
Research Article
WhaleOptimizationAlgorithm forMulticonstraint Second-Order
Stochastic Dominance Portfolio Optimization

Q. H. Zhai,1 T. Ye,2 M. X. Huang,3,4 S. L. Feng ,4 and H. Li4

1School of Sciences, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
2College of Management and Economy, Tianjin University, 92 Weijin Road Nankai District, Tianjin 300072, China
3State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, No. 58 Renmin Avenue,
Haikou 570228, China
4School of Information and Communication Engineering, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China

Correspondence should be addressed to S. L. Feng; fengsiling2008@163.com

Received 30 May 2020; Revised 25 July 2020; Accepted 31 July 2020; Published 28 August 2020

Academic Editor: Cornelio Yáñez-Márquez
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In the field of asset allocation, how to balance the returns of an investment portfolio and its fluctuations is the core issue. Capital
asset pricing model, arbitrage pricing theory, and Fama–French three-factor model were used to quantify the price of individual
stocks and portfolios. Based on the second-order stochastic dominance rule, the higher moments of return series, the Shannon
entropy, and some other actual investment constraints, we construct a multiconstraint portfolio optimization model, aiming at
comprehensively weighting the returns and risk of portfolios rather than blindly maximizing its returns. Furthermore, the whale
optimization algorithm based on FTSE100 index data is used to optimize the above multiconstraint portfolio optimization model,
which significantly improves the rate of return of the simple diversified buy-and-hold strategy or the FTSE100 index. Fur-
thermore, extensive experiments validate the superiority of the whale optimization algorithm over the other four swarm in-
telligence optimization algorithms (gray wolf optimizer, fruit fly optimization algorithm, particle swarm optimization, and firefly
algorithm) through various indicators of the results, especially under harsh constraints.

1. Introduction

In the field of finance, the portfolio optimization problem
has drawn a lot of attention since the mean-variance (M-V)
model was proposed by Markowitz [1]. Based on the
probability theory, the M-V model takes the first two mo-
ments of the return rate distribution, including expected
returns and variance, into account. However, subsequent
research studies find that the M-V model is not suitable for
the practical financial environment. For example, Chun-
hachinda et al. [2] pointed out that the returns to the major
international stock market are not normally distributed,
while the M-V model assumes that the expected returns of
the portfolio have a symmetric normal distribution. Besides,
the M-V model takes the variance as a risk measure, which
counts both upward and downward deviations, which is
contrary to the definition of the investment risk [3]. Hence,

Markowitz [4] replaced the risk measure with the semi-
variance, which is more suitable in the case of asymmetric
distribution. In addition, there are many other alternative
risk measures, such as the mean absolute deviation (MAD),
value at risk (VaR), and conditional value at risk (CVaR).

Other than the traditional M-V model, the portfolio
optimization model based on the stochastic dominance (SD)
relation is highly applied. To be specific, the relationship
between the first-order stochastic dominance (FSD) and
utility theory was first discussed by Quirk and Saposnik [5].
Hadar and Russell [6] extended the above relationship to the
second-order stochastic dominance (SSD). 3ereinto, dif-
ferent-order SD relations relate to different kinds of utility
functions. In the meantime, SD relation is of interest because
it takes the risk appetite into consideration and is more
suitable to investors in realistic financial environments.
Specifically speaking, FSD reflects the behavior of rational
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investors, while SSD reflects the behavior of rational risk-
averse investors. Dentcheva and Ruszczynski [7] first pro-
posed the portfolio optimization model with SD constraints.
3en, Roman and Mitra [8] pointed out that the portfolio
optimization model with the SSD rule improves the per-
formance of the traditional M-Vmodel. Besides, Leshno and
Levy [9] established an almost stochastic dominance (ASD)
relation, which reveals the preference for most investors
rather than all of them.Moreover, Fabian et al. [10] proposed
the SSD portfolio optimization model, which is called TSSD,
using tail risk measures at different confidence levels. Re-
cently, Javanmardi and Lawryshyn [11] proposed the SSD-
DP model, which does not require a benchmark portfolio.

However, only considering the SSD constraint is not
enough to get an effective portfolio in the complex invest-
ment environment. 3erefore, additional real-life con-
straints, such as transaction costs, higher moments,
diversification, and boundary constraints, should be taken
into consideration in portfolio optimization. In any financial
market, investors are obliged to pay transaction costs when
buying or selling the securities. As one of the key factors
affecting the net return, transaction costs are of great im-
portance to investors, and ignoring them will result in an
ineffective portfolio [12, 13]. Besides, higher moments of
return distribution, including skewness and kurtosis, have
drawn investors’ attention, which takes the extreme value
into account rather than focusing solely on the average [14].
Leung et al. [15] pointed out that neglecting skewness will
lead to an inefficient portfolio. Yu and Lee [16] showed that
the model with higher moments performs better. As for
diversification, it is a strategy that integrates a wide variety of
investments into the portfolio. Models considering diversity
are propitious to eliminate the unsystematic risk in the
portfolio and make asset allocation more feasible [17, 18].
Normally, Shannon’s entropy and Yager’s entropy are used
to measure the diversity of a portfolio. Furthermore, given
that small proportions held in the portfolio have little impact
on its performance and high proportions go against the
flexibility, the boundary constraint, also known as the buy-in
threshold constraint, is included in the portfolio optimi-
zation model to limit the upper and lower bounds of the
investment ratio in individual assets [19, 20].

After introducing several constraints into the model, the
portfolio optimization problem converts to an NP-complete
problem, which limits the computational efficiency as the
problem size increases. Besides, SSD constraints require the
comparison of any two investable assets. As the number of
investable assets increases, the computational requirements
become more demanding. 3erefore, heuristic algorithms
are widely used to optimize the multiconstraint portfolio
optimization problem, such as the particle swarm optimi-
zation (PSO) [21], firefly algorithm (FA) [22], biogeography-
based optimization (BBO), and artificial bee colony (ABC)
[23]. Recently, Babazadeh and Esfahanipour [24] developed
a nondominated sorting genetic algorithm and applied it to a
multiperiod mean-var portfolio optimization model under
the cardinality, budget, floor, and ceiling constraints. Chen
et al. [25] combined the FA and the genetic algorithm (GA)
and then applied it to a mean-variance-skewness portfolio

selection model under the transaction costs, bounds on
holdings, cardinality, and transaction lots constraints.

Whale optimization algorithm (WOA) is a metaheuristic
optimization algorithm introduced by Mirjalili and Lewis
[26], which is inspired by the bubble-net hunting strategy of
humpback whales. Besides, WOA was tested for 29 math-
ematical optimization problems and 6 structural design
problems, and the results prove that WOA is very com-
petitive with the existing metaheuristic algorithms as well as
conventional methods. 3e most important is that WOA
mainly mimics the hunting behavior of humpback whales in
searching for and attacking preys called the bubble-net
feeding behavior [27], which improved the performance of
candidate solutions in each step. Because of its character-
istics of simple theory, easier operation, less parameter
setting, and no special requirements for optimized function,
WOA is widely used in image segmentation [28], parameter
estimation [29], sizing optimization [30], and global opti-
mization [31]. Recently, Abdel-Basset et al. [32] integrated
WOA with a local search strategy for solving the problem of
permutation flow shop scheduling. Reddy et al. [33] applied
WOA to profit-based unit commitment problems in com-
petitive electricity markets with good performance.

