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Understanding video files is a challenging task. While the current video understanding techniques rely on deep learning, the
obtained results suffer from a lack of real trustful meaning. Deep learning recognizes patterns from big data, leading to deep
feature abstraction, not deep understanding. Deep learning tries to understand multimedia production by analyzing its content.
We cannot understand the semantics of a multimedia file by analyzing its content only. Events occurring in a scene earn their
meanings from the context containing them. A screaming kid could be scared of a threat or surprised by a lovely gift or just playing
in the backyard. Artificial intelligence is a heterogeneous process that goes beyond learning. In this article, we discuss the
heterogeneity of Al as a process that includes innate knowledge, approximations, and context awareness. We present a context-
aware video understanding technique that makes the machine intelligent enough to understand the message behind the video
stream. The main purpose is to understand the video stream by extracting real meaningful concepts, emotions, temporal data, and
spatial data from the video context. The diffusion of heterogeneous data patterns from the video context leads to accurate decision-
making about the video message and outperforms systems that rely on deep learning. Objective and subjective comparisons prove
the accuracy of the concepts extracted by the proposed context-aware technique in comparison with the current deep learning
video understanding techniques. Both systems are compared in terms of retrieval time, computing time, data size consumption,
and complexity analysis. Comparisons show a significant efficient resource usage of the proposed context-aware system, which
makes it a suitable solution for real-time scenarios. Moreover, we discuss the pros and cons of deep learning architectures.

Generally, multimedia production and consumption are
instantaneous. YouTube daily users count to more than two
billion, with one billion hours watched daily [1]. This het-

1. Introduction

Current smartphones come with great hardware and software

capabilities. These devices gave their owners the ability to be-
come active online publishers. Smartphone owners are media
producers through their YouTube channels, authors, journalists
on their personal Facebook profiles, and news reporters via their
tweets on Twitter. All these productions come in the form of
multimedia content. Almost every YouTube video comes as an
audio and visual signal synchronized with a subtitle, released
through a YouTube channel, and may be within a playlist as well.
The audience may watch YouTube and express their interpre-
tation of the story told via comments, likes, and dislikes. The
same scenario occurs in other social media platforms such as
tweets on Twitter, posts on Facebook, and photos on Instagram.

erogeneous multimedia production comes with a contextual
container of time, emotions, geographical location, and
events before and after the media file.

Every media producer is a human being with a story to tell.
While that story is composed, the author uses every aspect of
his human intelligence. The story consumer is also a human
who will use all his intelligence toolbox to understand the
concept behind the story told. Human intelligence is a mul-
tidimensional toolbox. It includes common sense, innate
knowledge, approximations, learning capability, context-
awareness, and reasoning. The problem now is how to make
the machine intelligent enough to understand the video stream.
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Recently, researchers tend to use deep learning to solve
such problems. However, it is neither fair nor possible to
expect a human-like understanding from machines based
only on deep learning architectures. So, rich artificial cog-
nitive models are needed for a deep understanding of the
concepts behind media productions, charging them with
every possible aspect of human intelligence. That is the path
toward real artificial general intelligence which could exist in
our daily life and bring real value.

To make this possible, we need to mind the semantic gap
[2], shown in Figure 1, between the low-level features that
represent the audio, visual, and textual content of the video
and the high-level concepts as perceived by human
cognition.

Figure 2 shows a goal scored by a player on his official
Twitter account. A supporter will celebrate that goal while
watching the match (visual signal), listening to the com-
mentator (audio and sound signals), and reading comments
(textual data). To make such a video file available and
reachable to the concerned target audience, a human-like
cognition architecture is needed to process all the signals of
the video file, correlate them to the surrounding context, and
recognize the different actions within the scene. The figure
summarizes video understanding core problems as video
representation (pixel segmentation), region detection, action
recognition, and storytelling.

This article presents a transition phase between under-
standing of video content era and our proposed framework
on video context-aware understanding. The proposed
context-aware cognition system utilizes metadata, emotions,
comments, title, description, temporal data, spatial data, and
likes/dislikes playing a vital role in the interpretation of
concepts within the video. The proposed system consumes
less time, computing power, and data compared to the
classical learning approach. The main contributions of this
paper can be summarized as follows:

(1) In the context of video understanding, we define an
artificially intelligent machine as a machine capable
of deciding the true meaning of the video file. We
describe artificial general intelligence (AGI) as a
heterogeneous process that includes not only
learning but also innate knowledge, approximation,
and context-awareness.

(2) Spot the light on the limitations of deep learning, not
only its capabilities.

(3) Design and implement a context-aware system for
video understanding. The proposed system diffuses
the video context into weighted concepts, emotions,
categories, and temporal information about the
video.

(4) Design a benchmark of real videos (RealVids).
RealVids represents real-life videos we watch daily
on social media platforms. RealVids is not a fine-
tuned dataset that acts properly only with well-
trained algorithms.

(5) The proposed context-aware system and classical
deep learning technique are evaluated against the

Computational Intelligence and Neuroscience

|

J
B¢

Sensory gap ‘ @

\
“

1- Feel the emotions 0010100100101010
2- Attach old memories 0010100100101010
(affective signal) Semantic gap 0010100100101010
3- Describe the situation &« ¢ 0010100100101010
(textual signal) 0010100100101010
4- Share and interact the 0010100100101010
situation with billions 0010100100101010

FIGURE 1: Semantic gap between human and computer perception
of the physical world. (1) Human perception is represented by high-
level features (concepts): watch the penalty (visual signal, scream
(audio signal), and talk with the crowd (natural language pro-
cessing). (2) Machine perception is represented by low-level fea-
tures (texture, color, resolution, and encoding).

