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Collecting parallel sentences from nonparallel data is a long-standing natural language processing research problem. In particular,
parallel training sentences are very important for the quality of machine translation systems. While many existing methods have
shown encouraging results, they cannot learn various alignment weights in parallel sentences. To address this issue, we propose a
novel parallel hierarchical attention neural network which encodes monolingual sentences versus bilingual sentences and
construct a classifier to extract parallel sentences. In particular, our attention mechanism structure can learn different alignment
weights of words in parallel sentences. Experimental results show that our model can obtain state-of-the-art performance on the
English-French, English-German, and English-Chinese dataset of BUCC 2017 shared task about parallel sentences’ extraction.

1. Introduction

Parallel sentences are a very important linguistic resource which
comprises much text in the parallel translation of different
languages. A large parallel corpus is crucial to train machine
translation systems which can produce good quality transla-
tions. As is well known, the major bottleneck of statistical
machine translation (SMT) and neural machine translation
(NMT) is the scarceness of parallel sentences in many language
pairs [1-3]. With an increasing amount of comparable corpora
on the World Wide Web, a potential solution that alleviates the
parallel data sparsity is to extract parallel sentences from
comparable corpora. Previous research has shown that this
bottleneck can be relieved by extracting parallel sentences from
comparable corpora [4-11].

As collecting parallel sentences is important for im-
proving the quality of machine translation systems, many
works try to mine parallel sentences from comparable
corpora in the last two decades. Their success has a great
contribution to the development of this research. Tradi-
tional systems developed to extract parallel sentences from
comparable corpora typically rely on multiple features or

metadata from comparable corpora structure. Bouamor and
Sajjad [12] proposed to use a hybrid approach pairing
multilingual sentence-level embedding and supervised clas-
sifier to identify parallel sentence pairs. They used features
such as source-target punctuation marks features and mor-
phosyntactic features to build a support vector machine bi-
nary classifier. Although feature engineering is an effective
strategy to filter parallel sentences, it usually suffers from the
language diversity issue. For example, the named entity is an
important feature to measure source-target candidate parallel
sentences. However, the named entity has various processes in
different languages. For English, CoreNLP (https://
stanfordnlp.github.io/CoreNLP/) can be implemented to
extract English persons, locations, and organizations, while
there are no open-source tools to deal with other lingual
named entities such as Uyghur. To address those issues, many
methods extracted parallel sentences without feature engi-
neering. More recent approaches used deep learning, such as
convolutional neural networks [13] and recurrent neural
networks based on long short-term memory (LSTM) [1, 14,
15] to learn an end-to-end network classifier to filter parallel
sentences.


mailto:68523593@qq.com
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://orcid.org/0000-0001-5247-9971
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8823906

Although mining parallel sentences using neural-net-
work-based approaches has been quite effective, we use the
better representations that can be obtained by incorporating
knowledge of context information in the model of sentence
architecture in this paper. As we all know, not all parts of a
sentence are equally relevant for representing parallel sen-
tences (as an example in Figure 1, unmarked words do not
affect detecting parallel sentences). That is, different words
have various important weights for detecting parallel
sentences.

To address those issues, this paper proposes a parallel
hierarchical attention network (PHAN) that learns
parallel sentence representations. The PHAN first avoids
employing a lot of manual operation to carry out feature
engineering. At the same time, compared with current
neural networks, the PHAN can effectively learn lan-
guage differences and the various weights of alignments.
As illustrated in Figure 2, the process can be as follows:
(1) It first uses one-hot word representations as inputs
without feature engineering. (2) Since parallel sentence
pairs have different hierarchical components (words
form sentences, two monolingual sentences form a
parallel sentence pair), the model first encodes mono-
lingual contexts to learn language differences. (3) Then, it
inputs those monolingual encodings into a top network
to encode a parallel sentence representation. The reason
for using this network is that different words in a sen-
tence are different. Moreover, the importance of words is
highly context-dependent; that is, the same word may be
differentially important in different contexts [2, 16, 17].
(4) Finally, we aggregate the outputs of the neural net-
work into the classification layer to identify parallel
sentences. The classification layer adopts the softmax
function to implement a binary classification.

