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Chemical event evolutionary graph (CEEG) is an effective tool to perform safety analysis, early warning, and emergency disposal
for chemical accidents. However, it is a complicated work to find causality among events in a CEEG.-is paper presents a method
to accurately extract event causality by using a neural network and structural analysis. First, we identify the events and their
component elements from fault trees by natural language processing technology. -en, causality in accident events is divided into
explicit causality and implicit causality. Explicit causality is obtained by analyzing the hierarchical structure relations of event
nodes and the semantics of component logic gates in fault trees. By integrating internal structural features of events and semantic
features of event sentences, we extract implicit causality by utilizing a bidirectional gated recurrent unit (BiGRU) neural network.
An algorithm, named CEFTAR, is presented to extract causality for safety events in chemical accidents from fault trees and
accident reports. Compared with the existing methods, experimental results show that our method has a higher accuracy and
recall rate in extracting causality.

1. Introduction

In recent years, the chemical industry has made tremendous
contributions to economic and social development. How-
ever, a series of safety accidents have occurred frequently
along with the enormous economic benefits brought by
chemical enterprises. For example, seventy-eight people died
in the explosion of Yancheng Chemical Industrial Park on
March 21, 2019. After the accident, sixteen chemical en-
terprises in this industrial park were closed [1]. -e oc-
currence of chemical accidents has brought enormous
economic losses to enterprises and individuals, made ir-
reparable damage to the environment, and even caused
heavy casualties [2]. -erefore, accident prevention and
emergency treatment have become the focus of daily pro-
duction in the chemical industry.

On the ascending scale of production in the chemical
industry and abundance of chemical products, the pro-
duction process is becoming more and more complex, and
the risk factors in all aspects of production are also in-
creasing [3]. Controlling and early warning the unsafe

factors such as high temperature, high pressure, flamma-
bility, explosion, and poisoning in chemical production can
effectively prevent future chemical accidents [4]. Versaci
presented a fuzzy method to achieve the detection/classifi-
cation of defects. It considered classes of defects to a certain
depth characterized by typical ranges of fuzzy similarities
[5]. -e literature [6] covers the practical implementation of
ultrasonic NDT techniques in an industrial environment,
discussing several issues that may emerge and proposing
strategies for addressing them successfully. Many of the
technologies it provides can be applied to the detection of
hazardous chemical production information.

By analyzing the causes of accidents, excavating the
potential factors, evolution rules, and protective measures,
we can decrease accident rates, reduce accident losses, and
improve the safety management level and emergency dis-
posal ability of chemical enterprises. Fault tree analysis is one
of the most frequently used methods in safety analysis,
prevention, and emergency disposal [7]. Fault trees can
describe the causes of accidents and their temporal logic
relationship [8]. So, we can find out the key events in
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chemical accidents and predict potential hazards in chemical
production from the existing fault trees.

However, only the evolution process of an accident can
be obtained from fault trees. Time, location, and environ-
mental state of these accidents were not described for the
concise structure of fault trees.-us, it may result in a lack of
important information while analyzing the cause of an ac-
cident. Since most of the fault trees were constructed based
on expert’s accident analysis experience, there may be se-
mantic ambiguity, incomplete information, mixed infor-
mation, and information hybridity in the fault trees.
Meanwhile, for the complex fault trees, we may face high
complexity and incomplete evolutionary information while
analyzing the event evolution mechanism. It is also very
difficult to accurately locate or match event evolution
sequences.

To compensate for the abovementioned deficiencies of
the fault trees in safety analysis, early warning, and emer-
gency disposal, event evolutionary graph (EEG) is intro-
duced to model the event evolution process in chemical
accidents in this paper. EEG is a type of graphic information
carrier developed on the basis of knowledge graphs [9].
Illustrated as a digraph, it describes the causal relationship
and temporal dependence in the event chains of an accident.
An EEG which described the evolution process of chemical
accidents is called chemical event evolutionary graph
(CEEG). By traversing the CEEG, we can easily obtain the
evolution sequences of events in chemical accidents. We can
also predict the potential events in an accident by means of
evaluating the event causality and transfer probability.

A scenario about the event of the “volatile explosion of
oil and gas” is illustrated by the CEEG in Figure 1.-e first
node that is “valve leakage” says that the event starts from
valve leakage of storage tanks. -en “oil and gas evapo-
rate” and “explosive gas converge” occur sequentially.
When the concentration of explosive gas exceeds a certain
amount, it will cause an explosion. Explosion requires
some triggering conditions. So, we can see that the node
“explosive gas converge” connects with three succeeding
nodes. “Explosion with fire,” “explosion with thunder,”
and “explosion with static electricity” represent the ex-
plosion caused by the fire, thunder, and static electricity,
respectively. “Explosion shock” and “fire breaking” are
two main destruction scenarios. -us, the nodes “ex-
plosion shock” and “fire breaking” are linked with three
types of explosion nodes separately. Since the events in an
accident are organized by their temporal or causal rela-
tionships, we can easily achieve the event traceability and
early warning with a CEEG.