RealVids benchmark. Performance analysis is car-
ried out via objective and subjective comparison of
recognized concepts. The context-aware system is
compared with the deep learning baseline in terms of
data retrieval time, time consumed to generate
concepts, data size consumed to generate such
concepts, and complexity analysis of both
algorithms.

The remainder of the paper is organized as follows. In
Section 2, we focus on the accomplishments and limitations
of deep learning architectures in video understanding. Then
Section 3 introduces the definition of artificial intelligence as
a decision-making process, heterogeneity of artificial general
intelligence, and context-awareness. We introduce the main
body and implementation of the context-aware video un-
derstanding in Section 4. Next, we demonstrate the exper-
imental results and give some discussions and evaluation
metrics of the results in Section 5. Section 6 summarizes our
conclusions and presents research extensions for the pro-
posed work.

2. Related Work

The objective of this section is to discuss the core problems of
video understanding, accomplishments, and limitations of
deep learning architectures toward these problems.



Computational Intelligence and Neuroscience

Scenes

Audience

Stadium

Actions

Shooter

Penalty

Objects

Person

Ball

Ground

Event and context

Egypt qualifies to
World Cup after 28 years

Mohammed Salah takes
Egypt to world cup

-Fﬁﬁ_ﬁ-

Pixel Region
segmentation detection

Object
recognition

Scene Activity
detection recognition

Concepts and context
general aware
consciousness

FIGURE 2: Video understanding core problems.

Deep learning models are systems of multiple neural
layers that build by improving the level of abstraction
starting from the first layer and then onto the next layer, as
shown in Figure 3. These strategies enhance the cutting-edge
research in video understanding including audio, text, and
visual signals [3]. Deep learning achieves noticeable progress
in the fields of pattern recognition [4, 5], beating humans at
games level [6], neuroradiology [7], healthcare [8], FEA
design and misfit minimization [9], travel decision frame-
works [10], data-driven Earth system science [11], and
analysis of graph signals [12].

2.1. Video Representation: Segmenting Pixels and Region
Detection. In 2011 [13], videos were represented using
handcrafted features. Handcrafted features suffered from
camera motion and illumination change in video, contained
no high-level semantic information or high dimensionality,
and were too expensive for real-time computation. By 2014,
2D Convolutional Neural Networks (CNNs) were intro-
duced. The authors in [14] processed video files as a bag of
short fixed-size clips, thus extending the network connec-
tions in the time domain. They explored approaches for
fusing information over the temporal dimension through
the network. In 2015, [15] introduced long-term recurrent
convolutional networks, where the outputs of a 2D CNN are
fed into a stack of Long Short-Term Memory (LSTM)
networks. It neglected low-level motion information while
being efficient in tasks related to activity recognition and

video description. Some research trials went for 3D CNNS
[15] but it turned out to be a computationally expensive and
time-consuming task. In comparison, fine-tuning 2D CNNs
was more beneficial than training a 3D CNN.

2.2. Action Recognition. Understanding human activities in
visual information is based on progress in other research
areas such as object recognition, semantic segmentation
[16], and domain adaptation. Action recognition in videos
had advanced from tailored solutions for specific problems
to general-purpose solutions that can learn from millions of
videos and apply to daily activities. Given the broad scope of
applications from video surveillance to logo detection, many
scientific contributions were achieved. Action recognition
covers a broad scope of crucial daily life events including
web video search, video surveillance, medical diagnosis,
elderly care, and sports analytics. Oxford dictionary defines
an action as “the fact or process of doing something, typically
to achieve an aim” and activity as “a thing that a person or
group does or has done.” Deep learning models had been
developed for action recognition in video. These models
could fall into three categories.

2.2.1. Spatiotemporal Networks. The convolutional design
adequately uses the picture structure in diminishing the
search space of the network by pooling and weight-sharing.
Pooling and weight-sharing also help bring robustness to the
scale and spatial dimensions. Breaking down channels
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FIGURE 3: General architecture of deep learning.

learned by CNN designs tells that the first layers learn low-
level features (such as SIFT features), while top layers learn
high-level semantics [17], making CNNs generic feature
extractors. Reference [18] suggests handling the problem of
action recognition through a cascade of convolutional
networks and then a recurrent neural network (RNN)
known as Long Short-Term Memory (LSTM). To classify
activities, the authors in [19] propose inputting the LSTM
network with features computed from a 3D convolutional
network. The two networks, that is, 3D convolutional net-
work and the LSTM networks, are prepared independently.
That is, first the 3D convolutional network is prepared to
utilize annotated activity information. Once the 3D con-
volutional network is acquired, the convolutional features
are utilized for training the LSTM network.

2.2.2. Multiple Stream Networks. In visual perception, the
ventral stream of the human visual cortex processes objects
properties, for example, appearance, shading, and person-
ality. The movement of an object and its location are taken
care of independently through the dorsal stream [19]. A class
of deep neural systems are formulated to isolate appearance-
based data from movement-related ones for activity ac-
knowledgment [20]. Two parallel systems are utilized for
activity recognition. The alleged spatial stream organizes
crude video frames, while the temporal stream network gets
optical stream fields as information.

