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In recent years, ensemble classification methods have been widely investigated in both industry and literature in the field of
machine learning and artificial intelligence. (e main advantage of this approach is to benefit from a set of classifiers instead of
using a single classifier with the aim of improving the prediction performance, such as accuracy. Selecting the base classifiers and
the method for combining them are the most challenging issues in the ensemble classifiers. In this paper, we propose a het-
erogeneous dynamic ensemble classifier (HDEC) which uses multiple classification algorithms. (e main advantage of using
heterogeneous algorithms is increasing the diversity among the base classifiers as it is a key point for an ensemble system to be
successful. In this method, we first train many classifiers with the original data. (en, they are separated based on their strength in
recognizing either positive or negative instances. For doing this, we consider the true positive rate and true negative rate,
respectively. In the next step, the classifiers are categorized into two groups according to their efficiency in the mentioned
measures. Finally, the outputs of the two groups are compared with each other to generate the final prediction. For evaluating the
proposed approach, it has been applied to 12 datasets from the UCI and LIBSVM repositories and calculated two popular
prediction performance metrics, including accuracy and geometric mean. (e experimental results show the superiority of the
proposed approach in comparison to other state-of-the-art methods.

1. Introduction

Classification is a type of supervised learning which is aimed
at predicting the class of given data samples. (ere are many
classification algorithms in the literature including decision
trees, support vector machines [1], neural networks [2, 3],
Bayesian networks [4], and fuzzy classifiers [5–12]. However,
according to the “No Free Launch” theorem, there is no
universally superior classification algorithm that can out-
perform other algorithms for all datasets [13]. A good so-
lution to deal with this problem is the development and use
of ensemble classification algorithms [14]. In ensemble
learning, instead of using a single classification algorithm, a
set of algorithms are considered and the final output is
generated by combining the output of each classifier. Indeed,
the main goal of an ensemble classifier is to benefit from the
advantages of multiple classifiers and combine their outputs

such that the quality of the final output improves [15]. (e
individual classifiers contained in an ensemble system are
called base classifiers.

(e main challenges with ensemble classifiers are (1) to
select the base classifiers and (2) to combine the output of the
base classifiers [16]. An essential key for designing a suc-
cessful ensemble is to ensure that the base classifiers are
sufficiently diverse [17–19]. Two classifiers are diverse if their
outputs do not correlate with each other [20]. (ere are
different strategies for the construction of an ensemble
system. In homogeneous ensembles, the base classifiers are
from the same family and the diversity among the base
classifiers is achieved by training them with different sam-
ples of the training dataset [21].

Conversely, in heterogeneous ensembles, different
classification algorithms are considered for the base classi-
fiers; therefore, diversity is achieved by using different
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algorithms [22]. Bagging [23] and Boosting [24] are the most
commonly used homogeneous classifiers in the literature. In
Bagging, each base classifier is trained with a bootstrapped
replica of the training dataset and the final decision is
generated by applying a majority voting on the decision of
each base classifier. It is worth noting that other combination
methods can also be found in the literature such as weighted
voting and plurality voting [25]. On the other hand, the
Boosting constructs the base classifiers in an iterative
fashion, each compensating the weakness of its predecessors
[26]. (e constructed base classifiers are finally integrated
using the weighted voting approach.

Focusing on increasing diversity, several papers have
proposed heterogeneous ensemble classifiers [16, 27–29].
Stack Generalization (briefly, Stacking) is one the most
successful heterogeneous ensembles proposed in 1992 [30].
As shown in Figure 1, it uses a two-layer schema for training
the model. In the first layer, the base classifiers are trained
with different classification algorithms on the original
dataset. For example, in the first layer, one classifier is
trained with a Näıve Bayes algorithm while the other
classifier uses a decision tree algorithm for training on the
dataset. After training the base classifiers in the first layer, the
output of them for the same original dataset is used as a new
dataset to train the metaclassifier in the second layer. It
means that the output of each classifier in the first level is
considered as the inputs of the metaclassifier in the second
level. It is worth noting that selecting the type of the base
classifiers in the first level is an important issue in the
Stacking, because it could affect the prediction performance
of the Stacking. As mentioned before, an ideal subset of the
base classifiers are those that are diverse and accurate.