It is a complicated and challenging task to build the
CEEG. Event identification, event relation extraction, and
event entity link are the main tasks in the process of con-
structing the EEG. In this study, we build CEEG based on the
existing fault trees and accident reports. Most events in the
chemical accidents are with the causal relationship, and the
causality is also the main link relation between safety events
in the CEEG. So, we concern about how to identify events
and extract causal relationships between these events. -e
main contributions of this study are as follows:

(1) We propose an effective method to extract event
elements by combining fault tree with accident re-
ports. -e combination of fault tree and accident
report greatly reduces the complexity of event ex-
traction based on NLP.

(2) We obtain explicit causality by analyzing hierarchical
structure relations of event nodes and logic gates in
fault trees. Implicit causality is generated based on
BiGRU neural network by feeding internal structural
features of events and semantic features of event
sentences. -e accuracy and efficiency of extracting
causality are improved by dividing causality into
explicit causality and implicit causality.

(3) We have conducted several rounds of experiments to
verify the effectiveness of the proposed method. In
view of accuracy and recall rate, experimental results
show that our model and method are superior to the
state-of-the-art methods in extracting causality.

-e rest of this paper is structured as follows. In Section
2, we introduce the formal definitions of fault tree and EEG.
Section 3 presents a method to achieve event identification.
How to extract causality between safety events is elaborated
in Section 4. In Section 5, experiments are presented to show
the effectiveness of our method. We conclude our work in
Section 6.

2. Related Definitions

-e main purpose of this paper is to provide an effective
method of finding potential events and their causality. After
getting events and their causality, we can build CEEG and
then apply accident analysis, reasoning, and early warning.
To accurately and automatically acquire the knowledge in
building CEEG, we proposed a method to extract the events
and causality from fault trees and accident reports. We will
present the definitions of fault tree and EEG so as to better
illustrate our method in the following sections.

Fault trees are frequently used to analyze the risks related
to safety and they can describe the temporal logic of the
events involved in a safety accident [10]. -ere are two types
of nodes: events and gates in a fault tree. Events in a fault tree
are used to represent the main events leading to accidents
and they can be classified into three types: basic events,
intermediate events, and top events. Gates represent how
events propagate through the system while the edges were
employed to express the occurring order relations of these
events [11].

-e fault tree in Figure 2 described a scenario of an “oil
tank explosion.” We can see that the basic events “hollow
appeared in plate of the tank” and “crack appeared in plate of
the tank” are connected with the OR gate O1. It means that
the event “deformation or break occurred in the tank” will be
triggered if one of the above basic events has happened. For
the AND gate A1, the events “20 Tons diesel oil filled in the
tank,” “deformation or break occurred in the tank,” and
“storage tank overdue maintenance” are its input events, and
“diesel leakage from the tank” is its output event. So, only all
the input events appear simultaneously, and the output
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event can occur. Similarly, we can deduce the sequence of
events for “fire sparks occur,” “ignition source appear,” and
“oil tank explosion.”

2.1.Definition1 (FaultTree). A fault tree is a 4-tuple FT� (V,
G, E, v0), consisting of the following components:

(1) V is the set of nodes in FT; each node v in V is used to
represent an event

(2) G is the set of logic gates. ∀g ∈G, T (g) is a function
that describes the type of each gate

(3) E is the set of arcs in FT, E⊆V ×G∪G× V

(4) v0 is the root node of FT

-ere are three types of nodes in fault trees: root node,
leaf nodes, and intermediate nodes. Root node v0 repre-
sented the top event. VL � {v ∈V∧ (∄g ∈G, s.t. (v, g) ∈E)};
∀v ∈VL, v is a leaf node, and it is used to denote a basic event.
VM � {v ∈V∧ (∃g ∈G, s.t. (v, g) ∈E)}; ∀v ∈VM, v is an in-
termediate node, and it is used to denote an intermediate
event.

To easily obtain the input events and output event for a
logic gate, we present two functions: (1) I: G⟶Ψ (E)

describes the input event of each gate; (2) O :G⟶Γ (E)
describes the output event of each gate.

From the example in Figure 1, we can see that an event
evolutionary graph is a digraph. Nodes in event evolutionary
graph are used to denote the events, and the arcs are adopted
to represent the dependencies among these events. Now, we
give the definition of EEG.

2.2. Definition 2 (Event Evolutionary Graph). Event evolu-
tionary graph (EEG)� (V, E). Here, V is a set of nodes;
∀vi ∈V, vi is an event, and it is represented by abstract,
generalized, and semantic complete verb phrase. E is a set of
arcs; ∀eij ∈E, it denotes that there exists dependency between
the event vi and vj.