Different research challenges, such as the ActivityNet
Large-Scale Activity Recognition Challenge, are prepared by
researchers to let algorithms recognize actions in videos
[21, 22]. The main challenge in such datasets aims to recognize
daily life and high-level semantics from user-generated videos
as those found on web portals [22]. Algorithms would
compete to achieve accurate predictions of actions in videos.
Almost all methods in these competitions use deep learning
architectures, such as Action Pyramid Networks [23], Deep
Bag of Frames, and recurrent neural networks model families
[24] or Large Ensembles of Heterogeneous Neural Networks

[4].

2.3. Limitations of Deep Learning Architectures. Systems that
depend on deep learning have to generalize over the training
data they have seen. For deep learning models to generalize
well, they need to train over large amounts of data and the
test data must be similar to the training data. This sort of
learning works well at finite worlds such as already orga-
nized datasets where training and testing datasets are pre-
cisely chosen. However, recognizing concepts in a video file
requires a human-like intelligence that can generalize ab-
stractions from raw and incomplete data. Trying to achieve
generalization and abstractions, deep learning architectures
had the following limitations:

(1) Currently, the largest artificial neural networks, built
on supercomputers, have the size of a frog brain
(about 16 million neurons). On the other hand, the
human brain contains 100 billion neurons, passing
signals to each other via as many as 1,000 trillion
synaptic connections [25].

(2) Deep learning architectures learn from videos and
images captured by cameras with 45 megapixels, at
their best, while the human eye has a resolution of
576 megapixels [26].

(3) Deep learning is data-hungry and works best when
there are millions and billions of training examples
[27], while humans are much more efficient in learning
abstractions and rules than deep learning [28].

(4) Deep learning suffers from a learning rate that stops
at a certain limit of data size [29].

(5) Deep learning cannot represent hierarchical struc-
tures where large structures are constructed from
smaller ones [30], such as natural language state-
ments and actions occurring in a video file.

(6) Deep learning represents a black box for researchers
and system designers. The millions of parameters
within the neural network are not known in an
interpretable human way; all we know is their ge-
ography within the network (i node in layer j) in
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network module L. The importance of deep learning
transparency depends on whether the deep learning
models are self-contained standalone systems [31] or
they need to fit in the context of larger systems. The
need for an explanation is crucial when the decision
is used in a critical context such as military, finance,
and health. A score will not be enough. A detailed
explanation of the theories behind this score would
be necessary.

The task of classifying a consumer as creditworthy
justifies the importance of the explainable decision.
No one, neither credit applicant nor banker, should
be satisfied with a system that does not explain its
conclusions. A raw score that represents the decision
will not be enough justification. Both the customer
and the banking system will need an explanation for
such a score, the training data, and the motives
behind it. The same comments apply to those making
the decisions. In arenas with more earthshaking
implications such as international relations, this
should be part of the decision-making best practices.

(7) Deep learning does not integrate directly with prior
knowledge because it depends on the blind corre-
lation between features rather than abstractions [32].
Deep learning is working well with packaged
problems where training and testing examples are
already organized into folders. Real life is not or-
ganized that way and humans do not get their
learning arranged into folders.

(8) Deep learning learns correlations between input and
output features but with no inherent representation
of causality [33]. Perhaps deep learning is not tar-
geted toward those problems.

(9) Deep learning fits well in stable organized worlds
such as the board game Go [6] which have unvarying
rules. Deep learning does not fit well in constantly
changing worlds such as economics, politics, or
movies [34].

3. Background

In our method, we rely on expanding the video under-
standing process from learning to context-awareness. We
handle video understanding as a decision-making process
where we want to decide which concepts represent the video
message. Therefore, we provide the necessary background
on the definition of artificial intelligence as a decision-
making process, the heterogeneity of artificial general in-
telligence (AGI), and context-awareness.

3.1. AI: From Deep Learning to Artificial General Intelligence.
It is interesting to see where the previously mentioned deep
learning techniques originally come from. Rosenblatt in-
troduced the concept of the one-layer architecture of the
perceptron learning algorithm [35] and Sutton introduced
the concept of reinforcement learning [36], both at Psy-
chological Review. Hinton introduced Boltzmann machines

[37] and Elman introduced the first simpler version of
LSTMs [38], both at Cognitive Systems. Hinton introduced
the backpropagation algorithm for training multilayered
neural networks [39] at Nature. We see papers published in
the fifties and eighties in psychology and cognition journals.
That is, cognitive science and psychology formalized fun-
damental insights about how humans might learn that led to
all the deep learning architectures we are witnessing now.
Our vision for the future of artificial intelligence initiates its
seeds from looking deeper into these two fields and comes up
with potential approaches toward artificial general
intelligence.

3.1.1. Definition of AL Artificial intelligence has got different
definitions from different perspectives [40]. We chose to
define intelligence following the psychological perspective
[41]: as the ability of autonomous decision-making without
external intervention. A robot detecting a glass to move it
from one place to another is making a decision: a decision
whether it is the glass or not or a decision whether the
identified place is the correct one or not. When a query is
sent to the Google Web search engine, Google responds with
an ordered list of results. Putting those results in that order is
a decision-making process as well. We can reason in the face
of incomplete and imprecise information.

