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Object tracking is an important procedure in the computer vision field as it estimates the position, size, and state of an object along the
video’s timeline. Although many algorithms were proposed with high accuracy, object tracking in diverse contexts is still a
challenging problem.�e paper presents somemethods to track the movement of two types of objects: arbitrary objects and humans.
Both problems estimate the state density function of an object using particle filters. For the videos of a static or relatively static camera,
we adjusted the state transition model by integrating the movement direction of the object. Also, we propose that partitioning the
object needs tracking. To track the human, we partitioned the human into N parts and, then, tracked each part. During tracking, if a
part deviated from the object, it was corrected by centering rotation, and the part was, then, combined with other parts.

1. Introduction

�e object tracking in videos is a technique that has many
applications in many fields. For example, in the biomedical
field [1, 2], the object-tracking technique is applied to au-
tomatically track cells while they are born, duplicated, or as
they move and die. Another example is the application of the
technique in autopilot systems, where it is used to observe
and track the vehicles around the driving car [3, 4] or
footballer tracking [5–7]. A highly accurate vehicle-tracking
program is an indispensable necessity for safety. Moreover,
the tracking technology is usually combined with the
identification and recognition systems to create a complete
tactic for real-life applications.

Tracking objects in video is difficult due to many
challenges that all are needed to be considered and solved.
�e first challenge is that we do not know, in advance, the
object that we need to track. �ere may be no information
about that object. In the absence of information, the object
description for the program script must be highly general.

Another challenge is that the tracked object has heteroge-
neity in colors, which vary by each part of the object. For
example, to track human movement, the head is charac-
terized by the hair color (black and yellow), while the body
and legs are described by the color of the shirt and pants that
the person is wearing. Because of the challenges and diffi-
culties mentioned above, no comprehensive tracking algo-
rithm can be adopted for all problems.

In this paper, we present the method to modify the state
model according to the direction of predicting that an object
appears in the same direction of motion with a higher
probability. In addition, we explore the effectivity to track
partially obscured objects by tracking its visible sections. To
do this, we divided the object into multiple sections and
tracked these sections independently. When some parts ob-
scure the object, our approach should still successfully track
the object movement. We also present the experimental
particle filter model and present a suggestion for integrating
information on the direction of the object’s movement, theN-
particle filter model, to track each part then combines.
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�e rest of the paper is organized as follows: �e most
relevant work that motivated this paper is reviewed in
Section 2. Section 3 describes, in detail, our method multiple
particle filters for multipart combined moving directions
information. Section 4 summarizes the results from our
method. Section 5 is the discussion of our paper.

2. Related Work

�e correlation filters approach is a powerful tool in digital
signal processing [8, 9]. �is algorithm class utilizes the
properties of Fourier transform of turning convolution in
the spatial domain into function multiplication in the
Fourier domain [10–13]. �e original idea of the correlation
filter was to solve the problem of locating an object in an
image. In other words, if the object of interest appears in the
image, its position including the axis coordinates is deter-
mined.�e tool to solve this problem is the average synthetic
exact filter [10]. �e next, correlation filter, is the Total
Minimum Output Error, studied by Bolme et al. [13]. �is
tracking method is very powerful and can cope with situ-
ations such as changing light and changing the size and
shape of objects.

Aviden et al. [14] at Misubishi Electric Research Labs
considered object tracking as the binary classification
problem to distinguish background pixels and tracking-
object pixels using the AdaBoost technique. �e method’s
idea was training weak classification functions to classify the
background and object and, then, combine them to form a
strong classification based on the Adaboost mechanism. But,
the author realized that if an object is not in the rectangle
form, pixels in the containing object rectangle but not in the
object will be labeled as belonging to the object. �ese pixels
are considered alien elements, while AdaBoost is sensitive to
alien elements [15]. In addition, some other limitations of
the approach are as follows: it has not solved the completely
obstructed object’s situation in a long time and the featured
space used in the algorithm does not yet utilize the spatial
information of the image.

