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Symptoms of nutrient deficiencies in rice plants often appear on the leaves. ,e leaf color and shape, therefore, can be used to
diagnose nutrient deficiencies in rice. Image classification is an efficient and fast approach for this diagnosis task. Deep con-
volutional neural networks (DCNNs) have been proven to be effective in image classification, but their use to identify nutrient
deficiencies in rice has received little attention. In the present study, we explore the accuracy of different DCNNs for diagnosis of
nutrient deficiencies in rice. A total of 1818 photographs of plant leaves were obtained via hydroponic experiments to cover full
nutrition and 10 classes of nutrient deficiencies. ,e photographs were divided into training, validation, and test sets in a 3 :1 :1
ratio. Fine-tuning was performed to evaluate four state-of-the-art DCNNs: Inception-v3, ResNet with 50 layers, NasNet-Large,
and DenseNet with 121 layers. All the DCNNs obtained validation and test accuracies of over 90%, with DenseNet121 performing
best (validation accuracy� 98.62± 0.57%; test accuracy� 97.44± 0.57%). ,e performance of the DCNNs was validated by
comparison to color feature with support vector machine and histogram of oriented gradient with support vector machine. ,is
study demonstrates that DCNNs provide an effective approach to diagnose nutrient deficiencies in rice.

1. Introduction

Fertilizers are essential to global food production, particu-
larly by ensuring high and stable yields of rice [1]. ,e best
results come when specific fertilizers are applied in the
needed amounts at the proper time. However, rice is often
cultivated without such targeted nutrient input in China.
Unscientific fertilization practices are common and, when
coupled with a general delay between research findings and
widespread adoption of technology, result in imbalanced
nutrient application to rice fields. At present, blind fertil-
ization still occurs frequently. As a result, ever greater
amounts of fertilizers are applied to achieve only limited
increases in rice yield, and the quality of the resulting rice
declines [2]. ,is leads to smallholder farmers—who

produce most of China’s rice—not realizing potentially
attainable increases in income.

Diagnosis of nutrient deficiencies in rice is an integral
part of scientific fertilization, because soils often fail to
completely meet the nutrient demands of growing plants.
Determination of the needed nutrients will facilitate the
formulation of a fertilization regime to supply the target
nutrients without oversupplying others. Symptoms of a
nutrient deficiency in rice are manifestations of malnutrition
in the crop; they can be visually inspected from the plant
morphology and thereby provide enough information to
diagnose the nutrient deficiency [3]. Li et al. [4] analyzed the
symptoms of silicon deficiency in rice and proposed its
control measures. Problems arise as agricultural production
sites are extensive, and many nutrient deficiencies are widely
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distributed both across a farm or region and in time
throughout the growing season. It is therefore difficult for
agricultural experts to meet the current demand for their
services, which prevents the nutrient deficiencies from being
properly diagnosed and effectively corrected.

In addition to manual diagnosis, chemical and nonde-
structive analytical methods have been used to identify
nutrient deficiencies in crops. Chemical diagnoses can be
classified as either full-scale analysis or rapid tissue mea-
surement [5]. Full-scale analysis measures the contents of
nutrient elements in a crop. ,is diagnostic technique can
determine all the nutrient elements essential to a plant’s
survival and those involved in its growth [6]. ,e results are
precise and reliable and usually provide sufficient data for
diagnosis, but the technique involves vast labor costs and is
confined to a laboratory. ,e rapid measurement of unas-
similated nutrients in plant tissues is carried out by visual
colorimetry, which is fast, straightforward, and generally
suitable for field diagnosis [7]. Due to the extensive ex-
amination required for deeper analysis, this technique is
usually applied to assess deficiencies of major elements such
as N, P, and K in crops. ,e minimal contents of trace
elements and the high precision required for their analysis
prevent rapid measurement of their status.