(e prediction performance of the Stacking is tightly
dependent on the accuracy and diversity of the base clas-
sifiers in the first layer [22, 28, 31]. In this paper, we propose
a novel approach for the smart selection of the base clas-
sifiers in order to improve the prediction performance of the
final model. We categorized the base classifiers into two
groups such that the classifiers within the first group can
efficiently recognize the positive samples while the second
group contains the classifiers suitable for the negative
samples.

In this paper, we propose a heterogeneous dynamic
ensemble classifier (HDEC) which uses multiple classifica-
tion algorithms and is aimed at selecting the best classifiers
for positive and negative instances. We categorize the
classifiers using the true positive rate and true negative rate
values to specify which classifiers are more accurate for
recognizing the positive and negative instances. (en, for an
unseen instance, the weight of each category is compared to
generate the final output. Our major contributions are the
following:

(1) We design a novel ensemble classifier which uses
heterogeneous classification algorithms in order to
increase the diversity between the base classifiers and
benefits from the advantages of different algorithms.

(2) HDEC dynamically selects the base classifiers that
should participate in the final decision-making

process. In other words, depending on the test in-
stances, it is possible that different classifiers are
selected to generate the final output.

(3) HDEC considers both TPR and TNR for detecting
the suitable classifiers in recognizing the positive and
negative instances, respectively. Indeed, unlike the
existingmethods, it does not rely on just the accuracy
of classifiers and with using the TPR and TNR
concepts it generates a more powerful ensemble
classifier.

In order to evaluate the proposed approach, we have
applied it on 12 datasets from the UCI and LIBSVM re-
positories. We use two popular performance measures in-
cluding accuracy and geometric mean. (e obtained results
show the superiority of the HDEC in comparison to indi-
vidual classifiers and state-of-the-art ensemble approaches.

(e rest of this paper is organized as follows. Section 2
contains a brief review of previous related works. In Section
3, we present our approach, while Section 4 demonstrates
the experimental results and shows the comparisons with
different approaches. Finally, in Section 5, we conclude this
study along with some future research directions.

2. Related Work

Several papers in the literature have investigated the usage of
the multiple classification algorithms as the base learners of
the ensemble classifiers [16, 27, 28, 32–35]. (ere are two
general approaches for selecting the base classifiers of an
ensemble classifier: static approaches and dynamic ap-
proaches. In static approaches, the base classifiers that
should participate in the final decision-making process are
selected during the training the ensemble classifier. Men-
dialdua et al. [36] proposed an approach to improve the
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Figure 1: (e Stack Generalization approach. In the first level,
some heterogeneous classifiers are trained with the whole dataset
and in the second level the output of the classifiers is combined
through the metaclassifier.
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accuracy of the Stack Generalization. (e authors argued
that although using multiple classification algorithms in-
creases the diversity among the base classifiers, not all of
them are suitable to be combined for generating the final
output. As a result, they appended an extra step for the Stack
Generalization to prune similar classifiers by applying the
Estimation of the Bayesian Network Algorithm (EBNA) on
the base classifiers. Coelho and Nascimento [27] used five
different learning algorithms for the base classifiers of the
bagging approach.(eymapped the combination of the base
classifiers to the chromosomes and by applying the genetic
algorithm they find the best combination of the base clas-
sifiers that should be aggregated for generating the final
output. Kadkhodaei and Eftekhari [37] designed a genetic
algorithm to find themost diverse set of the base classifiers to
improve the accuracy of the Stacking. A heterogeneous
boosting-based classifier is proposed in [38]. (e authors
have considered a set of distinct learning algorithms and
generated heterogeneous classifiers at each iteration of the
boosting. In order to increase the diversity among the base
classifiers, a pruning step eliminates similar base classifiers.
Finally, the remaining classifiers are combined by applying
the weighted voting method.