Our experimental results show that our method achieves
significant and consistent performance compared with all
baseline methods in filtering parallel sentences task. In our
work, we remove feature engineering and additional com-
puting resources. In particular, we extract parallel sentences
from Wikipedia articles. Then, we use the parallel sentences
to test the machine translation system and show that the
extracting parallel sentences can improve machine
translation.

This paper first introduces the main research content.
Section 2 presents a detailed description of the model.
Section 3 presents experiments and settings. Section 4 gives
the detailed results of our experiment. Finally, it is the
conclusion of this paper.

2. Parallel Hierarchical Attention Network

In this section, we propose a parallel hierarchical attention
network (PHAN) to identify parallel sentence pairs. Figure 1
shows the structure of the PHAN. We consider a training
parallel dataset D = {(S},8%:,),i=1,...,N} made of N
pairs of sentences {(S;, S)} with labels ; € {0, 1}. If a pair of
sentences is parallel, the label is marked as {1}, otherwise as
{0}. For example, we set the label of two sentences

{"Ilove the motherland”, "wo ai zuguo"} as {1}.
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FiGure 1: Not all parts of a sentence are equally relevant for
representing parallel sentences.

The network takes a pair of sentences {(S}, S!)} as input
and output is a label of a pair of sentences {I;}. It has two
levels, monolingual sentences versus bilingual sentences.
The level of monolingual sentences is made of source lan-
guage encoder and target language encoder. The monolin-
gual encoder is made of two bidirectional GRU (Gated
Recurrent Unit) networks with parameters H,, and an at-
tention model with parameters a,,, while the bilingual en-
coder level similarly includes a network and an attention
model. The monolingual level mainly encodes monolingual
sentence context and dependency. The bilingual level mainly
encodes parallel sentence pair interactive context and de-
pendency. The classification layer uses the output p(s|t) to
determine a label {I;}.

2.1. Word Layers. In natural language processing, contin-
uous word embeddings [18] are often used as the input of the
neural network. However, in this task, we use the one-hot
vectors instead of continuous embeddings. The reason for
using one-hot vectors is that one-hot vectors can help to
encode the context of a sentence. In the first step, to compare
source and target sentences in the mathematical sense, we
need to project them into one-hot n-dimensional space.
Each word is converted into a one-hot representation. Al-
though words are often converted into continuous word
embeddings, the one-hot representation is more suitable to
capture context information.

In order to get this one-hot vector, we define a lexicon
V ={w,,w,,...,w,}, where m is the number of words of
source or target sentences. A one-hot of the word w; is an
array as [0,0,...,1,...,0], and we set the number of the
word in the lexicon as 1. For example, for a sentence “she is
the king,” the lexicon is [she”,”is”,” the”,'king’']. Then,
the one-hot of “the” is [0, 0, 1, 0]. The one-hot representation
of j™ word in the i sentence is defined as

w; = Embedding(wi ]-), (1)

where wf; is j™ word in the i sentence. E” is a pre-
trained embedding matrix, where Embedding() is a
linear transformational function to embed a word to a
one-hot vector. The source language has the same
definition.

2.2. Encoder Layers. In the above section, we convert words
into one-hot word vectors that can be calculated in the
neural network. Next, we use a stream-dependent word
encoder to encode each word representation to learn the
near context information in a sentence.
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The traditional recurrent neural network (RNN) is af- z, = o(wx, + uh,_, +b,), (3)

fected by short-term memory. If a sequence is too long, it will
be difficult to transfer information into a long step. Therefore,
it will miss some important information when we process a
long text. For example, when we watch a movie, we may only
remember the words such as “amazing” and “excellent” and
do not care about the words such as “this,” “is,” and “a” in the
next day. The GRU can effectively achieve the above process.
It can only keep some relevant information and forget useless
data when we obtain parallel sentences. At the monolingual
level, in order to learn the information from both directions of
words, this paper uses bidirectional GRU to learn the context
in a sentence. The GRU used a gating mechanism to track the
state of sequences without using separate memory cells. There
are two types of gates: the reset gate r, and the update gate z,.
They together control how information is updated to the state.
At the time ¢, the GRU computes the new state as follows:

h = (1

which is the linear interpolation between the previous state
h,_; and the state h, computed with new sequence infor-
mation. We use the two states to learn the context
information in monolingual sentences. The gate z, decides
how much past context information is kept and how much
new context information is added. This operation can ef-
fectively learn longer context information. z, is updated as
follows:

- 2,)®h,_, +z,0h,, (2)

where x, is the input state sequence vector with time ¢. The
other state /1, is computed in a similar way. &, is a corre-
sponding welght that maintains a constant state.

h, = tanh (wy,x, + 7,0 (4;h,_,) +by). (4)

In fact, r, is the reset gate which controls how much the
past state information contributes to the sentences. If r, is
zero, then it forgets the previous state. We use the following
equation to update the reset gate:

r, = o(w,x, + uh,_; +0b,). (5)
In the process, we use wj; ; to represent a word in a source
sentence, te[0, T']. In order to encode the context information

of a sentence, we use the following formula to calculate the
hidden representation state for the t® time in the source

language:
w; Gi,t),

by = GRU (uf,: ), (6)

T
W=\ nhe
ij = | Mty | o

where h and hS are forward GRU functions and backward
GRU functlons and 6;, is the model parameter for word GRUs.

-
i = GRU(



We obtain the context information for a given word wj; by
—_ —
concatenating the forward hidden state K] ; and hj,

h; = [E,j, h; j]T, which summarizes information of the whole
sentence. Target sentences are encoded like source sentences
with an additional neural network layer, which helps the en-
coder to recognize the most relevant features by emphasizing
critical points of the target sentence given by each source
sentence.

From the example of Figure 2, we can observe that not all
words contribute equally to the representation of the sen-
tence meaning, especially when distinguishing whether two
sentences are parallel. Therefore, we introduce an attention
mechanism to learn this information that different words
have various weights in distinguishing parallel sentences.

uf,j = tanh(hf,j: Gfu) = tanh(wwhf’t + bw)

sT
it Tt sT ’
Yict eXP(”i,t “w)

t
s p—
u = thxi,thi)t.

In the attention process, we first use a one-full-layer per-
ception to learn u;; as a hidden representation of k;,. Then, in
order to learn the importance of a word in a sentence, we
calculate the similarity of hj, with a level context vector u,,.
Next, we use a softmax function to get a normalized importance
weight. Note that u,, is a model parameter in the attention
mechanism. The context vector u,, can be seen as a high-level
representation that selects which word is more important for a
sentence. After that, we get a state u° by a weighted sum of the
word annotations based on the weights. We can get a target
vector u' by the same method.

At the bilingual level, after combining the intermediate
vectors u° and u', the function networks encode sequence
vectors. We concatenate the forward GRU and the backward
GRU to obtain the hidden states for each input vector.

(7)

2.3. Classification Parallel Sentence. In this section, we should
detect whether a sentence pair is parallel or not from the top
neural network. In order to achieve this goal, we employ a
softmax layer to classify parallel sentences. The basic process is
that it maps the multiple outputs of the encode layer into an
interval (0, 1). In this paper, we treat the classifying parallel
sentence as a binary classification problem. We input the source
and target sentences into the encode layer. The encoder layer
outputs a state vector u into the classification layer. For the
classification layer, we use the following formula that maps the
input into the interval (0, 1). It is obvious that the output of the
classification layer is a probability.

l; = P(tilsi) = 6(0) 1)’ (8)

1+ e*(Wqurbc)
where W_ is a value matrix and b, is the bias term for the
classification layer. For the classification problem, we usually
use the cross-entropy as a loss.
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We use ¢ to stand for the binary cross-entropy. Then, we
use the gold label /; and predicted label I; for a pair of a
sentence i to optimize the loss. The final objective can be
minimized with stochastic gradient descent (SGD) or var-
iants such as Adam to maximize classification.

3. Experiments and Setup

In this section, we assess the effectiveness of our model. We
compare our method with multiple settings. As we want to
improve the performance of our model, we artificially
construct negative samples.

3.1. Negative Examples. Hangya and Fraser [19] showed that
a training model only using parallel sentences is not enough.
There are many sentence pairs where the overall meaning is
similar, but they are not parallel sentences. So, we need to
generate negative examples with similar words but different
meanings. Therefore, we generate synthetic noisy data from
good parallel sentences. We follow [20] to generate our
negative examples that have similar words but different
meanings.