3.1.2. Heterogeneity of AGL. Human intelligence is multi-
dimensional. It includes emotional intelligence, linguistic
intelligence, social intelligence, common sense, context-
awareness intelligence, perception, and approximation. The
AGI needs a general cognitive model, not a statistical ap-
proximation model, because it is not possible to understand
the world within a probability distribution model. Thus,
methods different from deep learning are needed, methods
that not only need fewer data to learn but also are able to
represent abstract knowledge.

Innate knowledge is essential knowledge that typical
individuals are anticipated to have regardless of whether
they do not have the foggiest idea of what precisely it is.
Innate knowledge is the mystery of how to settle on choices
about novel cases for which there are not many or no ex-
amples to learn from. There is sufficient proof, both social
and mental, that biological creatures start from rich starting
points, even before learning starts [42]. Starting points that
are rich containers of objects, actions, and space result in a
better learning experience. The richer your start point, the
richer you learn. English philosopher John Locke was wrong;
we are not blank slates [43]. Researchers of machine learning
and deep learning tend to improve Al by improving the
learning algorithms and ignore innate knowledge. The usual
presumption is that we need to fix the learning paradigm,
not to adapt to new innate machinery, knowledge, and
representations.

Approximations had been of interest to Al from the early
days. For instance, Edward Feigenbaum wrote the following
[44]: “A useful rule of thumb used by human beings in most
of their problem-solving is this: attack a new problem by
methods that have solved similar problems in the past. The



criteria for “similarity” may themselves be heuristic.”
Humans use approximation daily for perception, reasoning,
cognition, and making decisions. Humans do not memorize
everything about the people they know, the cities they travel
to, or the daily life methods they adopt. The list of hardwired
cognition is limited. Besides that, the ever-changing messy
world makes approximation the pragmatic way for humans
to interact with the world.

3.2. Context-Awareness. The word “context” has Latin roots,
where the word “con” means to join together and “texere”
means to make or to weave, implying weaving together the
circumstances that form the setting of a scenario. The
context of concern could be user, computation, time, or
cognitive. Context-awareness is the ability of a system to give
user-relevant information by utilizing the contextual in-
formation of the concerned event. Context is a multidi-
mensional feature space that evolves with time. Considering
the context of a situation into consideration brings insights
and intuitions that could help make better decisions and
understanding. The context supports decision-making by
filling the gaps in uncertain environments. Context means
different things to different people; one well-cited and ac-
cepted definition is the following: “Context: any information
that can be used to characterize the situation of entities (i.e.,
whether a person, place, or object) that are considered
relevant to the interaction between a user and an application,
including the user and the application themselves. Context is
typically the location, identity, and state of people, groups,
and computational and physical objects” [45]. Context-
awareness is developed through three stages:

(1) Context representation: it defines how to represent
the elements of context and how to define them.

(2) Context determination: it defines how to determine
the context elements in an uncertain environment.

(3) Context analytics: it defines how to summarize and
predict the context in an agile way.

4. A Proposed Context-Aware System for
Video Understanding

In this section, we present an implementation of a con-
text-aware understanding of the video file. We compare
context-aware video understanding with deep learning
video recognition. The aim is to understand the concepts
in a typical social media video file that we see daily. We
choose a set of videos that represent a topic from You-
Tube, in this case “screaming kid.” YouTube is an ideal
representation of social media platforms. It allows pub-
lishers to publish videos with titles, descriptions, and
metatags. YouTube audience can comment on, like, and
dislike the video, thus developing a context around the
video. The same environment exists for Facebook posts,
Twitter tweets, and Instagram photos. The main feature
that distinguishes YouTube is its publicity as all videos are
public and available to everyone, which is not the case for
content on other social media platforms.
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Figure 4 shows how the proposed context-aware system
flow is working. The system consists of these main stages:

(1) Retrieve video context metadata
(2) Process video context metadata
(3) Segregate words and emojis

(4) Generate concepts from context

The start is with retrieving video content and metadata
from an external source, YouTube in this case, and the end is
with extracting concepts from the video’s context.

Video context is built by harvesting and inspecting the
metadata available for YouTube videos through the YouTube
Data API [46]. The algorithm extracts the title, description,
and the top relevant 100 comments for each video sorted by
the most relevant. Comment relevancy is based upon
counting likes. The whole algorithm is developed using
Python. In the following subsections, we will describe the
details of each step.

4.1. Retrieve Video Context Metadata. The system starts by
fetching video information from an external source, You-
Tube in this case. Algorithm 1 is used to retrieve YouTube
content and metadata using YouTube Data API [46] with
Python and paty [47] (Python library for retrieving YouTube
content).

4.2. Process Video Context Metadata. Comments are ordered
in a descending order. The video title, top 100 comments,
and description are filtered by removing stop words. After
filtering, the system uses NLTK (Natural Language Pro-
cessing Toolkit) [48] functions to count word occurrences in
the context. Algorithm 2 is applied to calculate such
occurrences.

4.3. Segregate Words and Emojis. Segregating words and
emojis from the list enables detecting the global social-
emotional expression within the video context. Algorithm 3
segregates emotions hiding into the extracted concepts using
emoji (emoji extraction package) [49]. Emojis are generated
and used for forecasting the global social-emotional state
within the context.