In contrast, in dynamic ensemble classifiers (DES), the
decision of which classifiers should be combined for gen-
erating the final output is postponed until generalization
phase [39–45]. In other words, there will be not a fixed
subset of classifiers which applies to any test instance. A
dynamic ensemble classifier for credit scoring has been
proposed in [46]. In this method, initially, the classifiers are
selected based on their accuracy and relative costs of Type I
and Type II errors for a validation set. (en, the selected
classifiers are combined based on the classification results by
using the soft probability. (e authors have applied their
approach to the four credit datasets from the UCI repository
and reported the superiority of their algorithm in terms of
the accuracy, area under ROC (receiver operating charac-
teristic) curve (AUC), H-measure, and Partial Gini index
(PG) in comparison to other state-of-the-art approaches.
(e authors of [47] argued that most misclassifications occur
in areas near classes boundaries of a dataset. (ey called this
area Region of Competence (RoC) and proposed an ap-
proach (FIRE-DES) to dynamically select the best base
classifiers which are powerful in classifying the instance
which falls into the RoC. (ey have applied their approach
on 40 datasets and showed the validity of the FIRE-DES
against other approaches.

3. HDEC: A Heterogeneous Dynamic
Ensemble Classifier

In this section, we describe our proposed approach. Our
main objective is to design a heterogeneous ensemble
classifier such that the prediction performance improves.

Figure 2 depicts the general schema of the HDEC. (e
pseudocode of the training and generalization phase is also
shown in Figures 3 and 4. In a nutshell, we use multiple
learning algorithms and train many classifiers with them in
order to separate the classifiers which are accurate in

recognizing the positive samples and those that are efficient
in recognizing the negative samples. (e rationale behind
separating the classifiers is that some classifiers which are
efficient in recognizing the positive samples may not be
suitable for classifying the negative samples. (is is true for
efficient classifiers in recognizing the negative samples.
Afterward, we make two groups and for an unlabeled in-
stance we dynamically specify which group is more confi-
dent for generating the final prediction of the instance.

As we can see in Figure 2, the proposed approach
consists of five steps. Furthermore, a preprocessing step is
required to make a balance dataset from the input instances.
As mentioned before, the main idea behind the proposed
approach is to use both true positive rate and true negative
rate simultaneously for identifying which classifiers can
better recognize the instances. In other words, the degree of
trust in each classifier is determined by the obtained values
of TPR and TNR.

Let us consider D � (x1, y1), (x2, y2), . . . , (xN, yN)􏼈 􏼉 is
the dataset where each (xi, yi) represents a training sample
such that xi ∈ Rd , yi ∈ +, −{ }, and N is the number of total
samples. In the following, we elaborate on the steps of the
proposed method. Since we use multiple learning algo-
rithms, we can expect that a diverse set of classifiers are
formed.

3.1. Generating Many Classifiers. Our proposed approach
commences with considering many learning algorithms and
training them by using the original dataset. Suppose that we
consider L distinct learning algorithms. As a result, L
classifiers will be generated:

H � h1, h2, . . . , hL􏼈 􏼉. (1)

In other words, the output of this step is a pool of L

heterogeneous and diverse classifiers. Note that in our
proposed method the dataset should have an equal number
of positive and negative instances, i.e., a balance dataset.
(us, we have used the SMOTE technique [48] to convert
the imbalanced dataset into the balanced dataset.

3.2. Calculating the TPR and TNR. In order to specify which
classifiers are efficient for classifying either positive or
negative samples, we consider a validation set. Each classifier
generates the predictions for the instances within the vali-
dation set.

(en, we evaluate the performance of the classifier for
positive and negative samples by calculating the TPR and
TNR according to (2) and (3), respectively. TPR or recall
[49] is defined as the ratio of the positive samples (TP) that
are correctly classified to the total number of positive
samples in the validation set (P).