�e approach based on random process filtering has
been studied for a long time in the field of mathematical
statistics, and there have been many discovered impressive
results [16–18]. Most of the algorithms based on this ap-
proach are based on the Bayes optimal solution for the
hidden Markov filtering problem [19–21]. �at means
building a hidden Markov model plays a key role, and the
model is more accurate; in fact, more Bayesian solutions
accurately estimate the state of the object. �e work in [20]
uses the featured color histogram to construct a particle filter
to track objects. �e work in [22] uses gentle AdaBoost to
construct an updated observation model over time.

Recently, the Siamese network-based trackers have re-
ceived significant attention for their well-balanced tracking
accuracy and efficiency. �ese trackers formulate visual
tracking as a cross-correlation problem and are expected to
better leverage the merits of deep networks from end-to-end
learning [23–30]. Bhat et al. [31] proposed a gradient-guided
method to update the template. Li et al. [32] developed a
discriminative model-prediction architecture for tracking.

3. Methodology

Problem 1. Highlight that first frame coordinates
(x1, y1,ω1, h1) are given and we need to infer object co-
ordinates (xk, yk,ωk, hk) in the subsequent frames.

Filtering the state (xk, yk,ωk, hk) of the object in the next
frames, we rely on the hiddenMarkov model theory with the
construction of two models: state transitions and observa-
tions. �e state transitions model in the studies is quite
similar and are all Gaussian motion, and the main difference
in the algorithms depends on the observed model. Using
particle filters allows us to better handle color clutter in the
background, as well as tracking completely obstructed
objects.

�e principle of the particle filter according to the
Figure 1, including 3 steps:

Measurement: calculating the samples’ weights based
on the observation at time n
Resampling: resampling or fine tuning (based on the
threshold of the return weights) the samples to remove
or adjust the samples in which the object positions are
overmismatched at the current time
Prediction: predicting the object status at time n+ 1
based on the likelihoods from time n to the previous
states

Based on the particle filter operating mechanism in
Figure 1, we present the approximate results of posterior
density function p(xk|y1:k) at time k.

From the posterior distribution at time k – 1,
p(xk|y1:k− 1), we calculate the prior distribution for the time
k (without observing yk) by using Chapman–Kolmogorov
equality [16], p(xk|y1:k− 1) � 􏽒 p(xk|xk− 1).p(xk− 1|y1:k− 1)

dxk− 1, where p(xk|xk− 1) already exists in the state transition
model and p(xk− 1|y1:k− 1) is the posterior root of step k − 1.

After observing yk, we update the prior density function
at the predicted step at the level k: p(xk|y1:k) �

(p(yk|xk)∗p(xk|y1:k− 1)/p(yk|y1:k− 1)), where p(yk|xk) al-
ready exists in the observationmodel and p(xk|y1:k− 1) is an a
priori at the time k calculated in the previous step.

As a result, we obtain a weighted pattern representing
the posterior density function at the time k: p(xk|y1:k) ∼
xl

k, (1/Z)ωl ∗
k− 1 p(yk|xl

k)􏼈 􏼉
L

l�1.
When an object is in motion, it usually moves in a

specific trajectory. �erefore, to predict the object’s lo-
cation, we propose integrating the direction of motion,
which will be discussed in detail in Section 3.1. In ad-
dition, different parts of an object carry their distinctive
characteristics of shape, color, light absorption, and re-
flection capacity. If we use a particle filter, it can yield false
tracking results. Besides, if a part of the object has the
same color and brightness level as any other object in the
frame, the tracking may be distorted. To fix this problem,
we propose to divide the object into many parts, each of
which will have the same properties. We, then, track the
movement of each part with the constraints that these
parts move in the same direction and maintain similar
area and shape.