However, in these papers, WOA has still not been ap-
plied to solving the multiconstraint SSD portfolio optimi-
zation model. 3e motivation for proposing WOA for the
multiconstraint SSD portfolio optimization model in this
research is twofold. First, based on the above literature
review, there have been several successful applications based
onWOA. Second, in the preliminary research work, we have
achieved decent performance on the SSD portfolio opti-
mization model by GWO. In this paper, a new improved
multiconstraint SSD portfolio optimization model is pro-
posed and optimized by WOA.

For the multiconstraint SSD portfolio optimization
model, the area of the feasible region is very small, which
makes it difficult to produce feasible solutions. At the same
time, considering harsh constraints makes the traditional
optimization methods tend to converge to the local opti-
mum, which results in the loss of population diversity and
poor optimization ability. Compared with the traditional
evolutionary algorithm, such as GA, on the one hand, WOA
has a stronger ability to jump out of the local optimum and
explore the globally optimal solution; on the other hand, the
bubble-net attack process ensures that WOA has higher
accuracy than other swarm intelligence algorithms, such as
the gray wolf optimizer (GWO) and the fruit fly optimi-
zation algorithm (FOA). 3erefore, WOA is used to opti-
mize the above multiconstraint SSD portfolio optimization
model. Furthermore, we perform numerical experiments
based on FTSE100 index data and compare the performance
of the optimal portfolio obtained by WOA with that ob-
tained by GWO, FOA, PSO, and FA.

3e novel contributions of this paper are as follows.
Firstly, the multiconstraint SSD portfolio optimization

model is proposed. We incorporate several realistic con-
straints into the SSD portfolio optimization model, in-
cluding the transaction cost, skewness, kurtosis,
diversification, and boundary constraints. Secondly, WOA is
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successfully used to optimize the above multiconstraint SSD
portfolio optimization model. Lastly, an optimal portfolio
strategy obtained by WOA is found to be greater than that
obtained by other four different algorithms. 3e rest of this
paper is organized as follows. In Section 2, we discuss the
portfolio optimization model with SSD and other real-life
constraints. In Section 3, we discuss theWOA for solving the
proposed model. In Section 4, we present a numerical ex-
periment and analyse the performance of WOA. Finally, a
brief conclusion is illustrated in Section 5.

2. The Multiconstraint Portfolio
Optimization Model

In this section, a detailed discussion of the SSD portfolio
optimization model under several realistic or higher mo-
ment constraints is presented. Specifically speaking, it is well
known that only considering returns and risk is not enough
to get an effective portfolio that meets the complicated
investment environment. Besides, in the real-world financial
market, the return distribution of the portfolio is not a
normal distribution, which means that higher moments of
return distribution should not be neglected. 3erefore,
several realistic or higher moment constraints, including the
transaction cost, skewness, kurtosis, diversification, and
boundary constraints, are included in the framework of SSD
portfolio optimization.

2.1.1eReturns,NetReturn, andExcessMeanReturn. As one
of the most basic elements of portfolio optimization
problems, returns play an important part in indicating the
performance of a portfolio. In the financial market, the
returns of investment can be defined as the ratio of the net
gain or loss to the initial cost of the investment, separately
known as positive returns and negative returns, which can be
formulated as follows:

ri,t �
pi,t − pi,t−1 + di,t

pi,t−1
, (1)

where pi,t and pi,t−1 are the price of asset i at period t and
t − 1, respectively, and di,t is the dividend of asset i and
period t. Let n denote the number of assets, which are
available for investment at the beginning of a fixed period
and x � (x1, x2, . . . , xn) denote the fraction of the initial
capital invested in xi. 3en, we use X ∈ Rn to denote a set of
feasible portfolios, which is a bounded convex polyhedron
clearly. Besides, let Ri(ξ) denote the returns of asset i under
discrete distribution, where a random vector is on the
probability space (Ω, F, P). Assuming that the capital
available for investment is fixed and E[|Rj|]<∞, the returns
of portfolio x can be expressed as follows [3]:

g(x, ξ) � 􏽘
n

i�1
Ri(ξ)xi. (2)

However, we always need to pay fees when trading assets,
such as brokerage fees, bid-ask spreads, taxes, and fund load,
which are known as transaction costs. Arnott and Wanger

[12] pointed out that ignoring the transaction costs would
lead to an ineffective portfolio. In this paper, we employ a
V-shaped transaction cost function to express the transac-
tion costs between the new portfolio x � (x1, x2, . . . , xn)

and the existing portfolio x0 � (x0
1, x0

2, . . . x0
n). Let c(x)

denote the total transaction costs of n assets, which can be
formulated as follows:

c(x) � 􏽘
n

i�1
c(i) xi − x

0
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (3)

where c(i) is the unit transaction cost of asset i. It is set to
0.9%, among which the commission is 0.4% and the stamp
duty is 0.5%. 3us, the net return of portfolio x can be
displayed as follows [34]:

f(x, ξ) � 􏽘
n

i�1
Ri(ξ)xi − 􏽘

n

i�1
c(i) xi − x

0
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (4)

Furthermore, the excess mean return (EMR) is always
used to describe performance over the existing portfolio,
which is an average of the difference between the returns of
the new portfolio x � (x1, x2, . . . , xn) and the existing
portfolio x0 � (x0

1, x0
2, . . . x0

n), and can be formulated as
follows:

EMR(x) �
1
T

􏽘

T

j�1
Rj(x) − Rj x0( 􏼁􏼐 􏼑, (5)

where Rj(x) andRj(x0) denote the returns of the portfolio x

and x0 in the period j. In a word, all of the above three
indicators can be used to evaluate the performance of a new
portfolio. Specifically speaking, the returns of portfolio are
used to calculate constraints, such as skewness. 3e net
return of the portfolio is used as an objective function, and
the EMR is only used as an evaluation indicator.

Fama and French [35] put forward a three-factor pricing
model and recently put forward a five-factor pricing model
[36]. It builds its portfolio at the end of June and holds it for a
year, based on financial data from the previous year. In order
to simplify the rebalancing problem, this paper only con-
siders the construction of a single-period portfolio and
assumes that the transaction cost required to construct each
portfolio is fixed. 3erefore, the returns of portfolio are used
as the objective function of the optimization model in this
paper.