(emore the positive samples are classified correctly, the
higher the TPR value is. Accordingly, TNR or specificity
represents the ratio of the number of negative samples
correctly classified (TN) to the total number of negative
samples (N) [49]:
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TPR �
TP
P

, (2)

TNR �
TN
N

. (3)

3.3. Sorting the Classifiers with respect to the TPR and TNR.
After calculating the TPR and TNR for the generated
classifiers, we sort them with respect to both TPR and TNR
in descending order. (e reason for sorting the classifiers is
that we want to specify which of them are more efficient for

Apply SMOTE
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Figure 2: (e general schema of the HDEC. Each hi is a classifier trained by the whole dataset. (e generated classifiers are split into two
categories based on the TPR and TNR values. For classifying an unlabeled instance, the sum of the TPR and TNR in each category is
calculated and the final output is the argmax between these two values.
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positive samples and which of them are more efficient for the
negative samples. We have

H � h1, h2, . . . , hL􏼈 􏼉 ⟶
sort w.r.t.TPR

H
TPR

: h
TPR
1 , h

TPR
2 , . . . , h

TPR
L􏽮 􏽯,

(4)

such that TPR(hTPR
i )>TPR(hTPR

j ), i< j

H � h1, h2, . . . , hL􏼈 􏼉 ⟶
sort w.r.t.TNR

H
TNR

: h
TNR
1 , h

TNR
2 , . . . , h

TNR
L􏽮 􏽯,

(5)

such that TNR(hTNR
i )>TNR(hTNR

j ), i< j

3.4. Categorizing the Classifiers into Two Groups. After
sorting the classifiers in the previous step, we select the top T
of the sorted classifiers to make two groups:

ATPC (Accurate True Positive Classifiers): this group
contains the classifiers which accurately recognize the
positive samples. We have

H
TPR

: h
TPR
1 , h

TPR
2 , . . . , h

TPR
L􏽮 􏽯⟶

topT
H

TPR
: h

TPR
1 , h

TPR
2 , . . . , h

TPR
T􏽮 􏽯. (6)

ATNC (Accurate True Negative Classifiers): the classi-
fiers within this group are efficient in recognizing the
negative samples:

H
TNR

: h
TNR
1 , h

TNR
2 , . . . , h

TNR
L􏽮 􏽯⟶

topT
H

TNR
: h

TNR
1 , h

TNR
2 , . . . , h

TNR
T􏽮 􏽯. (7)

3.5. Combining the Classifiers. Once the classifiers are di-
vided into two groups, there should be a strategy to combine
the output of the classifiers. For an unlabeled sample, the

classifiers within each group generate their prediction. For
the ATPC group, we only consider the positive prediction
and for the ATNC group we only consider the negative

Input: Dataset D, Set of learning algorithms {Λ}
number of base classifiers L

Output: An effective ensemble model 

Ds ← Apply SMOTE strategy to create a balanced the dataset

CP = empty // Classifier Pool

for i = 1 to L do

Add hi to CP;

end

Return (ATPC , ATNC);

Train λi with Ds and build the hypothesis hi

// Calculate TPR and TNR

ATPC←Sort_And_SelectTPC (CP, Desc); // Sort CP descending w.r.t. TPR

ATNC←Sort_And_SelectTNC (CP, Desc);// Sort CP descending w.r.t. TNR

Evaluate_hi_Using_Validation_Set

Figure 3: (e pseudocode for training phase of HDEC.

else

Input: Test instance xi, ATPC classifiers, ATNC classifiers

Output: An effective ensemble model

Val_TP = calculate the value according to eq.(8)

Val_TP = calculate the value according to eq.(9)

predicted class ← positive

if (Val_TP > Val_TN)

Return predicted class

predicted class ← negative

Figure 4: (e pseudocode for generalization phase of HDEC.
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predictions (according to (8) and (9)). (is is due to the fact
that the classifiers in the ATPC group are just efficient in
recognizing the positive samples and generating a negative
prediction does not matter much. In contrast, if a classifier in
the ATNC group generates a positive prediction for an
unlabeled instance, we ignore it. Afterward, we compare the
sum of TPR and TNR for the ATPC and ATNC groups,
respectively. (e final prediction is the class that generates
the highest value:

predictATPC � 􏽘

NATPC

i�1
TPR h

TPR
i􏼐 􏼑 × I predict xi( 􏼁 � positive( 􏼁,

(8)

predictATNC � 􏽘

NATNC

i�1
TNR h

TNR
i􏼐 􏼑 × I predict xi( 􏼁 � negative( 􏼁,

(9)

where I(·) is the identity function such that its output is one if
the input parameter is true; otherwise it is zero. In (8),
TPR(hTPR

i ) is the true positive rate value for the base
classifier hi. (is value is calculated in the second step of the
proposed algorithm as described in Section 3.2. (e ex-
pression I(predict(xi) � positive) is for ignoring the neg-
ative prediction by the classifiers in the ATPC group. In
other words, if a classifier in the ATPC group makes a
negative prediction for an unlabeled instance xi, the value of
I(predict(xi) � positive) will be zero, because the input
parameter is false. Consequently, the TPR value is ignored as
it will be multiplied by the zero.