4.4. Generate Concepts from Context. After creating lists of
words and emojis that summarize the context, the weight for
each word and emoji is calculated. The weight of each
concept is estimated based on the ratio of the word oc-
currence to the total occurrences of all the words in the
context. In this way, the weights are valued relative to the
total counts of every extracted word and emoji.
We define a function

Num_Likes: C — R, (1)

where domain C is the set of all extracted comments.

n; = Num_likes(c;) Vi(1<i<|C]), (2)
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FiGUure 4: Context-aware video understanding.

(1) Enter the video URL

(2) Fetch video content

(3) Fetch video metadata

(4)  Extract title

(5)  Extract description

(6)  Extract video category and author

(7)  Extract video duration and publish time
(8)  Extract comments

(9) Store the extracted information

ALGORITHM 1: Retrieve video context metadata.
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(3) Get top 100 comments

(6)  Fetch text
(7)  Convert to lowercase

(9) Tokenize text
(10)  Count word occurrences
(I1)  Sort counts descending
(12)  Store counts list
(13) end for

(1) Setvid details — extracted metadata
(2) Sort comments descending by likes

(4) Get total_likes from comments
(5) for each itemevid details do

(8)  Remove numbers, punctuation, White spaces, and stop words

ALGORITHM 2: Process video context metadata.

(10)  end for
(11) end for

(1) Init emo jis «— newdict()

(2) Init words «— newdict()

(3) for each commentecomments do
(4) for each wordecomment do

(5) if word is emo ji then
(6) Add to emojis

(7) else

(8) Add to words

9) end if

ALGORITHM 3: Segregate words and emojis.

where |C| is the cardinality of the finite set C. We construct a
set of words w; belonging to each comment i.

w; ={x: xisaword that belongs to comment i}. (3)
So, the set of all words W' is

iF4C|

w=|Jw,. (4)
i=1

Word frequency within the context is calculated
according to equation (6), where C is the set of comments.

Algorithm 4 estimates word frequencies and the result is
the concepts within the context. Extracted concepts are
calculated as the intersection between keywords in video
metadata and comments.

Word_frequency: W — R, (5)
e

Word_frequency(xj) = Z I(i, j) * Num_Likes(c;), (6)
i=1

where the indicator variable I (i, j) is

o 1, if(xjeci),
I(”J):{o, if (x; ¢ ;). @

Equations (6) and (8) and (10) emphasize the concepts’
weights. The more likes a word is given, the more chance for
the word to be a key concept in the context. Equation (6)
estimates the total occurrences for each word within the
context. The total count of all the words in the context is the
summation of each word occurrences as expressed in
equation (8). Finally, the weight of each word within the
context is calculated as the word frequency divided by total
count of all words within the context as described by
equation (10). The top 5 weights are selected as the repre-
sentative concepts of the context.

JAWI
total = Z Word_frequency(xj), (8)
=1
Word_Weight: W — R, 9)

Word_frequency (x;)

(10)
total

Word_Weight(x;) =
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(13) end for
(14) end for

(21) end for

(1) agreg_likes «— new dict()

(2) for each cecomments do

(3) ¢ text«—— c[text]

(4) for each tupleeword dict do

(5) w text «— tuple[text]
6) if ¢ text: find(w_text) then
(7) if w_texted then
(8) agreg likes[w text]++
9) else
(10) agreg likes[w_text] 1
1) end if
12) end if

(15) final context «— [toList(agreg likes)]
(16) Sortfinal_context descending

(17) Initializefinal_weight «—— new dict()
(18) for each tupleefinal_context do

(19)  ratio «— tuple[0]=total likes

(20)  final weight:append((tuple[1]; ratio))

(22) Detect location from context
(23) Parse meanings of emojis

ALGORITHM 4: Generate concepts from context.

5. Results and Discussion
5.1. Experimental Settings

5.1.1. Experimental Benchmark: RealVids versus Datasets.
The common practice of the research community is to
evaluate algorithms and proposed theories against already
prepared datasets such as YouTube-8M Large-Scale Video
Understanding Challenge [21] and the ActivityNet Large-
Scale Activity Recognition Challenge [22]. We consider the
following critics toward this approach:

(1) Learning from millions of videos is not a feasible
solution to build AI systems that exist in daily life.
Real-life situations that meet us every day are not
frequently available in terms of millions or even
hundreds of examples. To build real daily life
Al machines, systems should need fewer
examples.

(2) Currently, existing video datasets require huge
computing power [50] which makes it an unfeasible
solution for all day-to-day AI applications.
Achieving applicable and efficient video under-
standing shall adopt less needy systems.

(3) Recent research claimed that research results from
already prepared datasets are not reproducible [51].
Recommendations for more naturalism are in-
creasing [52].

In response to the above critics, we designed a new test
environment called RealVids, described in Table 1. RealVids
is a collection of videos from YouTube. A query for the target
topic is sent, in our case “screaming kid,” and ten videos are

chosen from the top twenty results. These chosen videos vary
in category, context, content, and duration to cover a wide
range of topics.

5.1.2. Environment. The proposed system is developed and
tested on a Linux machine (Ubuntu 18.4). The hardware
specifications are Intel Core 17-6500U @2.5GHz, 8 GB
RAM.

