank calculates the probability of selecting each question
based on its current rank:

π at|st; w( 􏼁 �
exp w

T
qm at( 􏼁􏽮 􏽯

􏽐a∈A st( )exp w
T
qm at( 􏼁􏽮 􏽯

, (5)

where w ∈ RK are the model parameters, whose dimension
is the same as that of the ranking feature.

In our case, the policy is an agent’s strategy to rank the
assignment by predicting the study results and measure the
rewards by nDCG. Obviously, some policies are better than
others, and there are multiple ways to assess them.

Current state effect

Past behavior effect

Topic

Historical records Last assignment
Previous assignment Target assignment

Time

Figure 1: Motivation and intuition of our solution. For a student, the right-hand box is the target assignment and the dashed circles are
previously completed assignments. )e geometric forms inside each period are the knowledge points in each question.
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3.1.6. History. L is a set of historical assignment results for a
group of students. Here, L � l

q
p􏽮 􏽯, where l is a previous

result, q is a question, and p is a student.
L is designed as an information retrieval system and

contains student IDs, questions, knowledge points, results,
and operating time. Several metrics related to information
retrieval can be used to compare the similarity of given
questions and archived questions as follows:

D(L, q,M, k) � M oqi∈L, oq, k􏼐 􏼑, (6)

where q is a question in ω, M is an information retrieval
search function, and k is the number of output results.

3.1.7. Rebuilder. χ is a module that updates current states s

to 􏽢st withD as input. We extract a student’s performance on
special knowledge points o fromL and predict their current
ability using a recurrent neural network.

3.2. Basic Study State. We calculate the effective features for
ranking in terms of the relation between a student’s
knowledge cognitive and the question. In this article, we first
estimate the difficulty of each question using a correctness
ratio. )en, for each student, their knowledge cognitive is
measured as their average score for all completed assignments
based on knowledge points. Here, a student’s knowledge
cognitive is dynamic and updated during the study process.
)us, if a student does very well on an assignment, all the
related cognitive levels increase rapidly. On the other hand,
the difficulty of a question is fixed or not easy to change,
because it depends on the performance of all students.

Based on the student’s knowledge cognitive and the
difficulty of the questions, we utilize several similarity
functions to construct the representation of the student’s
states for ranking according to the traditional learning-to-
rank method, including Euclidean distance, Pearson’s
similarity, Manhattan distance, cosine similarity, and so on.

As shown in Figures 2 and 3, one question can contain
several knowledge points and one knowledge point may
have many related questions. )us, for a given question with
several knowledge points, we first calculate the state for each
knowledge point and then merge all the related states.
According to the relationship of knowledge points in the
question, we can obtain many basic triples in the knowledge
graph. We will introduce how to build a reasonable rep-
resentation of knowledge points in Section 3.3.

3.3. Knowledge Representation with TransR. Since the con-
tent of math questions can vary considerably, we use
knowledge points to illustrate the relations between ques-
tions, as Figure 3 shows. From the knowledge points and the
relations between them, which are manually marked, we can
construct the triples in the knowledge graphs. In this project,
the relations between knowledge points are classed as
contains, belongs, and equals. )e following is an example.

In triangle A, angle B is equal to 90° and angle B is a right
angle.

Here, triangle is a knowledge point, the relation between
A and B is contains, the relation between B and A is belongs,
and the relation between right angle and 90° is equals. A
triple is defined as (h, r, t), where h, t represent the em-
bedding of knowledge points and r is the set of relations.
From the knowledge graph, we can obtain the vectors of
knowledge points using TransR [12].

In TransR, the score function is defined as

fr(h, t) � hr + r − tr

����
����
2
2, (7)

and the model convergence is based on minimizing

L � 􏽘
(h,r,t)∈S

􏽘

h′,r,t′( )∈S′
max 0, fr(h, t) + c − fr h′, t′( 􏼁( 􏼁,

(8)

where c is the margin, S is the set of correct triples, and S′ is
the set of incorrect triples.