According to the above description, it makes sense that
HDEC dynamically specifies which category is more con-
fident for generating the final output for an unlabeled
instance.

4. Experimental Study

In this section, we describe the experimental details and the
analysis carried out to show the performance of the pro-
posed method against state-of-the-art approaches.

4.1. Dataset. For evaluating the proposed method, 12
standard datasets from the UCI [50] and LIBSVM [51]
repositories are selected. Table 1 shows the characteristics of
the used datasets. (e last column indicates the ratio of the
majority class to the minority class. As it can be seen, the
selected datasets belong to different categories and cover a
wide range of problems (from 155 to 1284 instances, from
two to 60 features, and from a variety of imbalance ratios).
Since we categorize the classifiers into two groups, our
approach is only applicable to the binary datasets. To carry
out the experiments, we have used a 10-fold cross-validation
strategy.(at is, each dataset is divided into ten folds and we
use nine folds for training the classifiers and the remaining
fold as the test data. We repeat this process ten times and
finally report the average value of the performancemeasures.

4.2.BaseClassifiers. All of the experiments have been carried
out by using the Weka package which is one of the most
popular machine learning libraries. Table 2 presents the
classification algorithms used as the base classifiers of the
proposed method. As can be seen, they belong to the dif-
ferent families of the Weka classifiers.

4.3. PerformanceMeasurements. To reach a reliable result on
the proposed approach, we have used two popular perfor-
mance indicator measures including accuracy and geometric
mean. (e accuracy is calculated from dividing the number
of instances correctly classified by the total number of in-
stances. It is formulated by [52]

accuracy �
TP + TN

N
× 100, (10)

where TP is the number of positive instances that are
correctly recognized and TN is the number of negative
instances that are correctly classified.

However, the accuracy alone does not express which
class has been better classified. Regarding this issue, we use
geometric mean measure which considers the strength of a
classifier in both positive and negative classes [52]:

GM �
����������
TPR × TNR

√
�

����������������
TP

TP + FN
×

TN
TN + FP

􏽲

. (11)

Table 1: (e characteristics of the used datasets.

Dataset No. of samples No. of features Min/Maj
Australian 690 14 307/383
Breast-cancer 286 9 85/201
Colic 368 22 136/232
Diabetes 768 8 268/500
Four-class 862 2 307/555
Heart 270 13 120/150
Hepatitis 155 19 70/85
Ionosphere 351 34 126/225
Liver-disorders 345 6 145/200
Sonar 208 60 97/111
SVMguide 1284 21 296/947
Vote 435 16 168/267

Table 2: (e classification algorithms used for the base classifiers.

Type Base classifier Notation

Bayes Naı̈ve Bayes NB
Bayesian network BN

Lazy KStar K∗
IBk KNN

Tree
Decision tree DT

RepTree RT
Decision stump DS

RuleþBase OneR 1R
Decision table DsT

Functions SVM SVM

6 Computational Intelligence and Neuroscience



4.4. Method. With the aim of evaluating the proposed ap-
proach, we have compared HDEC against different classi-
fiers including (a) single classifiers presented in Table 2, (b)
three state-of-the-art ensemble classifiers investigated in the
literature including Bagging, Boosting, and Stacking, and (c)
the approach introduced in [36].

4.5. Obtained Results. Table 3 shows the best average ac-
curacy and geometric mean for the individual classifiers
presented in Table 2 along with the corresponding classi-
fication algorithm. (e standard deviations of the accuracies
and geometric means of 10 simulations are also shown using
the “±” sign corresponding to each percentage.

Table 3: (e best result of individual classifiers.