2 Computational Intelligence and Neuroscience



3.1. Moving Direction Information. With the videos filtered
out from the dataset in which the camera was relatively
stable, we modified the state transition model in the hidden
Markov model by integrating the direction of the object
movement. �is means that instead of using the Gaussian
motion state model, we projected these Gauss functions into
several different directions with different ratios before we
made a new pattern. Because each object moves in a specific
trajectory, the direction of the object’s motion will remain
constant for a certain period of time. Specifically, we con-
sider the direction of motion as a separate component. At
each assessment, we will update the direction of motion. We
use this direction of motion to impact the particle filter at the
prediction step, with the purpose that the particle filter will
predict the object appearing in the same direction with
higher probability.

v
→ is rotated an angle θ by multiplying the rotation

matrix by v
→ as follows:

vθ
→

�
cos θ − sin θ

sin θ cos θ
􏼠 􏼡. v

→
, (1)

where θ � 0, π/4, − π/4, π/2, − π/2, 3π/4, − 3π/4, π{ }.
Figure 2 depicts the probability distribution in the di-

rection of the object’s appearance, in which the red direction
(in the direction of a1 ) is the predicted movement direction
of the object, a1, a2, a3, a4, a5, a6, a7, a8 are real numbers in
[0, 1], and 􏽐

8
i�1 ai � 1. In the prediction step, we translate

Ns · a1 particle by v
→, Ns · a2 particle by v(π/4)

����→,Ns · a3 particle
by v(− π/4)

������→, Ns · a4 particle by v(π/2)
����→, Ns · a5 particle by v(− π/2)

������→,
Ns · a6 particle by v(3π/4)

�����→, Ns · a7 particle by v(− 3π/4)
�������→, and Ns ·

a8 particle by vπ
→.

We propose the particle filter algorithm to integrate the
direction of motion in Algorithm 1.

3.2. Multiple Particle Filters Model

3.2.1. Multiparts of an Object. While considering the
problem where the object shapes are less changing, if the
object includes many parts with dissimilarity about the
colors and contrast, using 1 particle filter for tracking will
lead to incorrect tracking. �erefore, an object needs to
separate each area with similar color, grayscale, and contrast
into n parts, each part being tracked separately. In this way,
the parts which affected by the environment and other object

artifacts will cause incorrect position identification which
will need to be adjusted. For example, a human object can be
normally represented by a 3-partition structure as illustrated
in Figure 3.�is structure divides the human object based on
the gray color changes among the black head, the white shirt
body, and the black pants legs. �e resulting human object
will be divided into 3 parts with a border represented by a
different gray level, each part using a particle filter to track
and combine based on the best feature matching part.

3.2.2. Build Model. �e adjustment of deviated areas should
take two steps:

(i) �e center of the similar areas changed, which
allowed the incorrect position of the similar areas to
be adjusted accordingly to the correct position of the
object

(ii) Size ratio of similar area allowed similar areas to
scale the height to the height of the original object

�us, when one part of the object is obscured or similar
to another, we can restore and track enough.

3.2.3. Fine Tuning Parts. Once the anterior root of the object
is defined, the object is defined into n parts in a structure H,
as shown in Figure 3. We, then, used one particle filter to
track each part S1, S2, . . . , Sn. At each time data point, each
particle filter in the tracking area can diverge from each
other. �erefore, a modification model is needed to correct
this issue. We used the collected assessment data of each part
to evaluate which tracked part behaves the best. We kept this
best-tracked part fixed and applied the rotation algorithm to
n − 1 other parts using the fixed part as the origin. �e
adjustment of N-particle filters when tracking an object in
the frame time k is described below.

Step 1: we calculate the rotation from the center of each
section with the remaining n − 1 based on frame 0.

a6
a4

a2

a1

a3

a5

a7

a8

v→–π/2
v→–π/4

v→

v→–3π/4

v→π

v→π/4

v→π/2v→3π/4

Figure 2: Distribute probabilities for moving directions.