Nondestructive diagnosis techniques include in situ
measurement using a chlorophyll meter, spectral remote
sensing, and computer vision.,e first two of these methods
are costly or complicated in data processing and are suitable
only for specific elements [8, 9]. In contrast, computer vision
requires only a smartphone for low-cost image acquisition
and transfer, making image-based diagnosis potentially the
best and most versatile solution. Conventional computer
vision methods such as support vector machines (SVMs)
have demonstrated their ability to detect nutrient defi-
ciencies of five elements such as N, P, and K in the leaves of
rape [10] and rice [11–14]; yet, SVMs run the risk of
overfitting large datasets as they are sensitive to outliers.
Convolutional neural networks (CNNs) are attractive ma-
chine learning tools [15], and since the success of deep CNNs
(DCNNs) in the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC 2012), they have become the
preferred choice for image recognition. However, the use of
DCNNs to identify nutrient deficiencies in rice has rarely
been reported [16].

Inspired by the Plant Village Project [17], we explore the
accuracy of diagnosing nutrient deficiencies in rice by
processing image data from hydroponic experiments, with
four different DCNNs as potentially practical solutions for
real-time crop assessment.

2. Related Work

Many studies have considered their use in diagnosis of crop
diseases. For example, Mohanty et al. [18] trained a DCNN
with deep learning using 54,306 images of healthy and in-
fected plant leaves obtained from the Plant Village dataset to
identify 14 crop species and 26 diseases. ,e study evaluated
the feasibility of DCNNs for the diagnosis of crop diseases by
using two architectures, AlexNet [19] and GoogLeNet [20],

which achieved up to 99.4% accuracy. When using other
labeled images taken under different conditions, the accu-
racy of the trained model was reduced substantially to 31.4%,
which nonetheless was much higher than that based on
random selection (2.6%). ,e deep learning model was
therefore highly accurate but not robust. ,e Plant Village
dataset based on expert knowledgemight include some noise
via variations in different experts’ manual labeling, with
images acquired in a similar background via a regularized
process.,is could account for the limitation in generating a
robust model. As visible symptoms are time-dependent and
tissue-specific, the dataset should be as extensive as possible.
Follow-up work by Mohanty et al. [18] found that increasing
the variety of the images would lead to better diagnosis of
crop diseases.

Brahimi et al. [21] trained AlexNet and GoogLeNet
on their own dataset and obtained 99% accuracy with
transfer learning when identifying nine classes of tomato
diseases. ,eir method was demonstrated to be more
accurate than SVM and random forest. Based on Alex-
Net, Liu et al. [22] recognized four classes of diseases on
apple leaves with up to 97.6% accuracy, while Lu et al.
[23] sorted rice among ten disease classes with 95.5%
accuracy. Moreover, Zhang et al. [24] detected nine
classes of maize leaf diseases using improved GoogLeNet
with an accuracy of 98.9%. Furthermore, Amara et al.
[25] used the LeNet5 architecture [26] to distinguish
three classes of banana diseases, achieving accuracies of
92.9%–98.6%.

All these studies have achieved high classification ac-
curacy of crop diseases, demonstrating the feasibility of
DCNNs in image-based diagnosis. A DCNN approach in-
volves both data and algorithm factors. Regarding data,
building a truly comprehensive database is difficult. ,e
visual characteristics of the symptoms may change with the
progression of crop diseases or nutrient deficiencies, and
they can also depend on environmental factors such as
humidity and temperature [17].,erefore, a large number of
photographs are needed to cover the entire range of pos-
sibilities. A further consideration is that all images need to be
labeled correctly, which is usually labor-intensive and error-
prone [27]. Uneven sampling can skew the optimization
direction of the model in the wrong direction. To solve this
issue, researchers have proposed weighted cross-entropy loss
[28–30].