Dataset
Accuracy Geometric mean

Type Value Type Value
AUS RT 85.65± 0.46 1R 85.98± 0.51
BRC DT 74.23± 0.96 DS 62.11± 2.24
COL DT 85.38± 0.29 DT 81.85± 0.34
DBT SVM 76.86± 0.31 BN 71.81± 0.94
CLS KNN 100 KNN 100
HRT SVM 84.44± 0.51 SVM 83.90± 0.57
HPT SVM 85.10± 1.57 NB 78.28± 0.83
ION RT 91.16± 0.73 DT 89.02± 0.81
LVD K∗ 66.67± 1.39 K∗ 65.76± 1.30
SON KNN 86.54± 0.27 KNN 86.20± 0.33
GDE DsT 83.19± 0.33 DT 70.27± 0.44
VOT DT 96.64± 0.21 DT 96.39± 0.21

Table 4: (e best accuracy of the ensemble approaches.

Dataset
Best-bagging Best-AdaBoost Best-stacking

CSS [36] HDEC
Type Acc Type Acc Type (meta) Acc

AUS DT 86.52± 0.97 DS 86.67± 0.82 BN 86.38± 1.12 — 87.12± 1.09
BRC BN 73.95± 1.30 DS 71.61± 1.02 BN 72.73± 1.31 74.83± 0.70 76.47± 0.52
COL RT 85.33± 0.36 DS 82.36± 1.46 BN 84.96± 0.26 86.74± 0.84 87.23± 0.60
DBT BN 77.36± 0.50 BN 76.86± 0.31 NB 76.26± 0.25 77.86± 0.56 78.29± 0.31
CLS KNN 100 KNN 100 All– (K∗, DsT) 100 — 100
HRT NB 84.44± 0.21 SVM 84.44± 0.21 RT 84.44± 0.21 — 84.63± 0.41
HPT NB 83.94± 0.73 NB 84.00± 0.69 BN 83.01± 0.30 86.52± 1.12 87.47± 0.97
ION RT 93.16± 0.28 NB 93.15± 0.27 BN 93.45± 0.44 — 93.36± 0.21
LVD DT 70.03± 1.63 DT 68.12± 1.15 NB 66.09± 1.32 71.51± 1.27 74.67± 1.02
SON K∗ 85.10± 0.27 KNN 86.54± 0.22 RT 88.94± 0.37 — 90.12± 0.44
GDE DT 83.11± 1.24 DT 83.11± 1.13 SVM 83.75± 1.18 — 84.21± 0.97
VOT DT 96.30± 0.36 NB 95.95± 0.33 DS 96.07± 0.59 96.90± 0.31 96.09± 0.21

Table 5: (e best geometric mean of the ensemble approaches.

Dataset
Best-bagging Best-AdaBoost Best-stacking

CSS [36] HDEC
Type Acc. Type Acc. Type (meta) Acc.

AUS DT 86.60± 1.13 DS 86.60± 1.01 BN 86.78± 1.27 — 87.05± 1.41
BRC BN 61.00± 1.92 DS 58.16± 1.95 BN 64.74± 0.20 61.57± 2.31 65.77± 1.06
COL RT 82.25± 0.59 DS 80.35± 1.27 BN 83.06± 0.09 81.47± 1.93 85.85± 0.64
DBT BN 72.48± 1.05 BN 71.78± 0.95 NB 72.46± 0.44 71.44± 0.96 75.11± 0.51
CLS KNN 100 KNN 100 All– (K∗, DsT) 100 — 100
HRT NB 83.65± 0.29 SVM 83.90± 0.22 DS 83.90± 0.32 — 84.29± 0.46
HPT NB 78.01± 0.84 NB 71.92± 1.93 BN 76.81± 2.46 72.53± 5.93 78.35± 2.46
ION RT 91.34± 0.42 NB 92.73± 0.19 BN 92.18± 0.55 — 92.94± 0.46
LVD DT 67.23± 2.43 DT 66.61± 1.53 NB 62.83± 0.73 68.48± 1.82 73.46± 1.02
SON K∗ 84.43± 0.42 KNN 86.20± 0.24 RT 88.77± 0.49 — 90.48± 0.25
GDE BN 66.97± 1.48 RT 70.74± 1.27 NB 75.44± 1.37 — 78.12± 1.91
VOT DT 96.27± 0.31 NB 95.88± 0.52 DS 96.11± 0.56 95.80± 1.08 96.21± 0.29

Computational Intelligence and Neuroscience 7



As it is clear, there is not a unique classification algo-
rithm that is always superior to others. For example, while
the decision tree generates the best accuracy for the BRC and
COL datasets, the SVM has the highest accuracy for the DBT
and HPT datasets.