Gregoire and Langlais [14] showed that obtaining par-
allel sentences from nonparallel corpora in practice is an
unbalanced classification task in which nonparallel sen-
tences represent the majority class. Although an unbalanced
training set is not desired since a classifier trained on such
data typically tends to predict the majority class and has a
poor precision, the overall impact on the performance of our
model is not clear. So, we train a total of 10 models with
kef{0,1,...,9}, such that with k=0 and k=9, a model is
respectively trained on the dataset with a positive to negative
sentence pairs ratio of 100% and 10%.

3.2. Data. To implement experiments, we use the BUCC’17
English-French, English-Chinese, and English-German
parallel datasets (https://comparable.limsi.fr/bucc2017/cgi-
bin/download-data.cgi) to train our model. For test sets, we
use the BUCC’17 English-French, English-Chinese, and
English-German  datasets  (https://comparable.limsi.fr/
bucc2017/cgi-bin/download-test-data.cgi). Each testing
dataset contains two monolingual corpora. The monolingual
corpora contain about 100k-550k sentences and
2,000-14,000 sentences are parallel. For the convenience of
researchers, BUCC 2017 provided us with an evaluation
script and a gold standard data to calculate the precision,
recall, and F-score. For Chinese, we use OpenCC (https://
github.com/BYVoid/OpenCC) to normalize characters to be
simplified and then perform Chinese word segmentation
and POS tagging with THULAC (http://thulac.thunlp.org).
The preprocessing of English, French, and German involves
tokenization, POS tagging, lemmatization, and lower casing
which we carry out with the NLTK (http://www.nltk.org)


https://comparable.limsi.fr/bucc2017/cgi-bin/download-data.cgi
https://comparable.limsi.fr/bucc2017/cgi-bin/download-data.cgi
https://comparable.limsi.fr/bucc2017/cgi-bin/download-test-data.cgi
https://comparable.limsi.fr/bucc2017/cgi-bin/download-test-data.cgi
https://github.com/BYVoid/OpenCC
https://github.com/BYVoid/OpenCC
http://thulac.thunlp.org
http://www.nltk.org

Computational Intelligence and Neuroscience

toolkit. The statistics of the preprocessed corpora are given
in Table 1.

3.3. Training Settings. We use 256-dimensional GRUs for all
RNNs in our model. To prevent the neural network from
overfitting, we give the drop-out as 0.5 for the last layer in
each module. In order to enhance our model, we add some
new negative parallel sentences into training data by sam-
pling {0, 1, ..., 9} negative sentence pairs for each parallel
sentence pair. For the system, we use TensorFlow to realize
our models. All those parameters introduced earlier are
based on manual analysis of the data and nonexhaustive
tuning on the development set.

3.4. Baselines. We compare our model to four baselines (the
parameters of the baselines follow their authors):

(1) Maximum entropy classifier (ME) [3]

(2) Multilingual sentence embeddings (MSE) [12]
(3) Dual conditional cross-entropy (DCCE) [21]

(4) An LSTM recurrent neural network (LSTM) [14]

The first baseline (ME) is the traditional statistics-
based approach that is conventionally considered as
alignment features between two sentences. The alignment
features mainly conclude the number of connected
words, the top three largest fertilities, and the length of
the longest connected substring. We use those features to
construct a maximum entropy classifier according to
Munteanu et al. This method mainly relied on feature
engineering. Feature engineering usually suffers from the
language diversity issue.

The second baseline (MSE) is an important contribution
of this type to approach that mentioned in [22]. First, they
used a continuous vector representation of each source-
target sentence pair which is learned using a bilingual
distributed representation model to reduce the size and
noise of the candidate sentence pairs. Then, they filtered
source-target sentence pairs by feature engineering and built
a support vector machine (SVM) binary classifier to identify
parallel sentences. This method also relied on feature
engineering.

The third baseline (DCCE): this work proposed dual
conditional cross-entropy to extract parallel sentences.
This work used the computed cross-entropy scores based
on training two inverse translation models on parallel
sentences. This method requires additional computa-
tional resources to train the translation model.