Regarding algorithms, since AlexNet [19] was the best-
performedmodel at ILSVRC 2012, many studies have sought
to improve its performance. A typical trend in the evolution
of architectures is that the networks are getting deeper [31].
For example, ResNet [32] which won ILSVRC 2015 is ap-
proximately 20 times deeper than AlexNet and 8 times
deeper than VGGNet [33]. In addition, GoogLeNet [20], the
champion of ILSVRC 2014, proposes an inception structure
to improve the utilization of network computing resources
and increase the network breadth and depth for a constant
amount of computation. Furthermore, DenseNet [34] im-
proves network performance stereotypes without requiring
deepening (like ResNet) or widening (like GoogLeNet) of
the network structure.
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From the perspective of image features, the feature reuse
and substitution (bypass) settings can greatly reduce the
network parameter number while alleviating the problem of
gradient disappearance to some extent. Edna et al. [35] used
the Plant Village dataset to fine-tune DenseNet121, which
achieved a better accuracy than ResNet50, ResNet101,
ResNet152, VGG16, and Inception-v4 [36]. Excluding the
artificially designed architecture, Zoph et al. [37] con-
structed a NasNet model with two AutoML-designed
modules and achieved a prediction accuracy of 82.7% on
ImageNet’s validation set.

Considering rice, Lu et al. [23] applied AlexNet to
identify ten classes of plant diseases in this crop. Com-
pared with the new state-of-the-art DCNNs, AlexNet is a
relatively shallow CNN model, and diagnosis of plant
nutrient deficiencies is another application scenario.
Based on parallelized shallow CNNs, Watchareeruetai
et al. [38] achieved the overall precision of 43.02%, recall
of 52.13, and F-measure of 47.14 for identifying six classes
of nutrient deficiencies in black gram leaves. Since the
dataset contains various deficiency periods of plant leaves,
it is difficult to classify different types of nutrient defi-
ciencies. Recently, Sethy et al. [39] applied pretrained
DCNNs with an SVM classifier to identify four levels of
nitrogen deficiency in rice and achieved an accuracy of
99.8%.,is encourages us to explore the ability of DCNNs
to classify more elements with different deficiency phases
in rice.

3. Materials and Methods

3.1.HydroponicExperiment. ,e dataset is the key to fitting
a model with good generalization ability. Many studies
have used the Plant Village dataset, which is based on
expert knowledge as some of the observed phenotypes and
diseases can be straightforwardly identified by visual cues.
Although the symptoms of nutrient deficiencies in rice are
similar universally, a challenge remains in collecting
images in the field covering all the deficiency types. Here,
we designed a hydroponic experiment to collect images
for 10 classes of nutrient deficiencies (N, P, K, Ca, Mg, S,
Fe, Mn, Zn, and Si, each denoted by a minus sign followed
by its chemical symbol, e.g., –N) and contrast them with
rice plants under full nutrition, making a total of 11
classes.

,e experiment lasted for two years (2017–2018) and
used late rice (Oryza sativa L.) “Taiyou 398,” the major local
variety in Jiangxi Province, China. We designed the ex-
periment as a single-factor test with five replications, giving a
total of 55 treatments. Eleven nutrient solutions (pH 5.0–5.5)
were prepared separately. ,e contents of full-strength
Kimura B nutrient solution and 10 deficiency solutions are
listed in Table 1. Each treatment was performed in a 2-L
plastic bucket with a lid, and three holes were punched in the
lid to hold rice seedlings. A single three-day-old seedling was
planted in each hole, and the stem was wrapped with a
sponge. After three days of adaptive cultivation in the
laboratory, the plants were moved to a greenhouse to pre-
vent contamination of the nutrient solution (Figure 1).

During the growing period, the nutrient solution was
changed every three days, and images of rice plants (espe-
cially the leaves) were collected.

Kimura B was used as a standard for full nutrition. Data
in italic or left blank indicate deficient compounds. Defi-
ciencies were created by substituting the compounds con-
taining that nutrient element with other compounds to
provide all the other nutrients except the selected deficient
nutrient.

3.2. Dataset. ,e symptoms of nutrient deficiencies
manifesting during the hydroponic experiments are
recorded in Table 2. ,e morphological symptoms of rice
plants differed among the 11 classes due to the nutrients
having various physiological functions in the plant sys-
tem. For example, Ca, Mg, Fe, Mn, and Zn are directly or
indirectly related to chlorophyll formation and/or pho-
tosynthesis [40–42], and therefore their deficiencies result
in chlorosis. As P is associated with carbohydrate meta-
bolism [43, 44], its deficiency results in carbohydrate
retention in the leaves and thus purple-red coloration
developing in the stems and leaves due to the formation of
anthocyanins.