Tables 4 and 5 show the values of the accuracy and
geometric mean of different ensemble approaches, respec-
tively. For doing this, we have set each classification algo-
rithm in Table 2 as the base learner of Bagging and Boosting.

For Stack Generalization, we have set the classification
algorithm as its metaclassifiers. (e hyphen for the CSS
column indicates that the authors of [36] did not applied their
approach for the respective dataset.(e best results are shown
in bold fonts. (e results are shown graphically in Figures 5
and 6. As can be seen, HDEC outperforms the other ensemble
approaches in 10 out of 12 datasets in terms of the accuracy
and 11 out of 12 datasets in terms of geometric mean. In other
words, both accuracy and geometric mean have been im-
proved as a result of applying the HDEC method.

We can also see that the geometric mean has been more
improved than the accuracy. (is is as a result of smart
selection of the base classifiers for classifying the unseen
instances. (e positive instances are more likely to be
classified correctly with the classifiers which are efficient in
classifying the positive instances, i.e., ATPC groups. Ac-
cordingly, the same is true for negative instances.(is causes
the fact that both TPR and TNR values improve simulta-
neously and consequently the geometric mean value
increases.

Table 6 shows the classifiers in each ATPC and ATNC
group. It is observed that there are different classification
algorithms which are suitable for classifying the positive and
negative instances. For example, while KStar algorithm has a
good strength for classifying the positive instances of the
LVD dataset, it is suitable for neither classifying the positive
instances nor classifying negative instances. It should be
taken into account that a classification algorithmmay have a
good strength for classifying both positive and negative
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Figure 5: (e comparison of the accuracy of the HDEC and other approaches.
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Figure 6: (e comparison of the geometric mean of the HDEC and other approaches.
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instances. As an exemplification, we can see that the Näıve
Bayes classifier exists in both ATPC and ATNC groups
which means that it can classify both positive and negative
instances efficiently.

5. Conclusion

(e aim of this study is to design a heterogeneous en-
semble classifier in order to achieve higher prediction
performance. For this purpose, we consider multiple
classification algorithms and train each of them with the
training dataset. (en, we separate the classifiers which
are accurate in recognizing the positive samples and
those that are efficient in recognizing the negative
samples. (is is done by calculating the TPR and TNR
values of each classifier for the validation set. After-
wards, we select the classifiers which have the higher
value for the TPR and TNR to form two groups ATPCS
and ATNC classifiers, respectively. We then combine the
output of the classifiers in each group to generate the
final output.

In order to evaluate the prediction performance of the
HDEC, we have applied it on 12 standard datasets from the
UCI repository and compare our proposed method against
three state-of-the-art ensemble approaches including Bag-
ging, Boosting, and Stack Generalization. (e obtained re-
sults show the superiority of HDEC in terms of the accuracy
and geometric mean values.

It is worth noting that although HDEC shows better
performance in many datasets, it is not our purpose to
express that HDEC is always better than other ensemble
approaches for any dataset. As we stated before, according to
“No Free Lunch” theorem, there is not a unique classifier
which always shows best performance for all datasets. (e
proposed approach needs a balanced dataset and for this
purpose we included an extra preprocessing step (using
SMOTE) to convert imbalanced datasets to the balanced
datasets.

For future work, we plan to extend the proposed algo-
rithm such that it does not need the balancing step and can
handle the imbalanced datasets directly. Furthermore, it is
suggested to develop an adoption model to investigate the
usage of more classification algorithms as the base classifiers

of the HDEC. We also plan to extend our work to be capable
of classifying the multiclass datasets.
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