3.4. Attention-Based Knowledge-FusionModel. To tackle the
various knowledge points, we design an attention-based
model using knowledge fusion. As Figure 4 shows, Q is the
representation of a student’s current knowledge, as noted in
Section 3.2, and k is the embedding of concepts trained from
TransR. In the triple (query, key, value) in the attention
mechanism, we set Q as k, the knowledge point as q, and the
reward corresponding to the question as v. )e model is
trained in the same way as the encoder part in the trans-
former (Figure 4), the vectors of multiple knowledge points
were incorporated into the basic study state with the way of
attention. )e output is the latest performance. It is
equivalent to integrating the information of different
knowledge points into the original state and getting a new
vector to represent the current state. R in the figure represent
the student’s current knowledge state for each question. )e
status update process is shown in Algorithm 2.

We show the study state vectors before and after the
attention model in Figure 5. We select ten different
knowledge points and related study states and then use the
attention model to pretrain input vectors. )en, we use
t-SNE to show the latent space representations of two states.
Note that the study state after attention training is simple
and is closely surrounded by knowledge points with the
same color.

3.5. Overview of KFRank. Figures 6 and 7 illustrate the
construction of the question ranking. For each question in
an assignment, first, we extract related performance records.
In each episode, the environment is updated with the current
status from the knowledge-fusion model. Based on the
policy and value function, the agent chooses the optimal
action that gives the greatest long-term return. After taking
action, the environment is updated.

)e sorting construct for a given training document
can be formalized as follows. A student’s assignment is a
query ω, which is a set of questions Q with length M. )e
initial state is s0 � [0, Q]. At each step t � 0, . . . , M − 1, the
agent chooses the optimal action at to select qm(qt) from
the set of questions Q as the rank t (lines 7 and 8 in
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Algorithm 1). )e action is removed from Qt, as in
equation (1) (lines 9 and 10 in Algorithm 1). We calculate
ym(at) using equation (3) and calculate the long-term
return reward. )e process is repeated until all of the M

questions have been selected.
We propose to learn the parameters w in KFRank using a

policy-gradient algorithm based on reinforcement learning
[13]. )e goal of this algorithm is to maximize the long-term
return Gt:

Gt � 􏽘
M−t

k�1
c

k− 1
rt+k. (9)

In the algorithm, the gradient ΔwJ(w) is calculated as

ΔwJ(w) � c
t
Gt∇wlog π at|st; w( 􏼁. (10)

At each iteration, an episode is sampled with the current
policy. At each step t, the parameters w are adjusted

Question:
Read the following problem-solving process:

Solve the equation | 2X | = 5.
Solution: when 2x ≥ 0, the original equation can be reduced to an unary equation 
2x = 5, and the solution is x = 2.5; when 2X <0, the original equation can be reduced
to a unary equation –2x = 5, and the solution is x = –2.5.

Follow the solution above and solve equation 3 | X – 1 | –2 = 10.0.

Concept: absolute value, 
unary equation

Figure 2: Typical question. In this question, there are two separate knowledge points: an unary equation and an absolute value. If a student
answers the question right, both cognitive levels would be increased.

q1

q2 q3

q4

(a)

o2 o1 o1 o3

o1

o4 o3

(b)

Figure 3: Relations between questions and knowledge points. (a) Each circle represents a question. (b) )e correlations between questions.
Knowledge points with the same color are from the same question; for example, o1 and o2 are two different knowledge points in q2, whereas
q1 connects to q2 with knowledge point o1.

Encoder layer

R1

K1 K2

R3

K3
Ki

KG

Encoder
layer

TransR

Q1

Self-attention

Add & normalize

R2

Qm

Encoder layer

KjQn

Updated study state

Basic study state

Attention
network

Figure 4: Updating state using knowledge fusion. Q is basic study state, K is the representation of knowledge points, which is calculated
from knowledge graph with TransR. R is the representation of output status.
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according to ∇wlog π(at|st; w), which maximizes the in-
crease in the probability of repeating the action at for state st.
In this way, Gt moves the parameters in the direction that
gives the greatest return for the action.