,e symptoms of nutrient deficiencies were also influ-
enced by the mobility of the nutrients in the plant system.
Mobile elements such as N, P, K, and Mg, when deficient,
tend to move quickly toward the younger parts of the plant,
making symptoms always appear first in older parts such as
the lower leaves. Conversely, deficiencies of less mobile
elements such as Ca and Fe often manifest in the younger
parts of the plant.

Mobile telephones or cameras captured images from
plants leaves at different time points depending on the lo-
cation and progress of the symptoms. Before photography,
the deficiency symptom must be at least minimally recog-
nizable, and the minimum recognized unit of the symptom
was used as the image framing center. Photographs were
taken from six different angles (Figure 2) and then cropped
to show only the leaf.

After the development of typical deficiency symptoms
(Table 2), we removed rice plants from the plastic bucket.
,e whole plants were washed with water and then deac-
tivated at 110°C for 15min.,ematerials were oven-dried at
75°C to constant weight before being crushed and analyzed
for nutrient content in the laboratory. Table 3 lists the
standards and test methods followed to analyze each nu-
trient’s content.

,e images of rice leaves included complex backgrounds;
they were given one of 11 class labels according to the
assigned nutrient deficiency. ,e images were cropped to
ensure that the symptoms appeared prominently and
therefore reduce memory usage for better calculation per-
formance. Because the time points of different deficiency
symptoms are inconsistent, data collection cannot guarantee
the balance of each class throughout the experimental pe-
riod. Table 4 gives details of the 1818 images created, 60% of
which were used for training, 20% for validation, and 20%
for test.
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3.3. State-of-the-Art DCNNs. GoogLeNet [20] introduces
the “Inception” concept, which changes a full connection to
a sparse connection. It increases the breadth and depth of the
network and eventually allows the utilization of network
computing resources. ,e Inception module convolves the

input simultaneously with convolution kernels of different
sizes, plus a pooling operation, and finally aggregates the
respective results together as a total output. ,e convolu-
tions are of varied sizes (1× 1, 3× 3, and 5× 5) for ease of
alignment. As the network goes deeper, the features become

(a) (b) (c)

(d) (e)

Figure 1: Hydroponic experiment and ground truth. From left to right: seedling preparation, image capture in the laboratory, symptom
observation in the greenhouse (top), and ground truth of the experiment in 2017 and 2018 (bottom).

Table 2: Symptoms of nutrient deficiencies in rice plants throughout the growing period.

Class Typical symptoms
Full Leaves are green, generally with no mottling or spots.

−N First appear in the lower leaves of the main stem and then gradually develop in the upper part. Leaves turn from green to yellow
starting at the tip and extending along the midrib to the base of the leaf in a Λ shape until the whole leaf is chlorotic and yellow.

−P First appear in the lower leaves of the main stem and then gradually develop in the upper part. Lower leaves are dark green, and then
old leaves become yellow. In severe cases, the lower leaves are longitudinally curled with cyan or brown spots.

−K

First appear in old leaves and then gradually extend to new leaves, leaf tips, and leaf stems. Basal leaves gradually turn yellow or
yellowish brown from the tip, along the edge, to the base of the leaf. Reddish brown or dark brown rust spots of varying sizes emerge.
In severe cases, spots form plaques and spots appear on the sheath. Later, the tip of the leaf gradually turns red and brown, and the

discoloration gradually spreads from the lower leaves to the upper leaves.

−Ca Present on new and upper leaves. ,e tips of the fresh leaves turn white, curl, and shrink. In particularly severe cases, the growth
point is necrotic. ,e upper leaf tip and leaf margin are yellow.

−Mg First appear in the lower, old leaves, which become chlorotic, while the veins remain green with clear yellow-green stripes.
Discoloration starts at the leaf tips and then extends to the middle and rear parts.

−S First appear in young leaves, which turn yellow. In severe cases, old leaves turn yellow and even white. New leaves are green and
yellow, and their tips are scorched. ,ere are also water-soaked round brown spots.