5.1.3. Baseline. The “screaming kid” collection is trajected
against the action recognition deep learning model of the
Moments in time dataset [53]. According to the team behind
it, “Moments is a research project in development by the
MIT-IBM Watson Al Lab. The project is dedicated to
building a very large-scale dataset to help Al systems rec-
ognize and understand actions and events in videos.” The
dataset and its models represent the state-of-the-art per-
formance of deep learning architectures for action recog-
nition in videos. The dataset is over 1,000,000 labeled videos
collected from ten different sources and trained over the
ResNetI3D-50 model.

5.2. Results. Table 2 presents concepts extracted by the
context-aware system on the RealVids dataset. Table 3
presents other extracted metaconcepts such as emotions,
spatiotemporal and, categorical information.

All videos are retrieved in response to the “screaming
kid” query, but the content of the video message is different
from one video to another. The context-aware system
interpreted the video implied message from the context. For
example, videos 2, 3, 4, and 6 represent a violent scene, but
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TaBLE 1: Screaming kid dataset collected from YouTube.

Video ID Title YouTube ID  Duration Author

1 How To Get Your Kid To Stop Screaming ke7YmtLLIu0 10:45 Live On Purpose TV

2 Psycho Kid Ruins thanksgiving TUCUsNx1HTs 03:40 McJuggerNuggets

3 Teen screams during bond hearing uzKT50sYHtQ 02:23 ~ WKMG News 6 ClickOrlando

4 The biggest Rage ever in GMOD! (Garry’s Mod Trolling) QJH{qPC-L20 04:32 SgtSizzles

5 Kid Screaming Tantrum (G MAJOR + EAR RAPE) NAjw31iNpPw 00:39 G Major Manager

6 TEEN SHOUTS AT ANNOYING BRAT vAf6]9qstN4 04:37 The Shame Game

7 Funny kid screaming LkpI8RNUeYg 00:38 Harry Mcclean

8 Sonic Kid Screaming FOYZvSXpja0 00:05 Haise Sasaki

9 Just noticed bts put screaming boy in “Not Today” hCMSGRrhk8k 00:48 EpicGH

10 Water Wake Up Prank Makes Kid Scream Like a Banshee! L5Tq8MCT90OU  00:39 PRNK

Video duration is in minutes. Full URL to a video is obtained by replacing the ID portion in YouTube base URL: https://www.youtube.com/watch?v=<ID >.

TaBLE 2: Concepts extracted from the context.

Concepts extracted from the context

Video ID
Top 5 concepts Less weighted concepts
1 0.197->video, 0.197->parent, 0.105-> need, 0.076-> watch, 0.057->learn Take, stop, scream, child, help
2 0.311->video, 0.278->like, 0.198->thanksgiving, 0.104-> psycho, 0.030 —>dinner Want, ruin, today, family, seri
3 0.710->scream, 0.137->hear, 0.049 —>judge, 0.036-> murder, 0.036->bond Roommate, teen
4 0.801->ever, 0.192->gmod, 0.004->rage, 0.002->subscribe None
5 0.5->major, 0.25-> watch, 0.25->video None
6 0.081->child, 0.06-> flight, 0.060->attend, 0.057->other, 0.056->like Play, annoy, talk, brat, shut
7 None None
8 None None
9 0.946->scream, 0.036->video, 0.0178->today None
10 0.376->water, 0.261->scream, 0.138-> like, 0.130->banshe, 0.029->sleep Wake, funny, make, wrong, reaction

TasLE 3: Emotional, categorical, temporal, and spatial information about the video file. These specifications are extracted from the context

and by no means can be extracted by deep learning.

Video ID Emotions Temporal Spatial Category

1 Joy, laughing, thumbs up, proud 2018-01-31 17:01:13 None Education

2 Joy, laughing 2014-11-27 20:00:14 None Comedy

3 Insane 2018-12-10 11:51:52 None News & politics
4 Joy, laughing 2016-04-24 14:25:27 None Gaming

5 None 2018-10-07 18:23:34 None People & blogs
6 Joy, laughing, smiling 2019-08-15 09:41:52 None Entertainment
7 None 2013-02-22 20:40:23 None People & blogs
8 None 2019-04-13 00:04:20 None People & blogs
9 Joy 2018-01-09 19:50:25 None Film & animation
10 Joy, laughing, sweet smile 2015-06-14 17:00:01 None People & blogs

only 2, 3, and, 6 are actual violence. Video 4 represents an
online video game. Concepts extracted from the context of 2,
3, and 6 represented such violence. These concepts included
psycho, ruin, murder, scream, flight, annoy, and brat.
Emotions of video 2 “joy and laughing” reflected the comedy
behind the scene. Emotion of video 3 “Insane” reflected the
real violence of the court scene. Meanwhile video 4 was
represented by much fewer violent concepts such as gmod
and rage. Emotions of video 4 “joy and laughing” reflected
the video as just an online game.

Video 1 concepts extracted from the context came in
accordance with the video message, such as a parent and
learn. Extracted emotions such as thumbs up and proud
express user satisfaction. Video 10 is a funny homemade
video. Concepts extracted from the context such as funny,
reaction, laughing, and joy expressed the real message be-
hind the screaming kid in the video.