The final baseline (LSTM) is based on bidirectional
recurrent neural networks that can learn sentence repre-
sentations in a shared vector space by explicitly maximizing
the similarity between parallel sentences. This method does
not distinguish the various weights of words in detecting
parallel sentences. These end-to-end network models do not
add attention to encode and do not learn complex mappings
and alignments to quantify parallel information.

Compared to the baselines, the PHAN first is inde-
pendent of feature engineering. It makes the PHAN

5
TaBLE 1: Training and test set statistics.

Type Language Number
English-French 229,000

Training data English-Chinese 287,000
English-German 237,000

. English 38,069

English-French French 21.497

. . English 88,860

Test data English-Chinese Chinese 94637
. English 40,354

English-German German 32,594

universal and is easy to apply the PHAN into multiple
languages. Moreover, the PHAN uses a parallel hierarchical
attention mechanism to capture the deep representation of
monolingual and parallel bilingual sentences.

4. Results and Discussion

4.1. Model Evaluation. In this section, we first give the
overall performance of different models. Table 2 shows
precision, recall, and F, scores of three language pairs.
From Table 2, we can observe that the two methods of
ME and MSE get very poor performance compared with
ours. The performance is stable no matter in English-French,
English-Chinese, and English-German. As the two methods
of ME and MSE rely on feature engineering, alignment and
bilingual words need a lot of manual annotation. However,
manual annotation only covers limited language informa-
tion and the high cost of manual annotation makes it dif-
ficult to obtain large-scale annotation corpus in many
languages or domains. The work of [21] for the WMT18 task
performed sentence pairs’ extraction, was not feature-based,
and gave very good results. We also verify the performance
of our method by contrasting [21]. Junczys-Dowmunt [21]
trained a multilingual translation model to enforce the
agreement of cross-entropy scores. However, they need to
train a good machine translation system to improve per-
formance. The trained machine translation system heavily
affects the performance of required parallel sentences. From
Table 2, we can observe that the results of English-Chinese
are not as good as English-French and English-German. As
we all know, English-Chinese machine translation is not
good as English-French and English-German on the same
scale corpus and translation method. The reason is that
English-French and English-German are similar languages,
but English-Chinese is distant languages. In addition to
LSTM, which does not use a parallel attention mechanism,
we show a significant increase in our proposed method. Our
PHAN outperforms LSTM in three language pairs. We
analyze the performance of ours and LSTM; the main dif-
ference is that we treat the same words that may be dif-
ferentially important in different sentences. So, we use two
parallel networks and attention mechanism to learn different
context information. However, LSTM does not learn this
context information as it does not add an effective attention
mechanism. Our model uses a parallel attention mechanism
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TaBLE 2: The precision (P), recall (R), and F; scores of extracting parallel sentences.
En-Fr En-De En-Zh

Model

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
ME 88.37 83.12 86.72 87.83 82.25 86.02 83.58 80.61 83.90
MSE 93.75 88.43 91.28 92.89 88.05 91.17 90.36 86.93 89.52
DCCE 94.13 89.09 92.45 92.87 89.35 91.78 90.86 87.04 89.82
LSTM 93.89 88.71 92.03 93.05 87.93 91.67 91.83 87.16 90.06
PHAN 94.27 90.03 92.63 93.16 89.73 92.06 92.07 89.37 91.23

Méme si certains pays sont plus touchés que d'autres

Even if some nations are more affected than others

Even if some nations are more affected than others

Auch wenn manche Nationen stirker
betroffen sind als andere

13 B NE obE T NE R mE

i

Even if some nations are more affected
than others

AHEEE

en-fr

en-de

en-zh

FIGURE 3: Our results are three alignments in three language pairs.
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Auch wenn manche Nationen stéirker
betroffen sind als andere
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=
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en-fr

en-de en-zh

FIGURE 4: LSTM results are three alignments in three language pairs.

to mine more context information to improve performance.
In the next section, we will carry out two experiments to
further analyze our model.

4.2. Qualitative Analysis. We further analyze the perfor-
mance of PHAN to observe which model can make it
perform better than that without the attention mechanism.
Alignment is an important factor in identifying parallel
sentences. If the weights of alignment are not important, the
neural network without attention mechanism may also ef-
fectively detect parallel sentences since all alignments have
the same contribution. However, the alignment deeply de-
pends on linguistics and context [23-25]. For example, the
English word “bearing” means multiple Chinese words such
as “chengzhou,” “baochi,” and “zhoucheng” in a different
context.