4. Performance Evaluation

4.1. Datasets. We conducted experiments to validate the
performance of our method using a real-life dataset

(a) (b)

Figure 5: Visualization of state vectors. (a) Before attention model. (b) After attention model.
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Figure 6: )e agent-environment interaction in KFRank.
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learning ranking.
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(Table 1), from two applications in pad: teacher client and
student client. )e data spanned the period from September
2017 to June 2018. )ere were nearly 70 million records for
40,000 students. Based on the student’s historical activity
and correctness rate, we selected a record of 300 students
with relatively high quality of records. )en, we apportion
the data into training and test sets, with a 70-30 split. After
that, excellent teachers create the mathematics knowledge
graph of middle school, which contains more than 700 nodes
and 2000 relationship edges. Finally, we use TransR ap-
proach to embed knowledge topic for learning.

To evaluate the effectiveness of the ranking, we split the
students into three groups: merit students, average students,
and weak students. In the dataset, almost 72 percent of the
questions covered three or more knowledge points and less
than 14 percent of the questions had only one knowledge
point. )e distributions of rewards for the three groups of
students are shown in Figure 8.

4.2. Evaluation Criteria. We first calculate the score of each
question for ranking by the performance result of students
and difficulty of question. For example, for a given question,
only 60 percent of students could choose the right answer,
the difficulty of this question is 0.4. )en, we also give the
correct and wrong answer with 5 and 1 score. Finally,
students will get 2 points if they do the right questions, and
only 0.4 if they make a mistake. For each assignment,
according to the student’s answer to each question, the rank
score is calculated as the true value.

We use nDCG@k to measure the performance. To get
nDCG@k, we first calculate DCG@k:

DCG(f) � 􏽘
k

r�1
vr

1
log(1 + r)

, (11)

where r is the rank of items in the recommendation list, k is
the length of the recommendation list, f is the ranking
function or algorithm, vr is the value of the rth item, and
1/log(1 + r) is the discount. iDCG is an ideal discounted
cumulative gain, iDCG@k is also needed and calculated in a
similar way. In iDCG@k, the questions in the recommen-
dation list are ranked by their original values instead of by
the ranking algorithm.

4.3. Experimental Results. Table 2 compares the perfor-
mance of ourmodel with other methods using nDCG@5 and
nDCG@10.)e higher the score, the better the performance.
Of the LTR methods, CoordAscent, LambdaMART, and
ListNet perform relatively well and better than the original
reinforcement-learning method, MDPRank. KFRank with
updated environments has the best nDCG value for nearly
all groups of students.

From the results, it can be seen that the different
methods have similar trends for performance for the three
groups. For example, the nDCG scores for weak students are
always higher than those for merit students, which means it
is easier to make predictions for weak students. Students
whose performance varies depending on the difficulty of the
questions will have a better score.

)en, we ran the experiment again and evaluated the
stability of our method for various top k results. As shown in
Figure 9, the performance of KFRank is generally better and

Input: assignment records ω � (Q, p, t, λ)N
n�1, learning rate η, discount factor c, and reward function R

Output: w

(1) Initialize w with random values
(2) s⟵ updated state in an episode (ω, G), Algorithm 2
(3) Δw � 0
(4) for (X, Y) ∈ D do
(5) (s0, a0, r1, . . . , sM−1, aM−1, rM)⟵ sample ranking in an episode
(6) for t � 0 to M − 1 do
(7) Sample an action at ∈ A(st) ∼ π(at | st; w)

(8) rt+1⟵R(st, at)

(9) Append (st, at, rt+1) at the end of E

(10) State transition st+1⟵ [t + 1, Qt\ qm(qt)]

(11) end for
(12) for t � 0 to M − 1 do
(13) Gt⟵􏽐

M−t
k�1 ck− 1rt+k

(14) Δw⟵Δw + ctGt∇wlog π(at | st; w)

(15) end for
(16) w⟵ w + ηΔw
(17) end for

ALGORITHM 1: KFRank learning.