−Mn Manifest in middle and upper leaves, which become chlorotic and yellowish.,e veins remain green, causing a great color difference
between them and the rest of the leaves. Gray or white spots appear in severe cases.

−Fe Appear only in new leaves, while old leaves remain healthy. Young leaves are chlorotic, yellow, and white, but the veins stay green.

−Zn
Appear in both new and old leaves.,e bases of fresh leaves become chlorotic and white. Irregular brown spots appear on both sides
of the middle and lower leaves. In severe cases, the brown spots extend to the leaf sheaths, which turn red and brown from the tip of

the leaves, generally appearing from the lower leaves to the upper leaves.
−Si Appear on lower leaves as brown spots.

Computational Intelligence and Neuroscience 5



Figure 2: Symptoms of P nutrient deficiency on rice leaves photographed from different angles.

Table 3: Standards and methods followed to analyze nutrient contents in rice plants.

Nutrient Standard Method Reference
N HJ 636-2012 Alkaline potassium persulfate digestion UV spectrophotometry [45]
P GB/T 11893-1989 Ammonium molybdate spectrophotometry [46]
K,
Ca, Mg, Mn, and Fe GB 5009.268-2016 Inductively coupled plasma mass spectrometry [47]

Zn GB 5009.268-2016 Inductively coupled plasma mass spectrometry [47, 48]
S and Si HJ 776-2015 Inductively coupled plasma optical emission spectrometry [49]

Table 4: Numbers of images for 11 classes of nutrient deficiencies.

Class Images Typical symptoms

Full 164

−N 246

−P 154

−K 108

−Ca 111

Table 4: Continued.

Class Images Typical symptoms

−Mg 101

−S 208

−Mn 230

−Fe 74

−Zn 246

−Si 176

6 Computational Intelligence and Neuroscience



increasingly abstract, and the receptive field involved in each
feature becomes larger. ,erefore, as the number of layers
increases, the proportion (i.e., the amount) of 3× 3 and 5× 5
convolutions also increases. In this case, the number of
parameters and the amount of calculations remain very
large. ,e Inception module uses a bottleneck layer com-
prising a 1× 1 convolution to help reduce the computation
requirements. One of the most important improvements in
Inception-v3 is the factorization of n× n convolution kernels
into 1× n and n× 1 convolutions, which speeds up com-
putations and deepens the network.

ResNet [50, 51] solves the vanishing gradient problem in
deeper networks using shortcut connections where the
gradient reaches earlier layers and compositions of features
at varying depth can be combined to improve performance.
ResNet relies on many stacked residual units that are
composed of convolution and pooling layers; it therefore
acts as the building block to construct the network. ,e
structure of ResNet consists of residual blocks, each of which
is concatenated by three convolutions of 1× 1, 3× 3, and
1× 1 kernels. ,e residual blocks are then converged by
average pooling and classified using the softmax function.

DenseNet [34] provides an extreme example of
attempting to overcome the training difficulties in deeper
networks by introducing shortcut connections. It concate-
nates all previous layers to form the input of each layer,
connecting each layer to all previous ones. DenseNet is
designed from the perspective of image features; its feature
reuse and bypass settings allowDenseNet to achieve state-of-
the-art performance with fewer parameters than ResNet.
ResNets and DenseNets achieve similar accuracy to visual
geometry group (VGG) on the ImageNet dataset at only 20%
and 10%, respectively, of its computational cost [52].
DenseNet enhances the transfer of gradients, facilitates
feature reuse, and reduces overfitting of small sample data.
Its structure consists of dense blocks linked by transition
layers. Each dense block is constructed by the following
steps: batch normalization, ReLU activation, convolution
operation, batch normalization, ReLU activation, convolu-
tion operation, and final concatenation with the last input.
Each transition block is constructed by batch normalization,
ReLU activation, convolution operation, and average
pooling operation.

NasNet [37], a new search space designed by Google,
uses reinforcement learning to optimize the network
structure in experiments. ,e structure of NasNet is similar
to those of ResNet and Inception, and it performs basic block
stacking to generate the final network.,e network structure
contains two main modules, a normal cell and a reduction
cell, which are stacked to form the final network. NasNet-
Large has been trained on the ImageNet database, and the
network has learned rich feature representations for a wide
range of images, with an image input size of 331× 331.