-ere are two kinds of dependencies between the events:
sequential relation and causality. -e sequential relation
between two events refers to their partial temporal order-
ings. Causality is the relation between one event (the cause)
and a second event (the effect), where the second event is
understood as a consequence of the first [9]. In this study, we
used the symbol “⟶” to represent causality. For two events
ei and ej, ei⟶ ej means that ei is the cause of ej. It is obvious
that the causal relation between events must be sequential.
To find causality between two events is a more difficult and
challenging work.

3. Event Identification

Event identification, also called event recognition or event
extraction, is the process to find the component elements
(factors) of an event from various information sources. In a
recent study, Skarlatidis addressed the issue of uncertainty in
logic-based event recognition by extending the Event Cal-
culus with probabilistic reasoning [12]. Chen introduced a
word-representation model to capture meaningful semantic
regularities for words. He adopted a framework based on a
dynamic multipooling convolutional neural network
(DMCNN) to capture sentence-level clues and reserve
crucial information [13]. Feng developed a language-inde-
pendent neural network to capture both sequence and chunk
information from specific contexts and used them to train an
event detector for multiple languages without any manually
encoded features [14]. Liao proposed a new event recog-
nition method based on positive and negative weighting
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Figure 1: An event evolutionary graph under the scenario of the “volatile explosion of oil and gas.”
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proposed by constructing a trigger table [15]. Hogenboom
gave a summarization of event extraction techniques for
textual data, distinguishing between data-driven, knowl-
edge-driven, and hybrid methods, and presented a quali-
tative evaluation of these methods [16].

In this study, we will extract events and investigated their
causal relationship in chemical accidents. -e information
source of our event identification is fault trees and accident
reports. Now, we give the formal structure of the event used
in this paper.

3.1. Definition 3 (Event). An event in an accident is for-
mally defined as a 4-tuple e � {o, v, p, t}, where o, v, p, and t
are used to represent the event participants, event trigger
word, location, and timestamp of event occurrence,
respectively.

To concisely demonstrate an evolutionary process, fault
trees were normally designed with summary information of
events. We cannot find a detailed description of the in-
formation about the time, location, and environment state.
Such information is elaborated in the accident reports. So,
we can acquire these event elements by the natural language
processing technology from fault trees and accident reports.
-e extraction of event elements includes the following
work: corpus segmentation, part-of-speech tagging, se-
mantic role labeling (SRL), semantic dependency parsing
(SDP), and dependency parsing (DP) [17,18]. For each node
in a fault tree, we can obtain event elements by the following
steps:

(1) Participant⟵ SRL (fault tree node)
(2) Trigger-word⟵ SRL (fault tree node)
(3) Place⟵ SDP (event sentences) and (Place.se-

mantic-dependency (Trigger-word)� LOC)
(4) Time⟵ SDP (event sentences) and (Time.-

semantic-dependency (Trigger-word)�Time)
(5) Subject⟵DP (event sentences) and (Sub-

ject.dependency-parsing (Trigger-word)� SBV)
(6) Object⟵DP(event sentences) and (Object.de-

pendency-parsing (Trigger-word)�VOB)

SRL is first used to identify the trigger words and par-
ticipants of events in a fault tree. Timestamp and position for
an event can be obtained by SDP technology from trigger
words. -e whole information about the event will be
generated after the “subject-predicate-object” structure was
parsed by DP. -e aforementioned processing functions
(SRL, SDP, and DP) were normally encapsulated as APP
services. Here, the open-sourced natural language pro-
cessing system developed in the Research Center for Social
Computing and Information Retrieval of Harbin Institute of
Technology was invoked in our study to parse event sen-
tences [19].

In Figure 2, there is a node labeling “jet fuel spilled out”
in a fault tree. -e event sentence of this node in the cor-
responding accident report is “At 11 o’clock, jet fuel in
pipeline spilled out.”-e processing results of SDP, SRL, and
DP are shown in (a), (b), and (c) of Figure 3. We can see that

“jet fuel” is the event participant while “spilled out” is an
event trigger word.

SDP can identify semantic roles and their relationships
in event sentences. -e main relations between different
roles include the agent relationship, the patient relationship,
and the experiencer relationship. -e result of SDP in
Figure 3(b) shows that the participant “jet fuel” and trigger
word “spilled out” are with the experiencer relationship. “In
pipeline” and “at 11 o’clock” are of semantic dependence
with a trigger word. -e roles of “in pipeline” and “at 11
o’clock” were position and time, respectively. -erefore, the
participant in this sentence is “jet fuel,” the trigger word is
“spilled out,” the occurrence time is “at 11 o’clock,” and the
place of occurrence is “in pipeline.”-e relations of different
words in the sentence were illustrated in Figure 3(c) by DP.
So far, we can get all event elements of the sentence and the
4-tuple e� {jet fuel, spilled out, in pipeline, at 11 o’clock}.

4. Extraction of Event Causality

A fault tree is a kind of logical causality digraph including
the symbols of events, logic gates, and transitions. It can
show the variety of system states by the logical evolution of
basic events. Event causality in a fault tree can be divided
into two categories: explicit causality and implicit causality.