2.2. Risk Measures and Stochastic Dominance Constraint.
As another basic element of portfolio optimization prob-
lems, risk presents the uncertainty of returns. 3e risk
measures have many forms, including variance, semi-
variance (SV), MAD, VaR, and CVaR. VaR is one of the
most well-known downside risk measures, which measures
the worst returns a portfolio may potentially suffer. With a
fixed confidence level α, VaRα is defined as the α-quantile of
the cumulative distribution function, which can be defined
as follows:

VaRα(Y) � inf u | prob Y≤ u{ }≥ α􏼈 􏼉, (6)
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where Y represents the returns of the portfolio in each
period. Meanwhile, as a coherent risk measure, CVaR
measures the conditional expectation of losses beyond VaR,
which can be displayed as follows:

CVaRα(Y) � E Y | Y≤VaRα(Y)( 􏼁. (7)

Unlike the above risk measures, the SD constraint is not
an indicator, which establishes relative risk advantages by
comparison between the k-order distribution function of
any two portfolios. Assuming that the utility function of all
investors is monotonically increasing, the portfolio Y sto-
chastically dominates the portfolio Y in the first order when
all the investors prefer portfolio X to portfolio X or that
there is no difference between a part of them [37]. Let x and
x0 be the decision vectors and ξ be a random variable; then
g(x, ξ) is preferred to g(x0, ξ) weakly in
E[(η − X)+]≤E[(η − X0)+],∀η ∈ R, first-order stochastic
dominance, denoted by g(x, ξ)≻ (1)g(x0, ξ), if and only if

F(g(x, ξ); η)≤F g x
0
, ξ􏼐 􏼑; η􏼐 􏼑, ∀η ∈ R, (8)

where g(x, ξ) is the returns of the portfolio x ∈ Rn, which is
a concave continuous function both in x and ξ, and
F(g(x, ξ); η) is the cumulative distribution function of
g(x, ξ). Similarly, g(x, ξ) is preferred to g(x0, ξ) weakly in
the SSD, denoted by g(x, ξ)≻ (2)g(x0, ξ), if and only if

􏽚
η

−∞
F(g(x, ξ); α)dα≤ 􏽚

η

−∞
F g x

0
, ξ􏼐 􏼑; α􏼐 􏼑dα, ∀η ∈ R.

(9)

3erefore, the strict dominance relation succk is defined
as follows:

X≻(k)X
0⟺X≽(k)X

0
,

X⋡(k)X
0
.

(10)

3ere are several equivalent characterizations of the SSD
constraint. Hadar and Russell [6] pointed out that for any
nondecreasing and concave utility function
u ∈ U � U: U′ ≥ 0, U″ ≤ 0􏼈 􏼉, X≻(2)X

0 if and only if

E[u(X)]≥E u X
0

􏼐 􏼑􏽨 􏽩, (11)

where X and X0 are the two random variables, which
generally represent the returns of portfolios x and x0, and
E(·) is the expected value with respect to the probability
distribution of ξ [10]. Ogryczak and Ruszczyński [38]
pointed out that X≻(2)X

0 if and only if

E (η − X)+􏼂 􏼃≥E η − X
0

􏼐 􏼑
+

􏽨 􏽩, ∀η ∈ R, (12)

where E[(η − X)+] � E(max η − X, 0􏼈 􏼉). Ogryczak and
Ruszczyński pointed [39] out that X≻(2)X

0 is equivalent to
the continuum of CVaR constraints for all confidence levels
α ∈ [0, 1]:

CVaRα Rx( 􏼁≥CVaRα Ry􏼐 􏼑, ∀α ∈ (0, 1]. (13)

In this paper, we use the last equivalent SSD relation,
VaR, and CVaR as evaluation indicators.

2.3.HigherMomentConstraints. 3e traditional M-Vmodel
formulated by Markowitz [1] only takes the first two mo-
ments of return distribution into account for portfolio
optimization. Arditti and Levy [40] and Rubinstein [41] have
argued that the higher moments of return distribution
should not be neglected because the distribution of returns
in the financial market is not a normal distribution. From the
theoretical and empirical point of view, Arditti [42, 43]
proved that investors demand higher (lower) returns for
investments with negative (positive) skewness of income
distribution. Further, Scott and Horvath [44] extended this
analysis to the higher-order moments of the return distri-
bution and proved that the positive values of even (odd)
order moments bring a positive (negative) risk premium,
and vice versa. Referring to the recent studies by Chen and
Yue et al. [25, 45], the skewness and kurtosis constraints are
incorporated into the optimization model in this paper.

Let ζ be an uncertain variable with a finite expected value
e, and the skewness and kurtosis of ζ are, respectively,
defined by

S[ζ] � E (ζ − e)
3

􏽨 􏽩,

K[ζ] � E (ζ − e)
4

􏽨 􏽩.
(14)

2.4. Diversification Constraint. In the financial market,
portfolio diversification is the process of allocating the
capital in a way that reduces the exposure to any one
particular asset or risk, which implies that the idiosyncratic
risk of the portfolio can be reduced as the assets included in
the investment increase. Considering the low diversity of the
portfolio which may lead to losses, we include the diversi-
fication constraint into the portfolio optimization model. SE
and Yager’s entropy are widely used to measure the diversity
of a portfolio [17, 46]. Let x(i) denote the weight of assets i,
and SE can be formulated as follows:

SE(x) � − 􏽘
n

i�1
xi lnxi, (15)

and Yager’s entropy can be calculated as follows:

YE(x) � − 􏽘
n

i�1
xi −

1
n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

z

⎛⎝ ⎞⎠

(1/z)

, (16)

where z≥ 1 is a constant, and in this paper, it is set to 2.
Obviously, the higher the value of SE or Yager’s entropy, the
better the diversity of the portfolio. In particular, both SE
and Yager’s entropy get the maximum value when
x(i) � (1/n).

2.5. Boundary Constraint. 3e boundary constraint, also
known as the buy-in threshold constraint, means that each
asset should be invested in a specific range, while the lower
bounds are used to reduce the brokerage costs and moni-
toring costs and upper bounds are used to increase the
flexibility [19]. Let εi denote the lower bounds and δi denote
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the upper bounds; then the boundary constraint of the
portfolio x can be described as follows:

εizi ≤ xi ≤ δizi, (17)

where xi is the weight of assets i and zi ∈ 0, 1{ }; if xi > 0,
zi � 1; otherwise, zi � 0.

2.6. Budget Constraint. Budget constraint means that the
amount of capital to be invested is fixed and all capital
should be invested, which can be expressed as follows:

􏽘

n

i�1
xi � 1. (18)

2.7. No Short Selling Constraint. 3e short selling refers to
the sale of securities borrowed by the seller, which is an act of
speculation with high risk in the financial market. 3erefore,
the short selling is not considered in this paper, and the no
short selling constraint is represented by

xi ≥ 0. (19)

2.8. Multiconstraint Second-Order Stochastic Dominance
Portfolio Optimization Model. Given all that, the multi-
constraint SSDportfolio optimizationmodel is provided below:

max f(x, ξ) :� 􏽘

n

i�1
Ri(ξ)xi − 􏽘

n

i�1
c(i) xi − x

0
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

s.t. 􏽚
η

−∞
F(g(x, ξ); α)dα≤ 􏽚

η

−∞
F g x, ξ0􏼐 􏼑; α􏼐 􏼑dα, ∀η ∈ R,

S(x)> S x
0

􏼐 􏼑,

K(x)<K x
0

􏼐 􏼑,

SE(x)> SE x
0

􏼐 􏼑,

εizi ≤xi ≤ δizi, zi ∈ 0, 1{ },

􏽘

n

i�1
xi � 1, xi ≥ 0, i � 1, 2, . . . , n.