We can visualize alignments for some sample sentences
and observed translation quality as an indication of an at-
tention model. In order to test that our model is able to mine

various informative alignments in parallel sentences, we use
this method to make the analysis. To test whether our model
can better capture alignments than LSTM without a parallel
attention mechanism, we plot the distribution of the at-
tention weights of the words in three language bilingual
sentences. The results are shown in Figures 3 and 4. The two
figures show that our attention model can obtain a better-
visualized alignment. From the two figures, we can find that
our model can obtain various alignment weights in three
language pairs. For example, our model can distinguish one-
to-many alignment in English-Chinese. We can find that
LSTM forces the alignment to one-to-one; if a word does not
capture alignment, it will not align any words. However, we
can observe the alignments of three language pairs; we find
that one-to-many occurs more in English-Chinese than
English-French and English-German. This may be the main
factor that our model gets a bigger improvement in English-
Chinese than English-French and English-German. In order
to verify this hypothesis, we count the proportion of the
number of words in three language sentence pairs. The
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FIGURE 5: The ratio of the number of words in three language sentence pairs.

1. “The Art of Eating Spaghetti (& XFITHI 4% )” _ English
M RRAMHZEAR” X —5 o Chinese
Chi yi da li mian de yi shu shi yi tiao ying ru wo de yan lian

2. “The Art of Eating Spaghetti (K FI I ) caught my eye. English
“L'art de manger des spaghettis (spaghettis)” a attiré mon attention. French

FiGure 6: Different languages have different alignments for the same English sentence.

results are shown in Figure 5. We can observe that English
sentences are often longer than Chinese sentences, and the
other language pairs have not this situation. This makes one-
to-many often occur in English-Chinese. It makes semantic
confusion and affects the classification of parallel sentences.
This is also an important reason why different language pairs
have various accuracies in the classification of parallel
sentences.

We further explore the language differences and their
impact on detecting parallel sentences. We manually extract
English-Chinese and English-French parallel sentences to
discuss language differences. Example 1 is extracted by the
PHAN, but the other baselines miss it. From Figure 6, we can
observe that the English phrase “caught my eye” and the
Chinese phrase “ying ru wo de yan lian” are not a suitable
translation regardless of context information. According to
the bilingual lexicon, “Zhua zhu wo de yan jing” is the right
translation of the English phrase. However, if we use the
translation “Zhua zhu wo de yan jing” to replace the phrase
“ying ru wo de yan lian” in the Chinese sentence, the new
sentence is wrong. Although the translation is right, it is a
wrong collocation in Chinese. The ME, MSE, and DCCE
need the lexicon to learn the bilingual signal, which leads to
the fact that the word pairs that are not in bilingual lexicon
affect detecting parallel sentences. As LSTM has no parallel
attention mechanism to effectively encode monolingual
information, LSTM cannot encode a monolingual context to
distinguish alignments. In fact, language differences and
their impact are very important in machine translation. In
building machine translation systems, many works add
attention to improve machine translation [26]. Example 2 is
obtained by all systems. The English phrase “caught my eye”
and the French phrase “attiré mon attention” are very right
translations in English-French lexicon. From the above, we
can conclude that our method can consider language dif-
ferences by encoding the monolingual context. It can lead to
a better result in detecting parallel sentences.

4.3. Performance in Machine Translation. In this paper, we
hope to obtain parallel sentences and improve the perfor-
mance of the machine translation system. In the training
machine translation system, we use the BUCC’17 English-
French, English-Chinese, and English-German parallel
datasets as baselines. We use our model to extract parallel
sentences from Wikipedia (https://linguatools.org/tools/
corpora/wikipedia-comparable-corpora/) corpus. Then, we
add the obtained parallel sentences into the three original
training data as the new training set for machine translation.
To evaluate the translation performance of machine trans-
lation, we use the well-known BLEU score. We use phrase-
based systems that are trained with Moses for the SMT
system. To train the NMT systems, we use OpenNMT
(https://github.com/OpenNMT/OpenNMT-py) system.