4.1. Extraction of Explicit Causality. Explicit causality can be
extracted by analyzing the hierarchical structure relations of
event nodes and the semantics of component logic gates.
-ere are various types of logic gates in fault trees. Normally,
the following three types of logic gates, namely, AND gate,
OR gate, and VOT (k/N) gate, are the fundamental gates. By
the combination of the above logic gates, we can get the
semantic logic of all the other gates used in fault tree [11].

Let F be a fault tree and let BE represent the set of basic
events in F. -e semantics of F is a function πF: Ψ (BE)×

E⟶ {0,1} where πF (S, e) indicates whether e fails given the
set S of failed BE. It is defined as follows:

(1) For e ∈BE, πF (S, e)� e ∈ S
(2) For g ∈G and T (g)�AND, let πF (S, g)� ∧

x∈I(g)πF(S, x)

(3) For g ∈G and T (g)�OR, let πF (S, g)� ∨
x∈I(g)πF(S, x)

(4) For g ∈G and T (g)�VOT (k/N), let πF (S, g)� Σ
x∈I(g)πF(S, x)≥ k

From the semantics of logic gates, we know that events in
lower-level nodes are the cause of events in upper-level
nodes. Figure 4 illustrates a basic structure in a fault tree.
Two events ei and ej were connected by the logic gate AND,
and the event em is located in the upper-level node. So, we
can get two explicit causality rules: ei⟶ em and ej⟶ em.
For a given fault tree, we can obtain the explicit causality
rules by traversing all the logic gates.

4.2. Extraction of Implicit Causality. Explicit causality can
be easily discriminated from the hierarchical structure of
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event nodes in fault trees. However, there may be some
hybrid information in the event nodes. Meanwhile, multiple
events were occasionally described in one event node. -us,
some implicit causality may be hidden in the events of fault
trees. Implicit causality should be extracted so as to build a
correct CEEG. -ere are two steps in finding implicit
causality. One is to investigate whether there is a causal
relationship between two events and the other is to deter-
mine causal direction. -e causal direction is used to de-
scribe which event is a cause and which one is the result. In
this study, every two events in the fault tree nodes were
assembled as candidate event pairs. By analyzing the internal
structure of the events and semantic features of event

sentences, we can identify the causal relationship and its
direction with the help of our causal classifier.

Liu proposed an experience-based causality learning
framework. Compared to traditional approaches, which
attempt to handle the causality problem relying on textual
clues and linguistic resources, they are the first to use ex-
perience information for causality learning [20]. Riaz fo-
cused on identifying and employing semantic classes of
nouns and verbs with a high tendency to encode cause or
noncause relations [21]. Zhao designed an abstract causality
network and a dual cause-effect transition model. It is ef-
fective for discovering high-level causality rules behind
specific causal events [22]. Zhao and Liu presented a new
Restricted Hidden Naive Bayes model to extract causality
from texts. It can cope with partial interactions among
features so as to avoid overfitting problems on the Hidden
Naive Bayes model, especially the interaction between the
connective category and the syntactic structure of sentences
[23]. A framework that combines intuitionistic fuzzy set
theory and expert elicitation was proposed to enable
quantitative analysis of temporal fault trees of dynamic
systems with uncertain data [24].

In recent years, various types of neural networks and
deep learning models have provided favorable support for
the popularization and application of machine learning. For
example, Deng proposed an improved quantum-inspired
differential evolution method to construct an optimal deep

Root 11 o’clock , In PipelineJet Fuel Spilled out 

WP

At

WP

.

SBV

ADV

HED

POB ATT ATT ATT

(a)

A0
Spilled out

TMP LOC
At 11 o’clock In pipeline Jet fuel

(b)

Root 11 o’clock , Spilled out

mPunc

At .

mPunc

In Pipeline

mRang

Jet Fuel

 
 

mPrep Desc

Time

Root

Exp
Loc

(c)

Figure 3: An example of event identification.

 

ei ej

em

Gate/AND

Figure 4: An example of a basic structure with AND gate.

Computational Intelligence and Neuroscience 5



belief network, which is further applied to propose a new
fault classification [25]. An improved ant colony optimi-
zation algorithm based on the multipopulation strategy,
coevolution mechanism, pheromone updating strategy, and
pheromone diffusion mechanism is proposed to balance the
convergence speed and solution diversity and improve
optimization performance in solving large-scale optimiza-
tion problem [26]. Similar work about improved coevolu-
tion ant colony optimization algorithm with Multistrategies
is presented in the literature [27]. Zhao extended a broad
learning system based on the semisupervised learning of
manifold regularization framework to propose a semi-
supervised broad learning system. It can achieve higher
classification accuracy for different complex data and takes
on fast operation speed and strong generalization ability
[28]. -ese methods are of great significance for us to mine
and optimize causality by using neural networks.