3.4. Fine-Tuning. Fine-tuning is a technique in which
knowledge is acquired during training for use in other re-
lated tasks or areas [53]. In a DCNN, the pretrained weight is
trained to identify characteristics, some of which can be used

in other target jobs. ,erefore, during the learning process,
the last layers of the trained network can be deleted and new
layers can be retrained for the target job. Application of fine-
tuning learning in experiments requires some learning, but
the technique remains much quicker than learning from
scratch [18]. In addition, fine-tuning is more accurate than
models trained from scratch [35]. Herein, we applied all the
DCNNs introduced in Section 3.3 with ImageNet pre-
training weight and removed the top layer. ,e average
pooling layer for each model was then added, followed by a
fully connected layer with 1024 nodes. Finally, the 11 cat-
egories were classified using the softmax function. All the
added layers were initialized with random parameters.

3.5. Weighted Categorical Cross-Entropy. Unevenly distrib-
uted images will lead to bias if one class has much more
samples than the others. ,erefore, weighted categorical
cross-entropy is introduced to solve this problem. ,is
method works by weighting the loss function so that the
training process will focus more on the samples from an
underrepresented class [30]. Its implementation is available
at Keras (https://keras.io). ,e weighting value for each class
is set to the reciprocal of the number of samples for that
class.

4. Results and Discussion

4.1. DCNN Experiments. ,e experiments were performed
on a Windows10 desktop equipped with one Intel Core i9
7920X CPU with 64GB RAM, accelerated by two GeForce
GTX 1080Ti GPUs with 11GB memory. ,e model
implementation was powered by the Keras framework with
the TensorFlow backend. Fine-tuning models with weights
pretrained on ImageNet were used for model fitting. No data
augmentation was used. Evaluation of the models was
performed by using the accuracy metric and kappa score.
Model performance was evaluated three times, expressed as
the average accuracy of training and validation, and
graphically depicted for each model. ,e Adam optimizer
was used to accelerate the training process. Images were
resized through Python Image Library to a specific size based
on the model requirement.

Repeated experiments comparing different learning
rates (0.001, 0.0001, 0.00006, 0.00003, and 0.00001)
showed that the learning rate of 0.00001 was most suitable
for the model to run 50 epochs for training, and no decay
was used. Due to GPU constraint with NasNet-Large,
batch size cannot exceed 10. ,erefore, to evaluate the
models in terms of time efficiency, we set the same
learning rate (0.00001) and batch size (10) for all the tests.
Table 5 lists the experiment details.

In addition, we compared the four DCNNmodels tested
in this study with two traditional machine learning methods,
color feature with SVM and HOG (Histogram of Oriented
Gradient) with SVM [39, 54]. ,e color feature was read
from the images directly and then trained with an SVM
classifier (implementation was based on scikit-learn library);
the HOG extraction process can be divided into 5 parts:
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detection window, normalized image, calculated gradient,
statistical histogram and normalized gradient histogram,
and obtained HOG feature vector. ,ese steps are integrated
with the hog.compute function of OpenCV-Python library.

4.2. ApproachAnalysis. ,is study used four state-of-the-art
DCNNs to evaluate the performance of image recognition
techniques in identifying nutrient deficiencies in rice. All the
four DCNNs, Inception-v3, ResNet with 50 layers, NasNet-
large, and DenseNet with 121 layers, were effectively fitted
(Figure 3). After fine-tuning, all the models achieved average
training, validation, and test accuracies of over 90% and
yielded average kappa scores of over 0.90, which were much
higher than those of color feature with SVM and HOG with
SVM (Table 5). Except for Inception-v3, the remaining three
models achieved over 95% average accuracies. Specifically,
ResNet50 and NasNet-Large obtained similar prediction
accuracies, while DenseNet121 required fewer parameters
and attained a slightly higher accuracy than the other
models.,e test and validation kappa scores of DenseNet121
were over 0.97, and its time efficiency was acceptable.