(20)

3. The Whale Optimization Algorithm
(WOA) for Solving the Proposed Model

3.1. Background. WOA is a swarm intelligence optimization
algorithm proposed by Australian scholars Mirjalili and Lewis
[26] in 2016. 3e algorithm simulates the process of humpback
whales searching and capturing food by establishing mathe-
matical models. WOA was inspired by the bubble-net attack
strategy of humpback whales. Whales surround their prey by
spiraling up and bubbling up as they dive about 12meters below
the surface. WOA has the advantages of a simple principle, few
parameters, and strong searching ability. Since its inception, it
has been widely used in engineering optimization, parameter
extraction, feature selection, and other such aspects. Figure 1
shows the bubble-net feeding behavior of humpback whales.

3.2. Mathematical Model. In WOA, the position of the ith
whale (search agent) is described as Pi � [Xi,1, Xi,2, . . . ,

Xi,j], where i is required to be given in advance, and the size
of j is equal to dim (the dimension of the problem).3e steps
of the WOA are as follows.

First, initial search agents with positions [0, 0, . . . , 0] are
generated. 3en, the position and the score of the optimal
search agent with positionP∗ � [0, 0, . . . , 0] are initialized. For
solving the minimum problem, the bestscore (the initial score
of the optimal search agent) is set to be +∞ instead of −∞.

3e algorithm loop is entered. For each search agent,
each variable Xi,j(j � 1, 2, . . . , dim) is checked whether or
not it is across the border. For a variable that is out of
bounds, its value is returned to the boundary.

Real numbers r1
→ and r2

→ are randomly generated and
p ∈ [0, 1] and are used to calculate A

→
and C

→
.3e calculation

formulas of A
→

and C
→

are as follows:

A
→

� 2 · a
→

· r1
→

− a
→

, (21)

C
→

� 2 · r2
→

, (22)

where a
→ is a real number that goes linearly from 2 to 0 in the

iteration.

3.2.1. Random Prey. Ifp< 0.5 and |A
→

|> 1, the stage of random
search for the prey is entered. In this process, the search agent is
forced to move away from its current location and wander
randomly through the space in search of the prey. 3e mathe-
maticalmodel andposition transformation formula are as follows:

D
→

� C
→

× Prand
����→

− P
t
i

→􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (23)

P
t+1
i

���→
� Prand

����→
− A

→
× D

→
, (24)

where Prand
����→

is a randomly generated position vector within
the boundary range, P

t
i

→
is the generation t of the ith search

agent’s position vector, and P
t+1
i

���→
is the ith search agent’s

position vector generation t + 1.

3.2.2. Encircling Prey. If p< 0.5 and |A
→

|≤ 1, the stage of
surrounding the prey is entered. In this process, the location of
the prey is identified, and the prey is surrounded. 3e search

Figure 1: Bubble-net feeding behavior of humpback whales.
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agent moves closer to the location of the optimal search agent.
3e mathematical expression of its position update is

D
→

� C
→

× P
t
∗

��→
− P

t
i

→􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

P
t+1
i

���→
� P

t
i

→
− A

→
× D

→
,

(25)

where −PP
t
∗

��→
is the generation t of optimal search agent’s

position vector.

3.2.3. Bubble-Net Attacking. If p≥ 0.5, the stage of spiral
contraction encircling and bubble-net attack is entered.
Firstly, the distance between the search agent and the op-
timal search agent is calculated, and then a spiral mathe-
matical model is established to update the search agent’s
position. 3e formula is as follows:

P
t+1
i

���→
� D′

�→
· e

bl
· cos(2πl) + P

t
∗

��→
, (26)

where D′
�→

� |P
t
∗

��→
− P

t+1
i

���→
|, b is the defined logarithmic helix

shape constant, and t is a random real number in the range
[−1, 1].

3.3.1eWOAforSolving theProposedModel. When it comes
to WOA for solving this model, we need to add judgment
constraints into the WOA iteration process. 3at is, the
search agent that meets the constraint and has better fitness
is allowed to be updated to the leading search agent. 3ere
are several constraints in the model. In order to ensure the
quality of the final solution, we added the initialization
coefficient β � 1.5 in the initialization process, which makes
the quality of the initial solution reach our desired effect.
Figure 2 shows the procedure of the WOA algorithm.
Meanwhile, the pseudocode of the main procedure of WOA
is shown in Algorithm 1, and the pseudocode of WOA for
solving the proposed model is shown in Algorithm 2.

4. Numerical Experiments

In this section, we carry out several numerical experiments
based on FTSE100 index stock historical data. Specifically
speaking, the historical return rate of FTSE 100 index assets
prior to December 2018 is collected to construct the portfolio
strategy. Besides, a series of indicators are introduced to
evaluate the performance of portfolios by Goel and Sharma
[47], such as EMR, downside deviation (DD), and Sharpe
ratio. Moreover, the algorithms are coded in MATLAB
2016a, and all tests are performed on a PC with a Windows
10 operating system and 8GB of RAM.

4.1. Performance Measures. We mainly evaluate a portfolio
from two aspects: absolute indicator and relative indicators,
which are described briefly as follows.

As a measure of the downside risk, DD focuses on the
returns below the minimum threshold or the minimum
acceptable returns. Let Rj(x) and Rj(x0) denote the returns
of portfolios x and x0 in the period j; then DD can be
formulated as follows:

DD(x) �

�������������������������

1
T

􏽘

T

j�1
min Rj(x) − Rj x0( 􏼁, 0􏽨 􏽩

2

􏽶
􏽴

, (27)

where Rj(x0) is the FTSE100 index in this paper, and the
lower value of DD means a better performance of portfolio
x. Besides, DD is also used to calculate the Sortino ratio.
Sortino ratio is a variation of the Sharpe ratio, which uses
DD rather than the standard deviation as a risk measure.3e
Sortino ratio and the Sharpe ratio can be calculated as
follows:

Sortino ratio(x) �

EMR(x)

DD
, EMR> 0,

0, EMR≤ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Sharpe ratio(x) �

R(x) − Rf

σ(R(x))
, R(x) − Rf ≥ 0,

0, R(x) − Rf < 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

where R(x) denotes the net return of portfolio x, Rf denotes
the risk-free rate, and σ(·) denotes the standard deviation.
Obviously, a higher value of the Sortino ratio or the Sharpe
ratio is desirable. Moreover, the STARR ratio (STARR) and
the information ratio (IR) are alternatives to the Sharpe
ratio. STARR also considers the major drawback of the
standard deviation as a risk measure and employs the CVaR
for the performance adjustment, which is defined as

STARRα(x) �

EMR(x)

CVaRα R(x) − R x0( 􏼁( 􏼁
, EMR> 0,

0, EMR≤ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(29)

where α is the confidence level. Considering that CVaR is
usually negative, therefore, the lower value of STARR is
preferable. Furthermore, IR is a measure of the returns on a
portfolio beyond a benchmark, and the benchmark is typ-
ically an index, such as the FTSE100 index, which is given by

IR(x) �

EMR(x)

σ R(x) − R x0( 􏼁( 􏼁
, EMR> 0,

0, EMR≤ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(30)

Similarly, the higher value of IR is desirable. In this
paper, the confidence level α is set to 5%, the risk-free rate Rf

is set to 4%, and the FTSE100 index is used as a benchmark.