Boostrap

Measurement

Resampling

Prediction

p(yn|xn)

p(xn|y1:n–1)

p(xn|y1:n)

p(xn|y1:n)

p(xn+1|yn:1)

Figure 1: Demonstrate the operatingmechanism of a particle filter.
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θ0ij � S
0
i , S

0
j􏼐 􏼑,where i, j � 1, n. (2)

For example, the angle of rotation from the
center of S02 compared to the rest of S01, S03 is the
angle θ012, θ

0
32 according to Figure 4(a).

Step 2 : we suppose that Sk
1, Sk

2, . . . , Sk
n are estimates and

S01, S02, . . . , S0n are parts of the object in the original
image. �e distance is calculated as
distancei � ‖HOG(Sk

i ) − HOG(S0i )‖2, i � 1, n.
However, because the division of parts may not
be equal, to determine which is best, we multiply
the coefficient by each distance and, then,
compare K1 ∗ distance1, K2 ∗ distance2, . . . ,

Kn ∗ distancen. �e smallest value is considered
the best estimate. �e best estimate is placed at
the kth frame as Sk

min.

Step 3 : when the best part (Sk
min) was selected, we

performed the center rotation of the remaining
n − 1 relative to the best part (Sk

min) with the
rotation angle defined. �e result is the new
center coordinates of the n − 1 part.
find the new center coordinates of the part Sk

i

with i � 1, (n − 1) by calculating the center ro-
tation of the section Sk

i compared to the center of
the part Sk

min with the angle of rotation (θk
imin −

θ0imin) as follows:

Input: Particles pf, Observation image, motion direction v
→

Output: New particles represent p((x, y,ω, h)|observed image), estimating the state of the object in the observed image.
Step 1:
Translate Ns · a1 particles in pf by v

→

Translate Ns · a2 particles in pf by v(π/4)
����→

Translate Ns · a3 particles in pf by v(− π/4)
������→

Translate Ns · a4 particles in pf by v(π/2)
����→

Translate Ns · a5 particles in pf by v(− π/2)
������→

Translate Ns · a6 particles in pf by v(3π/4)
�����→

Translate Ns · a7 particles in pf by v(− 3π/4)
�������→

Translate Ns · a8 particles in pf by vπ
→

Step 2:
for i� 1 to Ns do
Beginfor
/∗ (with (xi, yi,ωi, hi) is i th particle) ∗/
Get xnew ∼ xi + N(0, σ2x)

Get ynew ∼ yi + N(0, σ2y)

Get ωnew ∼ ωi + N(0, σ2ω)

Calculate hnew � η∗ωnew
Calculate likelihood � p(observated image|(xnew, ynew,ωnew, hnew) by Algorithm 8
Update weight of i th particle: weighti � weighti ∗ likelihood

Endfor
Step 3:
Calculate the total sw � 􏽐

Ns

j�1 weighti + ε
for i� 1 to Ns do
Beginfor
Standardize weight weighti � (weighti + ε/sw)

Endfor
Step 4: Calculate Neff � (1/􏽐

Ns

j�1 weight
2
j)

Step 5:
if Neff <Ns/2 then

(xi, yi,ωi, hi),weighti􏼈 􏼉
Ns

i�1 � RESAMPLE( (xi, yi,ωi, hi),weighti􏼈 􏼉
Ns

i�1)

Endif
Step 6: Estimate the state of the object in the kth image by calculating the average of the new set of particles
EstimatedStatus � 􏽐

Ns

i�1 weighti ∗ particle[i]

ALGORITHM 1: Particle filter integrated motion direction.