In this study, we present a newmethod to obtain implicit
causality by transforming the causality extraction into a
binary classification problem. Four steps including internal
structural features extraction of events, semantic features
extraction of event sentences, feature fusion, and softmax
classification were adopted to find implicit causality in a fault
tree.

As shown in Figure 5, word (term) vector is first
employed to express the lexical sequence feature of the event
sentence. -en, BiGRU neural network is used to mine the
context semantic features of the event sentence. To improve
the accuracy of context semantic, we add the attention
mechanism into the BiGRU model at the level of word and
sentence. Finally, both semantic features and internal
structure characteristics are input into softmax classifier to
determine whether there are a causal relationship and the
causal relationship direction between the given events.

4.2.1. Extraction of Internal Structure Features for Events.
Internal structure features of events refer to the relationship
characteristic of component elements in event pairs. Let
ei � {oi, vi, pi, ti} be an event, where 0≤ i<� n. E� {ei} is a set
of events. ∀ei and ej ∈E, <ei, ej> can form an event pair.-ree
internal structure features of event pairs were investigated in
this section:

(1) Appearing probability: P (ei) was employed to rep-
resent the appearing probability of ei. Pc (ei, ej) is
defined as the cooccurrence probability of ei and ej.
Furthermore, Pc (ei⟶ ei) is the cooccurrence
probability of ei and ejwith the condition that ei is the
cause while ej is the result. For the event elements, we
present a group of appearing probability. P(ei.o) is
used to express the appearing probability participant
ei.o. Similarly, P (ei.v), P (ei.p), and P (ei.t) are the
appearing probability of trigger word, location, and
timestamp of event, respectively.

(2) Pointwise mutual information: pointwise mutual
information (PMI) is usually used to calculate the
semantic similarity between two words [29]. -e
basic idea for PMI is to count the probability of two

words simultaneously appearing in the text. Nor-
mally, two words are concluded with a high corre-
lation for their higher PMI. -us, PMI of events and
their elements can be used to determine the corre-
lation degree between two events. Definition of PMI
for the event pairs and event elements can refer,
respectively, to

PMI ei, ej􏼐 􏼑 � log
P ei, ej􏼐 􏼑

P ei( 􏼁∗P ej􏼐 􏼑
, (1)

PMI ei.f, ej.f􏼐 􏼑 � log
P ei.f, ej.f􏼐 􏼑

P ei.f( 􏼁∗P ej.f􏼐 􏼑
,

f ∈ o, v, p, t􏼈 􏼉.

(2)

(3) Position relevancy between events: events con-
tained in fault tree nodes may exist in different
sentences. Two sentences are generally considered
with more dependence or causality if they are lo-
cated closely. -e distance between sentences is
inversely proportional to the degree of relationship
between the sentences. Paragraph sentences con-
taining events are numbered sequentially from zero.
Let TS be the total number of sentences in an ac-
cident report. SP (ei) is used to represent the
number of the sentence including ei. Relative po-
sition for an event pair <ei, ej>, namely, SPeij, is
assigned as SP (ei)−SP (ej). Position relevancy is
defined as PReij, PReij � 1−SPeij/TS.

We build a 19-v vector ISFeij to express the internal
structure features for event pair <ei, ej>. Here, ISFeij � (P (ei),
P (ej), P (ei.o), P (ej.o), P (ei.v), P (ej.v), P (ei.p), P (ej.p), P (ei.t),
P (ej.t), Pc (ei, ej), Pc (ei⟶ ej), Pc (ej⟶ ei), PMI (ei.o, ej.o),
PMI (ei.v, ej.v), PMI (ei.p, ej.p), PMI (ei.t, ej.t), PMI (ei, ej),
PReij).

4.2.2. Extraction Semantic Feature in Event Sentences

(1) BiGRU Neural Network. Semantic dependence of two
events can be obtained from event sentences. Semantic fea-
tures of event sentences were taken as one of the features to
identify event relations in our study.-e tool “Word2vec” was
used to train word embedding for the terms in the corpus of
chemical accidents [30]. -en, event sentences can be
expressed by the word embedding sequences. -e word
vectors were derived from the text training set of accident
reports and some Internet accident news after denoising.
Given a sentence consisting of n words, every word w is
represented by a real-valued vector, and the vector of the
sentence is represented as S� (w1, w2, . . ., wn).