4.2.Numerical Results. In this section, we report the detailed
experimental results. Specifically, the return rate of FTSE100
index stocks during 2018 is collected as historical data.
Besides, in order to ensure the diversity of the portfolio, the
upper bound δ of the portfolio is set to 5%, 7%, or 10%.
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Above all, we propose the following multiconstraint port-
folio optimization model under SSD:

max f(x, ξ) :� 􏽘
n

i�1
Ri(ξ)xi − 􏽘

n

i�1
c(i) xi − x

0
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

s.t. 􏽚
η

−∞
F(g(x, ξ); α)dα≤ 􏽚

η

−∞
F g x

0
, ξ􏼐 􏼑; α􏼐 􏼑dα, ∀η ∈ R,

S(x)> S x
0

􏼐 􏼑,

K(x)<K x
0

􏼐 􏼑,

SE(x)> SE x
0

􏼐 􏼑,

x ∈ X � x1, . . . , xn( 􏼁
􏼌􏼌􏼌􏼌 􏽘

n

i�1
xi � 1, 0≤xj ≤ σ,∀j ∈ 1, . . . , n

⎧⎨

⎩

⎫⎬

⎭.

(31)

To evaluate the performance of the WOA, we compare it
with the standard GWO, FOA, PSO, and FA. In order to
make the running time roughly equal, except for FA, the

number of initial solutions for the other four algorithms is
3000 (in FA, it is set to 1500). And, the initialization co-
efficient β � 1.5. In WOA, GWO, and PSO, the number of

No

Yes

Update the location of the
search agent based on the

values of A and p

Start

Set the parameters of WOA

Generate initial candidate
solution

Initialize the optimal search
agent

Update the location and score
of the optimal search agent

Iteration max?

End

Figure 2: 3e procedure of the WOA algorithm.

Computational Intelligence and Neuroscience 7



iterations is 30, while it is 20 in FOA and FA. 3e experi-
ments are repeated 30 times.

Comparing with the FTSE100 index, we get the experiment
results as shown in Tables 1–3 under δ � 0.05, 0.07, and 0.10,
respectively, where the “Mean” column describes the average
indicator value of optimal portfolios during repeated experi-
ments, and the “Optimal” column describes the indicator value
of optimal portfolios among repeated experiments. For the
simplicity of data representation, the order of magnitude of
EMR in the table is 10−4.3e order of magnitude of DD is 10−2.

In Figures 3(a)–3(c), the histograms, respectively, show
the specific asset structure of the optimal portfolio of 101
kinds of assets when the model upper bound� 0.05, 0.07,
and 0.10 by the WOA algorithm. 3e histogram in
Figure 3(d) shows the specific asset structure of FTSE100.
From Figures 4–21, it can be seen that the line charts show
the daily rate of return of the optimal portfolio of WOA,
GWO, FOA, PSO, and FA when the model upper
bound� 0.05, 0.07, and 1.10 and compared with the daily
rate of return of FTSE100.

(1) Initialize the whale’s population
(2) Calculate the fitness of each search agent
(3) X

t
∗

��→
� the best search agent

(4) while t<maximum number of iterations do
(5) return the out-of-bounds search agent to the boundary
(6) for each search agent do
(7) Update a

→, A
→
, C

→
, l, and p

(8) if p< 0.5 and |A
→

|≤ 1 then
(9) Update the position of the current search agent by using (21)
(10) else if p< 0.5 and |A

→
|> 1 then

(11) Select a random search agent (Xrand)
(12) Update the position of the current search agent by using (24)
(13) else if p≥ 0.5 then
(14) Update the position of the current search by using (26)
(15) end if
(16) end for
(17) Check if any search agent goes beyond the search space and amend it
(18) Calculate the fitness of each search agent
(19) Update X∗ if there is a better solution
(20) t� t+ 1
(21) end while
(22) return X∗

ALGORITHM 1: 3e main procedure of WOA.

(1) Initialize the constrained population
(2) Calculate the fitness of each search agent
(3) X

∗��→
� the best search agent

(4) X
∗��→
.positions⟵ Default 0 is the initial optimal location

(5) X
∗��→
.score⟵ −∞

(6) while t<maximum number of iterations do
(7) for each search agent do
(8) Update a

→, A
→
, C

→
, l, and p

(9) New position of the search agent⟵ update (the current search agent)
(10) Calculate the fitness of the current search agent
(11) Determine whether the location of the search agent satisfies the constraint
(12) if (Satisfy the constraint condition and the fitness of the current search agent>Bestscore) then
(13) X

∗��→
.positions⟵ the positions of the current search agent

(14) X
∗��→
.score⟵ the fitness of the current search agent

(15) end if
(16) end for
(17) t++
(18) end while
(19) return Bestscore

ALGORITHM 2: 3e pseudocode of WOA for solving the proposed model.
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Table 1: 3e performance of the portfolio obtained by the various algorithms under δ � 0.05.

Indicators/algorithms
WOA GWO FOA PSO FA

Mean Optimal Mean Optimal Mean Optimal Mean Optimal Mean Optimal
Net return 0.06737 0.08801 0.05907 0.08540 0.04590 0.05707 0.05327 0.06190 0.05043 0.06266
Skewness −0.1925 −0.1958 −0.1940 −0.1787 −0.2118 −0.1719 −0.1819 −0.1533 −0.1801 −0.1017
Kurtosis 0.7343 0.8044 0.7090 0.6122 0.6726 0.8385 0.7681 0.9286 0.7851 0.8488
Shannon’s entropy 4.1047 4.0839 4.1639 4.0754 4.2235 4.2332 4.2087 4.2044 4.2213 4.1845
Yager’s entropy −0.7950 −0.8218 −0.7589 −0.8384 −0.7075 −0.6827 −0.7142 −0.7639 −0.7040 −0.7360
EMR 6.9164 7.7089 6.5942 7.6058 6.0903 6.4979 6.3322 6.6825 6.2200 6.6440
VaRα −0.01334 −0.01331 −0.01334 −0.01393 −0.01330 −0.01357 −0.01333 −0.01325 −0.01330 −0.01346
CVaRα −0.01770 −0.01790 −0.01764 −0.01787 −0.01760 −0.01773 −0.01770 −0.01785 −0.01766 −0.01777
Downside deviation 0.2306 0.2316 0.2257 0.2040 0.2232 0.2384 0.2252 0.2269 0.2273 0.2512
Sortino ratio 0.3004 0.3327 0.2930 0.3728 0.2732 0.2725 0.2817 0.2945 0.2746 0.2644
STARR ratio −0.03905 −0.04305 −0.03737 −0.04253 −0.03458 −0.03663 −0.03577 −0.03742 −0.03521 −0.03737
Sharpe ratio 3.2811 5.7412 2.3138 5.3432 0.7703 2.0340 1.5921 2.6265 1.3023 2.6582
Information ratio 0.1759 0.1921 0.1722 0.2060 0.1635 0.1617 0.1647 0.1695 0.1616 0.1536
Times 32.1304 33.7750 34.3511 34.2063 31.3813 31.3803 30.7534 32.6466 37.2835 36.3269
Upper bound 0.04997 0.05000 0.04931 0.04977 0.04689 0.04954 0.05335 0.05662 0.05260 0.06131

Table 2: 3e performance of the portfolio obtained by the various algorithms under δ � 0.07.