Videos 5 and 9 were modified advertisements with air
rape and a song, accordingly. This mix-up caused disjoint
discussions through the video comments. The context-aware
system was unable to extract any meaningful concepts or
emotions. Videos 7 and 8 did not contain any contextual
information, so no concepts or emotions were extracted.

Categories of videos 2 and 4 integrated with extracted
concepts giving a complete understanding of the video
message. Categories and concepts of videos 1, 3, 6, and 10
came matching each other.

During the experiments, we realized that the context-
aware system performs perfectly for videos that have rich
metadata and objective discussions and comments that fulfill
our defined criteria for the targeted media. On the other side,
the context-aware system fails in extracting concepts from
the context of poor metadata like a small number of
comments or low levels of interaction, and this is visible for
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videos 7 and 8 in Table 2. For further trials to extract
concepts from the context, experiments were extended to
include less weighted concepts that have a low-level score
but still valuable to consider it in the results. From these
results, we see that the context-aware system is a perfect
solution that helps in understanding metadata-rich contexts
in a time record with the elimination of training time, also
without requiring high hardware resources.

The context-aware system achieved these results effi-
ciently in terms of retrieval time, processing time, consumed
data size, and algorithmic complexity. The next section will
discuss these metrics and their implications.

5.3. Discussion. The objective and subjective comparisons of
the deep learning algorithm and the proposed technique are
presented in Table 4.

The objective comparison shows how the proposed tech-
nique outperforms the classical learning one. Concepts
extracted from the context were affirmative and more con-
firmed than those recognized by deep learning. This proves that
the context-aware video understanding is more precise than the
video understanding depending on the video content only.

The subjective point of view reveals a cutting-edge
comparison between the generality of the classical learning
technique and the definite clear and determined results of
the proposed technique. The context-aware system recog-
nized not only concepts but also emotions around the video,
temporal, and categorical information.

Unfortunately, context-awareness was not able to predict
any spatial information, though. Social media producers and
users did not leave enough data about their geographical
location, probably for privacy concerns.

Table 4 shows the results of the context evaluation. It can
be seen that the actions recognized by the deep learning
architecture are more general and broader on topic. They do
not relate directly to the core message of the video. Concepts
concluded from the context (title, description, and top
comments) were more specific about the topic and tell what
was really happening.

5.4. Evaluation Metrics

5.4.1. Retrieving Time Comparison. Table 5 and Figure 5(a)
show the time required for retrieving videos™ context met-
adata and video content. These comparisons show the dif-
ference between average duration required for metadata
download (7.812 seconds) and that required for content
download (38.3 seconds), which saves 90% of time required
for data retrieval.

5.4.2. Processing Time Comparison. Table 6 and Figure 5(b)
show the time required for processing videos context
metadata and video content. These comparisons show the
difference between average duration required for metadata
processing (1.6 seconds) and that required for content
processing (33.6 seconds), which saves 94% of the time
required for data retrieval.
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The context-aware system processes textual data to ex-
tract concepts, while the deep learning approach processes
visual signal. The textual data describing a video is smaller
than the visual signal for the same video. This explains the
improved retrieval and processing time by the context-aware
approach in comparison with the deep learning approach.

5.4.3. Data Size Comparison. Comparing the results, the
power of context-awareness analysis for real-time videos is
noticeable. The context-aware system developed an under-
standing of the video message without trained models and
without dataset dependencies. Table 7 shows the size of
processed data to generate concepts in both deep learning
and context-awareness.

All results achieved by the context-aware system did not
depend on trained models or big size datasets in contrast to
the deep learning. Also, there was no training time for the
context-awareness system.

5.4.4. Complexity Analysis Comparison. For a machine-
independent comparison, we carried out a complexity
analysis between our proposed context-aware algorithm and
the ResNet-50 architecture.

The overall complexity could be introduced as the
complexity measure for all the four building blocks of ap-
plied algorithms. Algorithm 1 fetches video information
with O(1) complexity. Algorithm 2 filters the metadata and
the time complexity is O(n). Algorithm 3 complexity is
O(n?) to extract words and emojis. Algorithm 4 is calculating
the total weights for extracted context actions and sorting
them with the complexity of O(n* +n). The overall com-
plexity of the proposed system is described by equation (11)
as result of O(1) + O(n) + O(n?) + O(n* + n).

o(r2). (1)

Hence, in this comparison, the total complexity of the
proposed system is O(1°).

Equation (12) introduced in [47] shows that the com-
plexity of the CNN architecture models depends on the
depth of layers. Taking  as the convolutional layer index, d is
the depth (number of convolutional layers), n; is the number
of filters (also known as “width”) in the /-th layer, n ; is the
number of input channels of the [-th layer, s is the spatial
size (length) of the filter, my is the spatial size of the output
feature map, and this time complexity applies for both
training and testing time.

d
@<anl*slz*nl*mlz>. (12)

I=1

As a result, the complexity comparison had evolved to
favor the context-aware system from an execution per-
spective due to the benefits of reducing the size of data to be
processed, unnecessary training models, and the elimination
of training time. Also, the context-aware system cares about
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TABLE 4: Actions recognized by deep learning versus concepts extracted from the context.