We trained 48 machine translation systems for each
SMT (http://www.statmt.org/moses/) and NMT (https://
opennmt.net/) approaches. The baseline systems are
trained with BUCC’17 English-French, English-Chinese,
and English-German parallel sentences. For the remaining
compared systems, we sort the extracted parallel sentence
pairs by an extraction system in descending order according
to the threshold values and append the top of {20000, 50000,
...,500000} and append the extracted parallel sentence pairs
to the original training dataset. We change different num-
bers of extracted parallel sentences to train the machine
translation system to test the stable performance of our
model.

Table 3 shows BLEU scores in machine translation
systems of SMT and NMT approaches. We can observe
that adding the parallel sentences extracted by our model
can lead to significant improvement compared to the
baseline systems. Therefore, we know that parallel
training sentences heavily affect the performance of the
machine translation system. This improvement can be
observed in three language machine translation systems.
The table shows different gains of BLEU scores compared


https://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
https://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
https://github.com/OpenNMT/OpenNMT-py
http://www.statmt.org/moses/
https://opennmt.net/
https://opennmt.net/
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TaBLE 3: The precision (P), recall (R), and F; scores of extracting parallel sentences.
Dat En-Fr En-De En-Zh
ata

SMT NMT SMT NMT SMT NMT
Baseline 23.71 22.32 21.62 21.35 21.1 17.32
Top20K 24.84 (+1.13) 25.42 (+3.1) 23.38 (+1.76) 25.06 (+3.71) 23.21 (+2.11) 24.56 (+7.24)
Top50K 26.16 (+2.45) 26.35 (+4.8) 24.63 (+3.01) 26.42 (+5.07) 24.66 (+3.56) 25.89 (+8.57)
Top100K 28.31 (+3.6) 27.48 (+5.03) 25.72 (+4.1) 27.67 (+6.32) 25.78 (+4.68) 27.02 (+9.7)
Top200K 29.37 (+4.66) 29.51 (+6.06) 26.76 (+5.14) 28.73 (+7.38) 26.86 (+5.76) 28.13 (+10.81)
Top300K 30.39 (+5.68) 30.55 (+8.10) 27.79 (+6.17) 29.80 (+8.45) 27.91 (+6.81) 29.18 (+11.86)
Top400K 30.41 (+6.70) 30.57 (+9.12) 28.83 (+7.21) 30.82 (+9.47) 28.92 (+7.82) 30.21 (+12.89)
Top500K 31.56 (+7.85) 31.58 (+10.13) 30.14 (+8.52) 31.85 (+10.50) 29.93 (+8.83) 31.22 (+13.9)

to the baseline systems. When we get Top20K, we add
extracted parallel sentence pairs to improve the BLEU
score of SMTand NMT systems by 1.13 and 3.1 in English-
French, and we also find this improvement in other
language pairs. Then, we observe that when we get
Top500K, the translation system trained on extracted
parallel sentences has better BLEU than Top20K. This
means that our model can effectively extract parallel
sentences so that it can improve BLEU. We know that
adding parallel training sentences can improve the per-
formance of machine translation. These results confirm
the quality of extracted sentence pairs and the effec-
tiveness of our model. Hence, we can conclude that our
approach could be applied to extract parallel sentences
from comparable corpora and improve the performance
of machine translation.

5. Conclusions

In this paper, we explore a new parallel hierarchical attention
network to extract parallel sentences. Our system is able to
obtain state-of-the-art performance in filtering parallel
sentences while using less feature engineering and pre-
processing. Additionally, our model can make full use of
monolingual and bilingual sentences. Moreover, we propose
a parallel attention mechanism to learn various alignment
weights in parallel sentences. In the experiments, we show
that our model obtains a state-of-the-art result on the
BUCC2017 shared task. In particular, the effectiveness of our
model in using the obtained parallel sentences to implement
machine translation tasks is demonstrated.

In the future, we will explore the following directions:

(1) BPE and similar methods can effectively help us solve
the out-of-vocabulary issue. We will use BPE to
improve its performance

(2) Our model needs parallel sentences to be trained,
which can be problematic in low-resource language
pairs. In order to lessen the need for parallel sen-
tences, identifying parallel sentences via minimum
supervision is a promising avenue, especially in low-
resource language pairs
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