Indicators/algorithms
WOA GWO FOA PSO FA

Mean Optimal Mean Optimal Mean Optimal Mean Optimal Mean Optimal
Net return 0.09664 0.1111 0.08346 0.1095 0.05426 0.06662 0.05378 0.06588 0.05123 0.06484
Skewness −0.0962 −0.0389 −0.1058 −0.0841 −0.1906 −0.1097 −0.1858 −0.2220 −0.1854 −0.1634
Kurtosis 0.9434 0.9932 0.9227 0.9654 0.7533 0.9873 0.7582 0.6570 0.7525 0.9273
Shannon’s entropy 4.0016 3.9905 4.0554 3.9967 4.2113 4.2082 4.2105 4.1913 4.2097 4.1701
Yager’s entropy −0.8672 −0.8648 −0.8357 −0.8910 −0.7124 −0.7182 −0.7105 −0.7131 −0.7156 −0.7534
EMR 8.0035 8.5137 7.5014 8.4974 6.3716 6.8292 6.3506 6.8817 6.2507 6.7399
VaRα −0.01333 −0.01361 −0.01329 −0.01343 −0.01330 −0.01301 −0.01248 −0.01247 −0.01243 −0.01214
CVaRα −0.01780 −0.01782 −0.01769 −0.01791 −0.01763 −0.01782 −0.01636 −0.01623 −0.01634 −0.01641
Downside deviation 0.2414 0.2496 0.2434 0.2390 0.2267 0.2268 0.2263 0.2090 0.2247 0.2305
Sortino ratio 0.3317 0.3410 0.3091 0.3554 0.2814 0.3012 0.2812 0.3291 0.2787 0.2922
STARR ratio −0.04496 −0.04776 −0.04238 −0.04742 −0.03613 −0.03833 −0.03881 −0.04238 −0.03823 −0.04106
Sharpe ratio 6.6455 8.2492 5.1370 8.1545 1.7145 3.1584 1.6535 3.1410 1.3999 2.9601
Information ratio 0.1860 0.1897 0.1762 0.1955 0.1654 0.1693 0.1647 0.1891 0.1637 0.1693
Times 36.1142 37.3528 37.9714 38.7565 34.0302 35.6235 30.8553 30.7140 37.0023 39.2392
Upper bound 0.06627 0.07000 0.06516 0.07000 0.05363 0.06101 0.05348 0.04946 0.05294 0.05344

Table 3: 3e performance of the portfolio obtained by the various algorithms under δ � 0.10.

Indicators/algorithms
WOA GWO FOA PSO FA

Mean Optimal Mean Optimal Mean Optimal Mean Optimal Mean Optimal
Net return 0.1001 0.1182 0.08775 0.1097 0.05386 0.06503 0.05337 0.06692 0.04820 0.06993
Skewness −0.08742 −0.07992 −0.1029 −0.05443 −0.1898 −0.1845 −0.1880 −0.1577 −0.1860 −0.1732
Kurtosis 0.9275 0.7266 0.8847 0.9680 0.7697 0.8485 0.7766 0.8309 0.7746 0.6532
Shannon’s entropy 3.9961 3.9906 4.0519 3.9914 4.2038 4.1722 4.2069 4.1627 4.2230 4.0865
Yager’s entropy −0.8616 −0.8613 −0.8237 −0.8966 −0.7190 −0.7411 −0.7146 −0.7499 −0.7034 −0.8342
EMR 8.0891 8.8274 7.6398 8.4398 6.3660 6.7649 6.3501 6.8179 6.1376 6.9920
VaRα −0.01349 −0.01368 −0.01350 −0.01398 −0.01337 −0.01329 −0.01089 −0.01110 −0.01088 −0.01086
CVaRα −0.01780 −0.01769 −0.01779 −0.01783 −0.01772 −0.01751 −0.01504 −0.01512 −0.01498 −0.01481
Downside deviation 0.2546 0.2480 0. 2471 0.2655 0.2327 0.2414 0.2262 0.2513 0.2251 0.2403
Sortino ratio 0.3190 0.3558 0.3103 0.3177 0.2746 0.2802 0.2811 0.2712 0.2732 0.2909
STARR ratio −0.04543 −0.04989 −0.04295 −0.04731 −0.03593 −0.03863 −0.04220 −0.04507 −0.04095 −0.04718
Sharpe ratio 7.0194 9.0582 5.5788 8.0460 1.6596 3.0298 1.6079 3.2149 1.0754 3.5891
Information ratio 0.1808 0.1978 0.1767 0.1799 0.1624 0.1650 0.1650 0.1620 0.1613 0.1693
Times 34.1131 35.3522 34.3511 34.2063 33.9993 35.9620 31.3336 33.5159 38.0149 39.8047
Upper bound 0.07952 0.08456 0.07515 0.08125 0.05307 0.05465 0.05357 0.05872 0.05226 0.06554
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Figure 4: 3e returns of the optimal portfolio by WOA, GWO, FOA, PSO, and FA algorithms and the FTSE100 index portfolio in
backtesting with δ � 0.05.
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Figure 3: 3e specific asset structure of the optimal portfolio in (a) δ � 0.05, (b) δ � 0.07, and (c) δ � 0.10 for 101 assets by the WOA
algorithm and the (d) FTSE100 index portfolio.
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Figure 5: 3e returns of the optimal portfolio by the WOA al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.05.
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Figure 6: 3e returns of the optimal portfolio by the GWO al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.05.
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Figure 7: 3e returns of the optimal portfolio by the FOA algo-
rithm and the FTSE100 index portfolio in backtesting with δ � 0.05.
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Figure 8: 3e returns of the optimal portfolio by the PSO algo-
rithm and the FTSE100 index portfolio in backtesting with δ � 0.05.
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Figure 9: 3e returns of the optimal portfolio by the FA algorithm
and the FTSE100 index portfolio in backtesting with δ � 0.05.
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Figure 10: 3e returns of the optimal portfolio by WOA, GWO,
FOA, PSO, and FA algorithms and the FTSE100 index portfolio in
backtesting with δ � 0.07.
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Figure 11: 3e returns of the optimal portfolio by the WOA al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.07.
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Figure 12: 3e returns of the optimal portfolio by the GWO al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.07.
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Figure 13: 3e returns of the optimal portfolio by the FOA al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.07.
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Figure 14: 3e returns of the optimal portfolio by the PSO al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.07.
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Figure 15:3e returns of the optimal portfolio by the FA algorithm
and the FTSE100 index portfolio in backtesting with δ � 0.07.
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Figure 16: 3e returns of the optimal portfolio by WOA, GWO,
FOA, PSO, and FA algorithms and the FTSE100 index portfolio in
backtesting with δ � 0.10.
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Figures 22–24 show the box plots of the net return,
skewness, and Shannon’s entropy obtained by five different
algorithms when the model upper bound� 0.05, 0.07, and
0.10, respectively.