Computational Intelligence and Neuroscience 7



more stable than Random Forest and LambdaMART in
traditional learning-to-rank methods. From the results of
KFRank, KFRank is superior in the performance of average
and weak students, indicating that KFRank has greater help
for students with poor knowledge.

5. Related Work

Related work can be classified into two categories, those
based on LTR methods and those based on reinforcement
learning.

Table 1: Summary of the dataset.

Metric Merit Average Weak
Number of students 100 100 100
Number of quizzes 16,251 21,684 24,418
Number of knowledge points 354 440 401
Number of records 65,546 68,011 73,232
Ratio correct 0.92 0.61 0.21

Input: state s ∈ ω � (Q, p, t, λ), knowledge graph G

Output: updated state 􏽢s

(1) for qm ∈ Q do
(2) k⟵G //get embedding of knowledge points from G

(3) q⟵ s, v⟵ λ
(4) att � softmax(q∗k/

��
dk

􏽰
)

(5) 􏽢s � dense (att∗v)

(6) end for

ALGORITHM 2: State updating in an episode.

Table 2: nDCG of ranking methods.

Method
Merit student Average student Weak student

@5 @10 @5 @10 @5 @10
MART [14] 0.701 0.751 0.309 0.319 0.272 0.384
RankNet [15] 0.507 0.547 0.298 0.302 0.433 0.509
RankBoost [16] 0.373 0.318 0.208 0.256 0.369 0.403
AdaRank [17] 0.288 0.362 0.173 0.228 0.196 0.391
CoordAscent [18] 0.466 0.681 0.241 0.293 0.494 0.539
LambdaRank [19] 0.156 0.155 0.235 0.213 0.429 0.495
LambdaMART [20] 0.646 0.749 0.279 0.392 0.515 0.569
ListNET [11] 0.433 0.626 0.191 0.240 0.470 0.464
RandForest [21] 0.731 0.781 0.383 0.366 0.298 0.431
MDPRank [6] 0.344 0.441 0.413 0.541 0.568 0.642
KFRank 0.425 0.444 0.599 0.565 0.636 0.686
Bold values represent the best performance of nDCG@k.

0.5

0.4

0.3

0.2

0.1

0.0
1 2 3 4 5

Reward

Pe
rc

en
ta

ge

(a)

0.5

0.4

0.3

0.2

0.1

0.0
1 2 3 4 5

Reward

Pe
rc

en
ta

ge

0.6

(b)

0.4

0.2

0.0
1 2 3 4 5

Reward

Pe
rc

en
ta

ge 0.6

0.8

(c)

Figure 8: Distribution of rewards for three groups of students. (a) Merit student. (b) Average student. (c) Weak student.
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5.1. Making Recommendations with LTR. Karatzoglou et al.
[3] explained how the key ideas of different LTR methods
can be applied to specific collaborative filtering methods.
Sun et al. [4] applied the LTR method RankSVM to
generate a list of recommended items for users. Yao et al.
[5] applied the LTR method for item recommendation
and integrated social information between users in the
training of the Listwise model to improve the quality of a
sorted list of items. Canuto et al. [22] applied the LTR
method to learn automatically how to sort labels. )ey
compared the performance of eight different methods of
recommending labels. Ifada et al. [23] developed a novel
LTR method Go-Rank for a label-based project recom-
mendation system. )ey directly optimized the graded
average precision, resulting in an optimized list of rec-
ommended items. Huang et al. [24] reviewed recent re-
search into recommendation algorithms based on LTR.
)ey generalized, compared, and analyzed problem def-
initions, key technologies, utility evaluations, and prog-
ress. Finally, they discussed and forecast the trends for
recommendation algorithms based on LTR.