;gdeo Concepts extracted from the context Actions recognized by deep learning
1 0.197 —>video, 0.197 —>parent, 0.105 —>need, 0.302 —>lecturing, 0.112 —>adult + male + speaking, 0.069 —>pointing, 0.041
0.076 —>watch, 0.057 —>learn —>teaching, 0.036 —>discussing
0.311 —> video, 0.278 —>like, 0.198 0.078 —>dining, 0.051 —>drinking, 0.044 —>discussing, 0.044 —>serving, 0.031
2 . . )
—>thanksgiving, 0.104 —>psycho, 0.030 —>dinner —>autographing
3 0.710 —>scream, 0.137 —>hear, 0.049 —>judge, 0.135 —>discussing, 0.113 —>pointing, 0.075 —>arresting, 0.065
0.036 —>murder, 0.036 —>bond —>adult + male + speaking, 0.035 —>talking
4 0.801 —>ever, 0.192 ->gmod, 0.004 —>rage, 0.002  0.202 —>aiming, 0.111 ->mowing, 0.046 —>playing + videogames, 0.040
—>subscribe —>loading, 0.040 —>pointing
5 0.5 —>major, 0.25 —>watch, 0.25 —>video 0.132 —>shopping, 0.041 —>steahn.g, 0.029 —?buylng, 0.027 —>playing, 0.023
—>child + speaking
6 0.081 —>child, 0.06 —>flight, 0.060 -->attend, 0.097 —->waxing, 0.059 —>taping, 0.035 —>cleaning, 0.028 —>pressing, 0.027
0.057 —>other, 0.056 —>like —>preaching
0.126 —>bicycling, 0.062 —>juggling, 0.038 —>running, 0.037 —>feeding, 0.036
7 None .
->kicking
3 None 0.053 —>dancing, 0.050 —>adult + male + singing, 0.049
—>playing + videogames, 0.044 —>wrestling, 0.035 —>adult + female + singing
9 0.946 —>scream, 0.036 —>video, 0.0178 —>today 0.061 —>adult + male + singing, 0.047 —>twisting, 0.040 —>racing, 0.031
—>driving, 0.027 —>performing
10 0.376 —>water, 0.261 - >scream, 0.138 —>like, 0.093 —>tickling, 0.053 —>laughing, 0.026 ->giggling, 0.026
0.130 —>banshe, 0.029 —>sleep —>adult + male + speaking, 0.024 ->juggling
TaABLE 5: Time consumed for retrieving video context metadata versus video content, measured in seconds.
Video ID Video metadata Video content
1 6.422449 43
2 10.155952 45
3 16.433475 21
4 8.415379 126
5 5.817539 42
6 6.704641 47
7 6.02976 18
8 6.646857 9
9 5.895031 17
10 5.612696 15
140 90 -
g 120 1 g 801
70 A
§ 1007 g 60 -
g 80 g 53 i
= 60 a + 40 4
£ £ 30
= 40 - 2
g g 20 1
DO 20 £ 10
0~ 0~
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Video ID Video ID
B Metadata download time B Context processing time
B Video download time B Content processing time

(a) (b)

FiGURE 5: Evaluation metrics: retrieving time comparison and processing time comparison. (a) Time consumed for retrieving video context
metadata versus video content, measured in seconds. (b) Processing time for video context metadata versus video content, measured in
seconds.
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TABLE 6: Processing time for video context metadata versus video content, measured in seconds.

Video ID Video context metadata Video content
1 4.422285 79
2 1.127109 34
3 1.125429 27
4 0.929536 57
5 0.79569 15
6 5.05579 71
7 0.401577 11
8 0.006824 10
9 0.777581 16
10 1.362068 16
TaBLE 7: Processed data size in deep learning and context-awareness.

Video ID Metadata (KB) Content (MB)
1 391.5 91.2
2 294 89.1
3 275 341
4 257 166
5 204.9 20
6 230 90.2
7 926 18
8 155 1.8
9 188.5 9.3
10 28 11

human feedback and emotions around the video, which will
lead to a better understanding of the video in a valid real
context.

5.4.5. Limitations. First, we observe that some videos may
have no context metadata so extracting concepts become not
possible.

Second, it becomes difficult to extract concepts from
sparse context metadata. An example of a sparse context is
when the social media audience may fill the video context
with their emotions more than their thoughts. In this case,
context-aware video understanding technique could be able
only to extract emotional states rather than concepts.

6. Conclusions and Future Work

The presented research work introduces high-performance
and precision context-aware video understanding technique.
This context-aware video understanding depends on the
diffusion of heterogeneous multimedia data, where an
artificially intelligent algorithm is employed to recognize the
concepts from the video message. This results in overall
precise concepts, emotions, and temporal and categorical
understanding of the video. The generated concepts of the
context-aware video understanding technique are precise,
determined, and clear compared to the general concepts
obtained from the deep learning technique. These im-
provements are accomplished by utilizing less time, com-
puting power, and data. This makes our approach fit better in
real-time scenarios, where a fast decision needs to be made.
Besides this subjective comparison, an objective comparison

is presented to show clearly how our proposed technique
outperforms the learning-based algorithm.

Future work shall consider merging relevance feedback
in the video understanding process. Relevance feedback is a
practical and applicable way to represent human preferences
because the relevancy of a video file is a user’s opinion. In
that case, similarity measures could be used to assess the
relevancy of the video file content. A heterogeneous artificial
intelligent system composed of context-awareness, deep
learning, relevance feedback, and similarity measures would
enable a human-like intelligent performance.
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