4.3. Numerical Analysis. We perform the numerical ex-
periments of the multiconstraint portfolio optimization
model under SSD by WOA, GWO, FOA, PSO, and FA. In
this part, the performance of the portfolio obtained by each
algorithm is evaluated through returns, diversity, risk, rel-
ative risk value, and other indicators.

First of all, it can be seen from Table 1 that the mean net
return of portfolios obtained by WOA is 0.06737, while the
portfolios obtained by GWO, FOA, PSO, and FA are
0.05907, 0.04590, 0.05327, and 0.05043, respectively, under
δ � 0.05. Besides, the mean net return and EMR of portfolios
obtained by WOA under different upper bounds are also
higher than portfolios obtained by the other four algorithms.
If only considering the optimization results, it is obvious that
WOA has a better optimization capability than the other
four algorithms under strong constraints. Although the
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Figure 17: 3e returns of the optimal portfolio by the WOA al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.10.
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Figure 18: 3e returns of the optimal portfolio by the GWO al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.10.
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Figure 19: 3e returns of the optimal portfolio by the FOA al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.10.

–4
–3
–2
–1

0
1
2
3
4

Re
tu

rn
 (%

)

50 100 150 200 2500
Time (day)

PSO
FTSE100 portfolio

Figure 20: 3e returns of the optimal portfolio by the PSO al-
gorithm and the FTSE100 index portfolio in backtesting with
δ � 0.10.
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Figure 21:3e returns of the optimal portfolio by the FA algorithm
and the FTSE100 index portfolio in backtesting with δ � 0.10.
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mean SE of the portfolio obtained by WOA is slightly lower
than the value obtained by FOA, the mean Sharpe ratio of
FOA is much lower than the performance obtained by
WOA. For investors, they tend to choose the portfolio with a
higher Sharpe ratio when there is a little difference in SE
respect. Meanwhile, the primary goal of investors is to obtain
the maximum returns, while the returns of the portfolio
obtained by FOA are far lower than that obtained by WOA.
Taken together, FOA’s results are unsatisfactory in that they
give us a slight advantage in diversity at the expense of
returns.

In Table 2, when δ � 0.07, the mean and optimal net
returns of the portfolio obtained by WOA are higher than
those obtained by the other four algorithms. In Table 3, the
performance obtained by WOA is superior to that obtained
by the other four algorithms under δ � 0.10. 3e numerical
analysis results in Table 2 and Table 3 are similar to those in
Table 1.

Secondly, it can be seen from Figures 3(a)–3(c) the 101
asset structure of the optimal portfolio obtained by theWOA
algorithm under δ � 0.05, 0.07, and 0.10. Figure 3(b) shows
the asset portfolio obtained by FTSE100. 3e portfolio
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Figure 22: δ � 0.05. (a) Net Return. (b) Shannon’s entropy. (c) Skewness.
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Figure 23: δ � 0.07. (a) Net Return. (b) Shannon’s entropy. (c) Skewness.
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Figure 24: δ � 0.10. (a) Net Return. (b) Shannon’s entropy. (c) Skewness.
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optimized by WOA has a more even distribution of assets,
and its upper bound is lower than the upper bound of
FTSE100, which proves that its diversity is better.

In Figures 4–21, the horizontal axis represents 253 trading
days and the vertical axis represents the return rate. 3ese
figures show the daily rate of return of the optimal portfolio of
WOA, GWO, FOA, PSO, and FA when δ � 0.05, 0.07, and 0.10
and compare it with the daily rate of return of FTSE100. It can
be seen that the return rate of the portfolio optimized by these
five different algorithms is mostly higher than the return rate of
FTSE100 under different values of δ. From Figures 4–9, it is
seen that when δ � 0.05, the return rate of the portfolio ob-
tained by the five different algorithms is mostly better than the
return rate of FTSE100 in 253 trading days. From
Figures 10–15, it is seen that the portfolio return rate obtained
by the five different algorithms is mostly better than the return
rate of FTSE100 under δ � 0.07. From Figures 16–21, it is seen
that the optimized portfolio return rate ismostly better than the
return rate of FTSE100 under δ � 0.10. From Figures 4, 10, and
16, for approximately 80% of the trading days, the return rate
line of the portfolio obtained byWOA (red line) is higher than
the FTSE100’s return rate line (blue dotted line). Compared
with the return rate line of the portfolio obtained by other four
kinds of algorithm, it can be proved that the returns of the
portfolio optimized by WOA are higher than that of the other
four algorithms.

Further, from Figures 22–24, we can see the box plots of
net return, Shannon’s entropy, and skewness of the port-
folios optimized by the five different algorithms. It can be
seen that when δ � 0.05, 0.07, and 0.10, respectively, the
mean returns of the portfolio optimized by WOA are higher
than that of the other four algorithms. For investors, they
tend to choose the portfolio with a higher net return, so the
portfolio optimized by WOA is a useful guideline to
investors.

Although the mean Shannon’s entropy of the portfolio
obtained by WOA is slightly lower than the value obtained
by the other four algorithms, the mean net return of WOA is
the highest of these algorithms. It means that in order to
achieve a higher net return, a part of the diversity needs to be
sacrificed.

When δ � 0.05, the mean skewness of the portfolio
optimized by WOA is only 0.0124 lower than the maximum
of that obtained by the other four algorithms. When δ � 0.07
and 0.10, the portfolios optimized by WOA have a greater
skewness than the other algorithms. At the same time, the
mean net return of WOA is the highest of these algorithms.
For investors, they prefer the portfolio with larger skewness
and higher returns. 3erefore, the portfolio obtained by
WOA is more suitable for investors to choose.

In addition, besides using FTSE100 as the comparison
criterion, equally weighted indicators are also used as the

comparison object. When investors build portfolios, more
reference schemes are provided. 3e indicators of FTSE100
and equal weight are also given in Table 4.

From Table 4, it can be seen that the net return under
FTSE100 and equal weight is −0.1038 and −0.1057, which is
lower than that optimized by these algorithms. Meantime,
their skewness is all lower than that optimized by these
algorithms. 3eir kurtosis is greater than 3, indicating that
the solutions present a spike pulse.3eir kurtosis is all higher
than that optimized by these algorithms. By comparing with
the performance indicators in the case of FTSE100 and equal
weight, it indicates that the performance of the optimized
portfolio byWOA has a greater reference value for investors.