GRU neural network is a popular variant of the LSTM
neural network. Compared with LSTM, GRU is with a more
succinct structure [31]. GRU has only two control gates:
update gate and reset gate.-e information dissemination in
GRU can be described as follows:
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(1) Update gate: the update gate zt (see formula (3)) is
used to control the extent to which the state infor-
mation of the previous moment is brought into the
current state. -e larger the value of the update gate
is, the more the state information of the previous
moment can be brought in:

zt � σ Wz ∗ ht−1, xt􏼂 􏼃( 􏼁. (3)

(2) Reset gate: reset gate rt (see formula (4)) is used to
control the degree of ignoring the state information
of the previous moment. -e smaller the value of
reset gates is, the more the state information of the
preceding moment is ignored:

rt � σ Wr ∗ ht−1, xt􏼂 􏼃( 􏼁. (4)

Get a new hidden state; zt and rt jointly controlled how to
obtain new hidden state ht−1from the previously hidden state
ht as follows:

􏽥ht � tanh W∗ rt ∗ ht−1, xt􏼂 􏼃( 􏼁, (5)

ht � 1 − zt( 􏼁∗ ht−1 + zt ∗ 􏽥ht. (6)

Compared with LSTM, GRU has the advantages of
simple structure, fewer parameters, and fast training speed.
It has shown a superior performance than LSTM.We use the
accident text set to train the neural network. Event sentences
in accident reports were first obtained according to the fault
tree. Vectors of these event sentences were then input to the
neural network to extract the semantic features of event
sentences.

One-way neural network propagates from front to back,
which can only contain the transmission of the previous
information. -e reverse transmission of the latter infor-
mation cannot be propagated. -e bidirectional neural
network consists of two neural networks to train sequence
forward and backward, respectively, and outputs two result
sequences containing complete context information [32].
Here, we use the element-wise sum to combine the forward
and backward pass outputs:

ht

→
� GRU

����→
wt, ht−1

���→
􏼒 􏼓, (7)

ht

⟵
� GRU

����→
wt, ht−1

⟵
􏼒 􏼓, (8)

H � ht

→
⊕ ht

⟵
. (9)

(2) Attention Mechanism. Attentive neural networks have
recently demonstrated great success in a wide range of tasks,
such as question answering, machine translations, and image
recognition. We can apply attention computation for any
two words in a sentence by introducing a self-attention
mechanism. -us, the dependence relationships of words in
sentences can be learned more precisely. Word-level at-
tention mechanism proposed by Zhou et al. [33] and sen-
tence-level attention mechanism proposed by Lin et al. [34]
for text representation have been widely concerned. In this
section, we combine the above two methods to generate
vectors for sentences.

In general, for an event pair <ep, eq>, ep and eq were
located in different sentences. Assume that there are L
sentences between the event ep and eq. -e L sentences form
a set Sepq. Given a sentence Sei in Sepq, Ti was the number of
words in sentence Sei. wit with t ∈ [1, Ti] represents the tth

x1 x2 x3 xn

w1 w2 w3 wn

h1 h2 h3 hn

+

Vector of internal structure
features for events

y

...

h1 h2 h3 hn

h1 h2 h3 hn

...

...Input
layer

Embedding
layer

BiGRU
layer

Attention layer of word
level and sentence level

Softmax layer

→ →→ →

→→→→

Figure 5: Extraction process of implicit causality.
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word in Sei. We obtain an annotation for a given word wit by
concatenating the forward hidden state and backward
hidden statehit � hit

�→
⊕ hit
⟵
. Once every word is assigned with

weight, we can give an annotation for the sentence.
An activation function tan h(x) in formula (10) was used

to handle hit. -en, we measure the importance of the word
with a trained parameter vector W1 and get a normalized
importance weight αit through a softmax function. Sentence
vector Si can be obtained by using a weighted sum of all the
word annotations with their weight by the following:

αit �
exp WT

1 ∗ tanh hit( 􏼁( 􏼁

􏽐texp WT
1 ∗ tanh hit( 􏼁( 􏼁

, (10)

si � 􏽘
t

αit ∗ hit. (11)

Here, hit ∈ RdW∗t, dw is the dimension of the word
vectors, W1 is a trained parameter vector, and wT

i is a
transpose, W1 ∈ R1∗dW , and si ∈ RdW∗1.

We first feed the word annotation of Si into a one-layer
MLP so as to get ui as a hidden representation of Si. Formula
(13) was adopted to compute the weight of a sentence. We
compute the vector vs for Sepq that summarizes all the in-
formation of sentences containing the event pairs:

μi � tanh Ws ∗ si + bs( 􏼁, (12)

αi �
exp ui ∗ r( 􏼁

􏽐iexp ui ∗ r( 􏼁
, (13)

vs � 􏽘
i

αi∗ si. (14)

(3) Layer Normalization. During the training process of a
deep learning network, parameter changes will lead to the
distribution variation of input data in the subsequent net-
work. To solve the problem of data distribution variation in
the training process of the middle layers, Ioffe proposed the
BN algorithm [35]. For each batch, the sum input distribution
is used to calculate the mean and variance, which are used to
normalize the sum input of neuron in each training sample.
-is method significantly reduces the training time of the
precursor neural network. However, the effect of batch
normalization depends on the size of minibatch. It is nec-
essary to count the first-order and second-order statistics of
each minibatch in the running process, which cannot be
widely used in RNN networks. -erefore, Ba et al. proposed
the concept of layer normalization (LN), which reduces
training time by calculating the mean and variance of the sum
input on one-layer neurons [36]:

ht � f
g

σt + ζ
⊙ a

t
− μt

􏼐 􏼑 + b􏼢 􏼣. (15)

Here, at is the input parameters of each layer, μt is the
average value of input data, and σt is the input variance. g

and b are bias constants, f is a linear transformation, and ζ is
a regularization parameter. In this study, the LNmethod was
introduced into formulas (4)–(6) to improve the training
speed of the GRU neural network.