S2

S3

S1

Figure 3: Some structure II partition objects.
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vSk

i′

��→
�

cos θk
imin − θ0imin􏼐 􏼑 − sin θk

imin − θ0imin􏼐 􏼑

sin θk
imin − θ0imin􏼐 􏼑 cos θk

imin − θ0imin􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠. v
→

Sk
i
,

(3)

where v
→

Sk
i
is the center coordinate of the part Sk

i and
vSk

i′

��→ is the new center coordinate of the part Sk
i after

performing the rotation.
For example, according to Figure 4(b), the new center
coordinates of Sk

1, Sk
3 parts are found compared to Sk

2
centers with the rotation angle (θk

12 − θ012) and (θk
32 −

θ032) as

vSk

1′

��→
�

cos θk
12 − θ012􏼐 􏼑 − sin θk

12 − θ012􏼐 􏼑

sin θk
12 − θ012􏼐 􏼑 cos θk

12 − θ012􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. v

→
Sk
1
,

vSk

3′

��→
�

cos θk
32 − θ032􏼐 􏼑 − sin θk

32 − θ032􏼐 􏼑

sin θk
32 − θ032􏼐 􏼑 cos θk

32 − θ032􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠. v

→
Sk
3
.

(4)

Step 4 : translating the particles progress of part Sk
i with

i � 1, (n − 1) which differs from the best part
(Sk

min) to the position of n-1 new part (Sk
i′) is

created out through Step 3.
Step 5: the sizes of Sk

1, Sk
2, . . . , Sk

n parts are scaled
according to the ratio of S01, S02, . . . , S0n. �at is, we
will calculate hk

i and wk
i with i � 1, (n − 1) of the

sections Sk
1, Sk

2, . . . , Sk
n.

First, we find the horizontal dimensions of each
Sk

i part as follows: wk
i � 􏽐

n
i�1 wk

i /n with
i � 1, (n − 1).

Next, we find the height dimensions of each Sk
i

part as follows: hk
i � (wk

i ∗ h0
i /w

0
i ).

Step 6 : translating the particles progress of part Sk
i with

i � 1, (n − 1) compared to the best part (Sk
2) with

distance dk
imin.

For example, as shown in Figure 4(b), the particles of Sk
1

are translated towards the best part (Sk
2) with about dk

12.
We propose the multiparticle filter algorithm in Algo-

rithms 2 and 3.

4. Experiment

4.1. Environment. Installation environment: we experiment
on computers using the Windows 10 Pro 64 bit, RAM 8GB,
Chip Intel Core (TM) 5i-3210M CPU @ 2.5GHz; Matlab
programming language version R2016a.

4.2. Data Set. In 2013, Wu et al. [33] gathered many video
sources related to the track and proceeded to create ground
truth for these videos to form the TB-100 dataset. Because
the TB-100 is a compilation of data from many sources, the
context of the videos is also very different and diverse in
attributes such as the type of objects to track, color or black-
and-white videos, and still or dynamic cameras. �e video
datasets used to support the findings of this study have been
deposited in http://www.visual-tracking.net.

Challenges in the dataset include the following:

IV- illumination variation: the brightness of the subject
varies significantly
SV- scale variation: the ratio of the rectangle containing
the first image object to the current image is out of
range [(1/ts), ts], ts > 1(ts � 2)

OCC- occlusion: the object is partially or completely
obscured

h0
3

h0
1

h0
2

S0
3

S0
1

θ0
32

θ0
12

S0
2

(a)

hk3

hk1

Wk
1

hk2

Sk3

Sk1

Sk2

θk32

θk12

dk12

(b)

Figure 4: (a) �e angle θ012, θ
0
32 is the angle between the center S02 and the center S01, S03 based on Frame 0, and h0

1, h0
2, h0

3 are the heights of
S01, S02, S03. (b) In the kth frame, the parts Sk

1, Sk
3 have been skewed from Sk

2 with angle θk
12, θ

k
32, and hk

1, hk
2, hk

3 are the heights of Sk
1 , Sk

2, Sk
3.
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Input: pf particles sample set (based on Algorithm 4), k th image (where k starts from the second image)
Output: �e new set of particles represents p((x, y,ω, h)|image k, estimate the state of the object in the k th image.
Step 1:
for i� 1 to Ns do
Beginfor
/∗(with (xi, yi,ωi, hi) is the i th particle)∗/
Get xnew ∼ xi + N(0, σ2x)