From the perspective of approach process, NasNet-Large
showed a slow increase in its test and validation accuracies,
whichmight be due to the huge number of parameters in this
model compared with other models. ,us, during back-
propagation, the pretrained parameters of NasNet-Large
were updated slowly to obtain good generalization ability.
Moreover, the DCNNs were able to adequately fit the data,
while the two conventional methods (i.e., color feature with
SVM and HOG with SVM) seemed to give an overfitting.
,e possible reason is that some of the labeled images had
complex background where the outline data would easily
lead to overfitting in the SVM approach. In contrast, the
DCNN approach can synthesize local receptive field in
higher-level networks.

4.3. Qualitative Analysis. Since DenseNet121 performed the
best, one run of this model was used for qualitative analysis.
,ree indices were calculated to gain a better understanding
of the model’s prediction accuracy. ,e recall refers to the
ratio of correctly predicted positive observations to the all

observations in an actual class. ,e precision refers to the
ratio of correctly predicted positive observations to the total
predicted positive observations. ,e f1-score refers to the
weighted average of precision and recall, which therefore
considers both false positives and false negatives; f1 is usually
more useful, especially for an uneven class distribution,
albeit not as intuitively understandable as accuracy. Table 6
gives the good prediction results for –N, –P, –K, –Ca, –S,
–Mn, –Zn, and –Si, with f1-scores of over 0.95, while
performance regarding –Fe was the worst. ,e relative small
number of samples in the –Fe case (n� 31) might account for
the poor predictive performance.

Deficiency is a relative concept, and a slight deficiency
might be mistaken for full nutrition. In this study, another
area for misclassification was among Fe, Mn, and Zn defi-
ciencies which all shared some common symptoms. ,ese
nutrients are directly or indirectly related to chlorophyll
formation or photosynthesis, the disruption of which gen-
erally causes chlorosis [38]. Furthermore, Zn deficiency was
misclassified as Si deficiency as both of them caused brown
spots in rice leaves. ,ese noticeable values can be extracted
from the confusion matrix (Figure 4).

4.4. Application Analysis. DCNNs demonstrate powerful
capabilities in image recognition. Open source development
frameworks lower the barriers to the application, as their
versatile platform portability greatly facilitates the pro-
gression from concepts and plans to results and applications.
New vision-problem applications can often use the archi-
tectures of networks already published in the literature
alongside open source implementation to ease development,
as prior studies might have solved various detailed technical
problems such as the learning rate decay schedule or the
hyperparameters. Optimizing hyperparameter settings is a
significant challenge owing to the enormous time cost.
Automatic model design represents a good solution as in-
creasing numbers of applications are developed and shared
[55].

Although some DCNNs can rescale image size, it is
necessary to pay attention to the spatial resolution condi-
tions of the rice leaf images. If the region of the identified

Table 5: Convolutional neural networks and specifications for experiments. Accuracy and kappa score of training, validation, and test are
also included.

Model Parameters
(millions) Layers

Training
accuracy

(%)

Validation
accuracy

(%)

Test
accuracy

(%)

Validation
kappa score

Test kappa
score

Training
time per
epoch
(1090

samples)

Validation
time per

epoch (364
samples)

Inception-v3 23.9 48 98.75± 0.19 93.86± 0.57 91.67± 0.63 0.9314± 0.0064 0.9070± 0.0070 34 s 2 s
ResNet50 26.7 50 99.81± 0.14 97.53± 0.01 95.15± 0.16 0.9723± 0.0002 0.9478± 0.0022 30 s 2 s
NasNet-Large 84.9 — 99.79± 0.19 95.88± 0.95 96.25± 0.57 0.9539± 0.0106 0.9611± 0.0093 199 s 10 s
DenseNet121 8.1 121 99.30± 0.05 98.62± 0.57 97.44± 0.57 0.9794± 0.0064 0.9713± 0.0063 48 s 3 s
Color
feature + SVM
(RBF kernel)

— — 90.55 66.48 64.01 0.6220 0.5951 — —

HOG+SVM
(RBF kernel) — — 93.76 56.93 56.86 0.5105 0.5064 — —
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object is too small in the overall image, the recognition
accuracy will be affected. In addition, the background image
can affect the recognition accuracy, especially in cases of
multiclass identification. Unlike image recognition tasks

involving the identification of people or car objects, the
identification of nutrient deficiencies in rice leaves involves
discerning subtle differences of texture in often similar
images. Recognizing nutritional deficiencies in rice should
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Figure 3: Average accuracy of four deep convolutional neural networks for prediction of nutrient deficiencies in rice.