3e specific index weight data of the FTSE100 index are
shown in Table 5. In this paper, we use the Sortino ratio,
STARR ratio, Sharpe ratio, and IR to measure the relative
risk value, which is used to quantify the net return or the
excess mean return from taking on the unit risk. When the
upper bound is set to 0.05, it can be seen from Table 1 that
the mean Sortino ratio of portfolios obtained by WOA is
0.3004, while the portfolios obtained by GWO, FOA, PSO,
and FA are 0.2930, 0.2732, 0.2817, and 0.2746, respectively.
Besides, the mean STARR ratio, Sharpe ratio, and IR of
portfolios obtained by WOA are also better than the other
four algorithms, which means that the portfolio obtained by
WOAhas a better relative risk value. Above all, under several
constraints, WOA has an efficient search ability to find the
optimal portfolio that meets the constraints. In addition, in
terms of the algorithm structure, WOA also has the ad-
vantages of a simple structure and few parameter settings.
From the upper bound of results, the upper bound of WOA
is higher than other algorithms, which indicates that WOA
has a good convergence effect and strong local search ability.

Furthermore, the SSD optimization model proposed in
this paper has a strong constraint on the solution. In other
words, the existence of constraints will lead to infeasible
regions in the search space of decision variables. In fact, in
the field of finance, realistic constraints are pretty important.
3e existence of constraints will lead to infeasible regions in
the search space of decision variables. 3e algorithm needs
to balance constraints and optimization. Under strong
constraints, the area of the feasible region is very small, and a
large number of solutions are considered to be infeasible
because they do not meet the constraints, which makes it a
very difficult problem to produce feasible solutions. At the
same time, the existence of constraints may also make the
original problem produce many new local optima [48]. In
this case, the optimization algorithm is easy to converge too
quickly, resulting in the loss of population diversity in the
early stage, and the global optimal solution cannot be found.
3erefore, the strong constraint optimization problem has a
high demand on the ability of the algorithm to jump out of

Table 4: 3e indicators of FTSE100 and equal weight.

Net return VaRα CVaRα Skewness Kurtosis SE

FTSE100 −0.1038 −0.0134 −0.0179 −0.2501 3.9934 3.9905
Equal weight −0.1057 −0.0142 −0.0178 −0.3211 3.5008 4.6150
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the local optimum and the ability of global search [49].
According to the experimental results in this section, under
different upper bounds, the value of the objective function
obtained by WOA is better in both the optimal conditions
[50, 51]. 3is shows that the performance of WOA is better
than that of the other four algorithms in strongly con-
strained optimization problems, which has an excellent
application prospect.

5. Conclusion

Since Fama and French [35] put forward the three-factor
pricing model, there has been a boom in searching for
factors in academic circles recently. Factor model is es-
sentially an asset pricing model and can predict the future
returns on assets to a certain extent. However, no matter

Table 5: 3e specific index weight data of the FTSE100 index.

Constitution Index weight (%)
3i Group 0.43
Anglo American 1.02
Ashtead Group 0.46
AstraZeneca 4.38
Aviva 0.87
Barclays 1.51
Berkeley Group Holdings 0.25
BP 5.70
British Land Co. 0.30
Bunzl 0.47
Carnival 0.32
Coca-Cola HBC AG 0.28
CRH 1.00
DCC 0.35
Direct Line Insurance Group 0.26
Evraz 0.14
Ferguson 0.69
GlaxoSmithKline 4.28
GVC Holdings 0.23
Hargreaves Lansdown 0.29
Hiscox 0.27
Imperial Brands 1.33
InterContinental Hotels Group 0.48
Intertek Group 0.46
Johnson Matthey 0.31
Land Securities Group 0.34
Lloyds Banking Group 2.17
Marks and Spencer Group 0.24
Micro Focus International 0.34
Morrison (WM) Supermarkets 0.27
Next 0.31
Ocado Group 0.21
Pearson 0.43
Prudential 2.14
RELX 1.82
Rightmove 0.23
Rolls-Royce Holdings 0.82
Royal Dutch Shell A 6.17
RSA Insurance Group 0.31
Sainsbury (J) 0.25
Scottish Mortgage Inv Tst 0.40
Severn Trent 0.25
Smith (DS) 0.22
Smurfit Kappa Group 0.29
SSE 0.65
Standard Chartered 0.97
Taylor Wimpey 0.26
TUI AG 0.29
United Utilities Group 2.30
Whitbread 0.49
WPP 0.61
Admiral Group 0.25
Antofagasta 0.16
Associated British Foods 0.42
Auto Trader Group 0.25
BAE Systems 0.86
Barratt Developments 0.27
BHP Group Plc 2.02
British American Tobacco 3.36
BT Group 1.17

Table 5: Continued.

Constitution Index weight (%)
Burberry Group 0.42
Centrica 0.45
Compass Group 1.54
Croda International 0.35
Diageo 3.97
Easyjet 0.16
Experian 1.03
Fresnillo 0.09
Glencore 1.96
Halma 0.30
Hikma Pharmaceuticals 0.14
HSBC Hldgs 7.65
Informa 0.46
International Consolidated Airlines Group 0.58
ITV 0.27
Kingfisher 0.26
Legal & General Group 0.80
London Stock Exchange Group 0.75
Melrose Industries 0.46
Mondi 0.35
National Grid 1.53
NMC Health 0.14
Paddy Power Betfair 0.30
Persimmon 0.36
Reckitt Benckiser Group 2.22
Rentokil Initial 0.37
Rio Tinto 2.48
Royal Bank Of Scotland Group 0.58
Royal Dutch Shell B 5.16
Sage Group 0.38
Schroders 0.16
Segro 0.35
Smith & Nephew 0.75
Smiths Group 0.32
Spirax-Sarco Engineering 0.27
St. James’s Place 0.29
Standard Life Aberdeen 0.38
Tesco 1.08
Unilever 2.64
Vodafone Group 2.40
Wood Group (John) 0.20

16 Computational Intelligence and Neuroscience



how many factors there are, we should strive to achieve
higher returns on the premise of minimizing portfolio risks,
namely, asset allocation. With the development of machine
learning, more and more advanced algorithms are used to
explore the nonlinear relationship between factors and
returns on assets. Similarly, machine learning can be applied
to asset allocation.

In this paper, we propose a portfolio optimization model
under SSD and several realistic constraints, and it is opti-
mized by WOA. As a matter of fact, the real financial en-
vironment is much more complex. 3erefore, how to
broaden the practicability of the intelligent algorithm in a
complex financial environment is still a long way to go.
Based on FTSE100 index stock data, the experimental results
prove the outstanding performance of WOA during harsh
constraints.

However, the proposed portfolio optimization model
only considers a single-period problem. In fact, portfolio
construction is a continuous process. In the future work,
establishing a multiperiod portfolio model and verifying the
performance of WOA or other intelligent algorithms are
feasible. Moreover, WOA has a comparatively huge rise
space in global searching, and we find that the WOA has the
problem of premature convergence. We will pay attention to
this topic in the future research.
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