Get ynew ∼ yi + N(0, σ2y)

Get ωnew ∼ ωi + N(0, σ2ω)

Calculate hnew � η∗ωnew
Calculate likelihood � p(image2|(xnew, ynew,ωnew, hnew) by Algorithm 8
Update weight for i th particle: weighti � weighti ∗ likelihood

Endfor
Step 2:
Calculate sum sw � 􏽐

Ns

j�1 weighti + ε
for i� 1 to Ns do
Beginfor
Standardize weight: weighti � (weighti + ε/sw)

Endfor
Step 3: Calculate Neff � (1/􏽐

Ns

j�1 weight
2
j)

Step 4:
if Neff <Ns/2 then

(xi, yi,ωi, hi),weighti􏼈 􏼉
Ns

i�1 � RESAMPLE( (xi, yi,ωi, hi),weighti􏼈 􏼉
Ns

i�1) use boostrap
Endif

Step 5: Estimate the state of the object in the k th image by calculating the average of the new set of particles
EstimatedStatus � 􏽐

Ns

i�1 weighti ∗ particle[i]

ALGORITHM 2: Particle filter for random processes (xn, yn,ωn, hn).

Step 1: Initialize N-particles set pf1, pf2, . . . , pfn

Step 2:
for i� 1 to n do
Beginfor
Take Di patern for part i according to Algorithm 4.
Train strong classification Fi � gentleAdaboost(Di) according to Algorithm 5.

Endfor
Step 3:
while �e video is not over do
Beginwhile
Get observation photos obs
for i� 1 to n do
Beginfor
Use particle filter to estimate the ith state according to Algorithm 1 or Algorithm 2

S∗i � (xest
i , xest

i , xest
i , xest

i ) � particlefilter(obs, pfi)

Measure the distance: distancei � ‖HOG(S∗i ) − HOG(S0i )‖2

Endfor
Choose the best part i0 � argmin(K1 ∗ distance1, K2 ∗ distance2, . . . , Kn ∗ distancen)

Using center i0 part and structure H perform rotation of the remaining n − 1 centers.
Tranlate n − 1 other particle set i0 to n − 1 has just been centered on i0.
Scale the particle sets according to the structure ratio H.
Translating n − 1 set of other particles i0 toward the part i0.
for i� 1 to n do
Beginfor

Take a new sample D∗i based on the new section rotated from i0.
Update strong classification Fi according to Algorithm 6

Endfor
Endwhile

ALGORITHM 3: (MultiPart).
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DEF- deformation: nonsolid objects that change shape
MB- motion blur: the subject is blurry due to camera
movement
FM- fast motion: groundtruth motion is greater than tm
pixels (tm � 20)
IPR- in-plane rotation: objects rotate in the image
domain
OPR- out-of-plane rotation: object out of the image
domain
OV- out of view: part of the object out of the image
domain
BC- background clutters: the background near the
object has the same color or line as the object
LR- low resolution: the number of pixels in the rect-
angle that contains the object (considering ground
truth) is less than tr (tr � 400)

�e abovementioned challenges are distributed in the
data set, which is shown in Figure 5.

4.3. Evaluating. We use the evaluation criteria presented at
the site [33] to evaluate the tracking algorithm.

Method 1 (R1): evaluation based on the Euclid distance
(precision plot): we measure the distance Euclid d from
the estimated center of the algorithm to the actual
center of the object (ground truth), if d is less than or
equal to a threshold t0. �e view is successful according
to Figure 6(a).
Method 2 (R2): evaluation based on levels of overlap
(success plot): the number of overlapping points is
defined as � (|rt ∩ ra|/|rt ∪ ra|), in which rt is the
bounding rectangle determined by the algorithm and
ra is the ground truth rectangle according to
Figure 6(b).

We calculate the ratio of R1, R2 by (the number of
successful images/the total number of images of images).