4.2.3. Fusion of Features and Classification for Events.
We have presented a method to obtain the internal structure
features for events and semantic features in event sentences.
In this section, we achieve the fusion of features and clas-
sification of causality.

-ere are three kinds of classification results for softmax
classifier, which indicate whether two events have causality
and causality direction. vs is a sentence vector obtained from
formula (14), ve is the vector of event structure feature, and
Wf is the model training parameter. y (see formula (16)) is
used to express the classification result of two types of feature
fusion:

y � argmax softmax Wf ∗ vs +ve( 􏼁􏼐 􏼑􏼐 􏼑. (16)

Meanwhile, cross-entropy was introduced to serve as a
training objective function (see formula (17)). In formula
(17), n is the number of sentences and θ represents all the
parameters in the model:

H(θ) � 􏽘
n

i�1
logp ri

􏼌􏼌􏼌􏼌 si, θ􏼐 􏼑. (17)

4.3. Algorithm for Causality Extraction. In this section, we
summarize the main operating steps of our proposed
method. An algorithm, namely, CEFTAR, is presented to
extract causality from fault trees and chemical accident
reports.

In te Algorithm 1, we first construct three sets. -ey are
the set of events (ES), event pairs (EPS), and event pairs with
causality (ECS). All these sets are initialized as empty sets.
From line (3) to line (4), we use the popular word seg-
mentation tool “Jieba” to obtain all the words in the chemical
accident reports. So, we can get a corpus based on these
words. Meanwhile, the tool “Word2vec” is employed to
generate vectors for the words in the corpus. By traversing all
the fault trees in FTS, we can add all the events into the ES
(see line (5) to line (8)). In line (9), event pairs are generated
with any combination of events in ES. All the event pairs are
added to EPS.

For an event pair, we first extract explicit causality (see
line (11) to line (12)). If two events are located in different
hierarchical structures and connected with the same logic
gate, they have explicit causality. Implicit causality will be
further investigated once they are not with explicit causality.
After analyzing the internal structural feature for the event
pair, we construct ISFeij and use ve to represent the vector of
ISFeij. -en, semantic features of sentences including the
even pair are obtained by the following steps. We get all the
sentences between the two events and compute the vector for
these sentences based on BiGRU neural network. Finally, the
combination vector of the internal structural feature and the
sentence semantic feature is sent to a softmax classifier to
decide whether the two events have implicit causality (see
line (13) to line (18)). ECS is returned by the CEFTAR al-
gorithm as the final result of causality. -e meanings of
parameters in all the formulas and symbol abbreviations are
presented in Table 1.
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Input: the set of fault trees (FTS) and accident reports (ARS).
Output: the set of event pairs with causality (ECS).
(1) Construct the set of events (ES) and event pairs (EPS).
(2) ECS�EPS�ES�Φ;
(3) Achieve word segmentation for ARS by the tool “Jieba” and build the corpus CA;
(4) For each word w in CA, train a vector for w by “Word2vec”;
(5) For each ft ∈ FTS
(6) For each ne ∈ ft.E
(7) {Identify the event e in the node ne;
(8) ES�ES∪ {e}; }
(9) For ∀ei and ej ∈ES, build event pair <ei, ej> and EPS�EPS∪ {<ei, ej>};
(10) For each <ei, ej>∈ EPS
(11) If ∃g ∈ ft.G, s.t.: ei ∈ I(g)∧ej ∈O(g) or ej ∈ I(g)∧ei ∈O(g) then ECS�ECS∪ {<ei, ej>};
(12) Else { construct ISFeij and use ve represent the vector of ISFeij
(13) compute Seij;
(14) For each Sep sentence in Seij
(15) Build the vector sp for Sep, Sp �Σαit∗hit;
(16) Generate the vector vs. for Seij; vs �Σαi∗Si;
(17) y� argmax(softmax(W∗f (vs + ve)));
(18) if (y� � 1) then ECS�ECS∪{<ei, ej>}; }
(19) Return (ECS)
(20) }

ALGORITHM 1: -e CEFTAR algorithm.

Table 1: Notations and meanings.