5.2. Making Recommendations with Advanced Reinforcement
Learning. Shani et al. [25] proposed an MDP-based col-
laborative filtering model, which uses a finite window for
history, instead of an unbounded one, to define the
current state. It can be regarded as approximating a partial
observable MDP (POMDP). Since POMDP has high
computational and representational complexity, various
strategies have been suggested for simplifying it, such as
policy-based optimization [26], value function approxi-
mation [27], and stochastic sampling [28]. Regarding
sequential decision problems, Sunehag et al. [29] designed
a reinforcement-learning agent using high-dimensional
combinatorial slate-action spaces and achieved remark-
able results. As ranking is a key issue in practical rec-
ommendation problems, any improvements in ranking
contribute significantly to reinforcement recommenda-
tion systems. Zhang et al. [30] used a log-based document

reranking modeled as a POMDP. Wei et al. [6] proposed a
novel LTR model based on a MDP, referred to as
MDPRank, which directly optimizes a ranking using a
MDP. FAIR-PG-Rank recommends items via a policy-
gradient approach which could satisfy fairness of exposure
constraints with respect to items [31]. A similar idea in the
article is generating unified term impact (UTI) during the
indexing time and combining into a hybrid model to
improve the accuracy [32]. Since the relationship between
study performance and exam results is much complicated,
article [33] finds the correspondence of input values and
predicts targets which is not a one-to-one relation, treats
the classification task as a fuzzy geometrical problem, and
proposes a fuzzy similarity approach to solve the problem
[34, 35].

6. Conclusions

Assignment recommendation is an essential and trick task in
online study research. In this paper, we investigated how to
predict the performance of students by using assignment
ranking mechanisms. Based on traditional learning-to-rank
models, we proposed a knowledge-fusion model with an
attention network named KFRank, which employs two novel
features compared to previous methods: (1) an attention
network for capturing multiple knowledge factors in human
behavior and (2) a reinforcement-learning module for
ranking questions by their predictable reward. Our model
could capture both current study status and previous study
performance of similar math topics. Extensive experiments
on a real-world dataset with three different levels of students
showed that KFRank significantly outperforms other
methods in most cases.

In the future, there are still some directions for further
studies. First, besides the historical log, we would like to
measure the study performance in more aspects, for ex-
ample, by studying cognitive model. Second, for the policy
strategy, some network optimization [36] and fuzzy theories
could be introduced in our model [34]. Finally, as our
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Figure 9: Comparison of LambdaMART, Random Forest, and KFRank. (a) Merit student. (b) Average student. (c) Weak student.
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KFRank is a general framework, we will test its performance
on other disciplines (e.g., click-through rate prediction) and,
meanwhile, on the similar applications in other domains,
such as the user behavior of customers in e-commerce.

Data Availability

)e homework record data used to support the findings of
this study were supplied by the Xuehai Education Tech-
nology Co., Ltd., in China. Since data would reveal personal
activities and the size of data is huge, the data cannot be
made freely available. We are glad to supply part of the data
after removing the personal information and unique IDs for
your research. Requests for access to these data and project
code should be made to Canghong Jin with e-mail jinch@
zucc.edu.cn.
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I. Palamara, and D. Pellicanò, “Fuzzy geometrical techniques
for characterizing defects in ultrasonic non-destructive
evaluation,” in Ultrasonic Nondestructive Evaluation Systems,
pp. 259–269, Springer, Berlin, Germany, 2015.

[36] S. Calcagno, F. La Foresta, and M. Versaci, “Independent
component analysis and discrete wavelet transform for arti-
fact removal in biomedical signal processing,” American
Journal of Applied Sciences, vol. 11, pp. 57–68, 2014.

Computational Intelligence and Neuroscience 11

http://arxiv.org/abs/1512.01124