Table 6: Recall, precision, and f1-score per class of nutrient deficiency for DenseNet121.

Class Recall Precision f1 Samples
Full 0.96 0.90 0.93 58
−N 0.98 1.00 0.99 92
−P 1.00 0.97 0.98 61
−K 0.98 1.00 0.99 43
−Ca 0.95 0.95 0.95 42
−Mg 1.00 1.00 1.00 43
−S 1.00 1.00 1.00 78
−Mn 0.98 0.96 0.97 104
−Fe 0.83 0.94 0.88 31
−Zn 0.97 0.96 0.97 112
−Si 0.97 1.00 0.98 64
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consider surface texture as an identification feature, because
this study aims to identify multiple images of nutrition
deficiencies in rice. At the beginning, we used the original
image (resolution 2976× 3968), but, owing to the GPU
memory constraint, we resized it to 600× 800 and used a
shallow CNN for the experiment. ,e result had low ac-
curacy. In a subsequent experiment, cropping the image to
an individual leaf effectively improved the recognition ac-
curacy; therefore, any application of this technique needs to
combine region-based CNN for the automatic extraction of
the leaf parts in the images and thereby reduce the influence
of the variable image backgrounds.

Compared with other datasets that are based on expert
knowledge, the symptoms manifesting in the hydroponic
experiments would be more precise, because other factors
such as pests and diseases are eliminated under controlled
conditions [27], and the data cover the entire rice growing
period. However, we did not consider combinations of
more than one deficiency factor in this study, which re-
duced the robustness of the model. Hydroponic experi-
ments represent a time- and resource-intense means of
data collecting to build a model with generalized ability.
Images alone are always insufficient for supervised clas-
sification, so any application should employ data aug-
mentation techniques such as cropping, rotating, and
flipping before running recognition processes [56]. ,e
application side should include a label function that
uploads the confirmed prediction result to augment the
dataset. As similar symptoms can lead to misclassification,

offering the top-three predictions would be better than
providing only one. Moreover, the symptoms associated
with insect-pests and diseases are similar to the visual
characteristics of nutrient deficiencies [57]; thus, com-
bined studies are needed to gain better insight into the
identification of practical problems.

,is study in the short term will optimize the models and
datasets for diagnosis of nutrient deficiencies in rice. It can
then be integrated into amobile diagnosis system to facilitate
rice production by smallholder farmers. In the long run, if a
model with greater generalization ability is proposed, the
permissions of the mobile users to upload results with lo-
cations would provide a vast dataset to aid digital soil
mapping and fertilization assessment from a macro
perspective.

5. Conclusion

Different nutrient deficiencies alter the morphological
characteristics of plant leaves in rice. In this study, four
DCNNs, Inception-v3, ResNet50, NasNet-Large, and Den-
seNet121, were used to diagnose various nutrient defi-
ciencies in rice plants based on image recognition using a
dataset collected from hydroponic experiments. All the
DCNNs obtained accuracies of over 90% and outperformed
two traditional machine learning methods, color feature
with SVM and HOGwith SVM.,e best result was obtained
using DenseNet121 with the validation accuracy of 98.62%
and test accuracy of 97.44%.,ese findings demonstrate that
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DCNNs are promising for fully automatic classification of
nutrient deficiencies in rice.

Future work should collect more outdoor images and
design field experiments to make a more extensive dataset
and implement the region-based CNN object detection
module to extract rice leaf images for diagnosis in practice.
Conducting further hydroponic experiments to build an
image dataset covering multiple deficiency factors could
improve the models for better diagnosis of multinutrient
deficiencies.
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