Notation Meaning
FT (V, G, E, v0) Fault tree, where V is the set of nodes, G is the set of gates, E is the set of edges, and v0 is the root node
VM,VL Set of intermediate nodes and set of leaf nodes
EEG� (V, E) -e expression of event evolutionary graph, where V is the set of nodes and E is the set of edges
Ψ(.) -e function that returns the input events for a given logic gate
Γ(.) -e function that returns the output event for a given logic gate

e� {o, v, p, t} Event e, where o, v, p, and t are used to represent the event participants, event trigger word, location,
and timestamp of event occurrence, respectively

SRL(.) Semantic role labeling function
SDP(.) Semantic dependency parsing function
DP(.) Dependency parsing function
πF(S, e) -e function to judge whether e fails given the set S of failed BE
P(.) Probability function
Pc(., .) -e cooccurrence probability function
PMI Pointwise mutual information
zt -e update gate of GRU unit
rt -e reset gate of GRU unit
xt -e input of GRU unit
ht -e hidden layer information at the current moment
ht-1 -e hidden layer information at the previous moment
􏽥ht -e candidate hidden layer information at the current moment
W -e weight matrix
σ -e sigmoid activation function
tanh -e tanh activation function
⊕ -e vector concatenating function
αit -e normalized word weight of sentence si
si -e sentence vector
ui -e hidden representation of sentence vector si
αi -e normalized sentence weight of sentence set Sepq
vs -e vector for Sepq
μt -e average value of input data
Σt -e input variance
G, b -e bias constants
f (.) -e linear transformation function
Ζ -e regularization parameter
H(.) -e cross-entropy function
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5. Experiment and Analysis

In this section, we present experiments to validate the ef-
fectiveness of the proposed model and method. Our ex-
periments were performed on the dataset which consists of
5867 accident reports and fault trees. Five experts in the
domain of chemical accident analysis were employed to
extract and annotate the causality in these reports and fault
trees.

-e hardware of the computer is as follows: CPU is i7-
8700 with 3.2 GHz, six cores, and twelve threads. -e
memory is 16G. -e Graphics card is GTX1060 with 6G.
Tensorflow was adopted to implement the causal rela-
tionship extraction model in this study. Five rounds of
experiments were performed and the average values were
taken as the experimental results. A grid search algorithm is
used to test the combination of different parameters to
determine the optimal parameters for our model. -e
values of optimal parameters in our model are shown in
Table 2.

We compared our model with other frequently used
machine learning or neural network models to show its
advantages. From Figure 6, we can see that our model is with
higher accuracy and recall rate in extracting causality than
BiLSTM, CNN, SVM, LR, and NB. We can see that the
accuracy and recall rate of BiGRU, BiLSTM, and CNN are

higher than those of SVM, LR, and NB. It is because the
neural network model is superior to the traditional machine
learning model for mining the hidden features. BiGRU and
BiLSTM had higher accuracy and recall rate than CNN since
LSTM networks can better capture context features for long
text sequences, while CNN is suitable for capturing local
features.

Four state-of-the-art methods including Feature-SVM
(F-SVM) [8], BiLSTM [37], pattern-argument semantics (P-
A S) [38], and Multicolumn CNN (MCCNN) [39] were also
executed on the same dataset to obtain causality. As shown
in Figure 7, the accuracy and recall rate of our method is the
highest one. -us, experimental results show that our
proposed model and method in extracting causality are
superior to the existing methods.

Two data curves are shown in Figure 8, in which the
abscissa is the number of running steps and the ordinate is
the model accuracy. We can see that the LN layer nor-
malization accelerated network convergence and reduced
operation time and cost.

Table 2: Value of optimal parameters in the model.

Item Value
Learning rate 0.001
Batch-size 50
Gru-size 128
Dropout 0.7
Bias constant in LN: g 0.001
Number of iterations 200
Embedding size 200
Layer number 4
Regularization parameter in LN: ζ 0.0001
Bias constant in LN: t 0.001

BiGRU BiLSTM CNN SVM LR NB
0
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20
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50
60
70
80
90

100
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Recall rate

Figure 6: Accuracy and recall rate for different models.
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Figure 7: Accuracy and recall rate for different methods.
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Figure 8: -e effect of LN layer normalization on model
performance.
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6. Conclusions

CEEG is an EEG describing the evolution process of
chemical accidents. We can easily obtain evolution se-
quences of events in chemical accidents. Safety analysis,
early warning, and emergency disposal can be performed
based on these evolution sequences. To accurately and
easily obtain the causality in building CEEG, a method to
extract causality for safety events in chemical accidents
from fault trees and accident reports is proposed in this
paper.

We propose an effective method to extract events and
their elements by combining fault tree with accident re-
ports. Causality between these events is divided into ex-
plicit causality and implicit causality. We obtain explicit
causality by analyzing hierarchical structure relations of
event nodes and logic gates in fault trees. Implicit causality
is generated based on BiGRU neural network by feeding
internal structural features of events and semantic features
of event sentences. Experimental results show that the
proposed method conduces to better performance in ac-
curacy and recall rate during the process of extracting
causality.

In future work, more elements of events affecting
chemical accidents will be taken into consideration, such as
the environment, weather, and policy guidance factors. -e
accuracy will be further increased after more elements are
adopted to model the events. Meanwhile, more cases of
chemical accidents will be collected so as to enrich the
training dataset. -e proposed method will get better per-
formance after adjusting the optimal model parameters with
more abundant data available.
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