4.4.Result. �e results of tracking people with the camera do
not fluctuate much, the rotation angle is conserved, and the
proportions on the body of people and people are not too
small.

We named Program 1 as MultiPart3 using the MultiPart
algorithm by dividing the object into 3 parts in a ratio of 1 :
5 : 3; Program 2 is MultiPart3_direction using the MultiPart
algorithm to calculate the direction of moving objects by
dividing the object into 3 parts in a ratio of 1 : 5 : 3; Program
3 isMultiPart2 using theMultiPart algorithm by dividing the
object into 2 parts in a ratio of 5 : 3; Program 4 is Multi-
Part2_direction using the MultiPart algorithm to calculate
the direction of object movement by dividing the object into
2 parts in a ratio of 5 : 3. �e abovementioned five programs
compared with DiMP algorithms [31] and GradNet [32] are
shown in Table 1 and Figure 7.

�e MultiPart2 algorithm uses 2 particle filters in a ratio
of 5 : 3 to track, allowing a large portion of the head (head
and body) to be more informative, less changing over time,
and “denser” than the leg. �e average accuracy result
(R1� 92.2%, R2� 87.9%) is slightly larger than that of the
GradNet algorithm (R1� 85.9%, R2� 86.3%). With the
abovementioned results, we can see that the tracking part has
much information for good average results compared with
the object tracking. However, for data (Dancer và Dancer2)
that have a tracking object who wears a skirt or long skirt
covering feet, tracking using 2 particle filters at a ratio of 5 : 3
gives a low result compared to an object trace. By tracking,
the object intact in this case is best.

For the videos mentioned above, the MultiPart3 algo-
rithm divides 3 parts in a 1 : 5 : 3 ratio, after each image has
adjustments of the parts according to the rotation technique
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Figure 5: (a) Distribution of the properties throughout the data set. (b) Distribution of attributes in videos that have OCC attributes.
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Figure 6: (a) Euclid distance measurement. (b)Measure of the level
of overlap.
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based on the structure H to bring the wrong parts to the right
area of ground truth. �e results of the MultiPart3 algorithm
(R1� 94.6% and R2� 92.2%) are better than those of DiMP
(R1� 89.1%, R2� 89.9%) and GradNet (R1� 85.9%,
R2� 86.3%). In addition, the algorithm MultiPart3_direction

is the combination of the object movement direction for
average accuracy results (R1� 93.3%, R2� 93.2%), and this
result is better than DiMP and GradNet algorithm’s result.
�e MultiPart3_direction algorithm approximates the aver-
age accuracy result with the MultiPart3 algorithm because the
dancer data have the human object that jumps up and down
suddenly and the refined data take a number of frames so that
the determination of the motion direction is wrong.

5. Conclusions

�is paper presented several methods for object tracking in the
videos mainly related to particle filters. To solve the general
problem, we built a hiddenMarkovmodel and applied particle
filters. For tracking human videos in normal condition where
the human scale is preserved, we used 3 particle filters to track
each part of the body or track the part of the body containing
the most information, which will, then, infer to the whole
body. Experimental results show dividing the object into
(n+m) parts, even when n parts of objects are partially ob-
scured and the remainingm parts are tracked normally and do
not affect the tracking of the subject in the video.

�e development direction of this paper is to change the
observation model. We found that the gentle Adaboost
training process is time consuming. However, the algorithms
using correlation filters have the advantage of being fast and
highly accurate. For future studies, we suggest integrating the
correlation filters into the observation model to shorten the
execution time. In addition, we are planning to study parts of
the traced objects in parallel to shorten the execution time.

Appendix

Table 2 describes the notations.

A. Sample to Train Gentle Adaboost

Figure 8 describes the random true-positive sampling with
the bordering error at ±5 pixels and false-positive sampling
which does not include any particular object.

80
82
84
86
88
90
92
94
96

Algorithm evaluation chart

R1
R2

DiMP GradNet MultiPart2 MultiPart
2_directi...

MultiPart3 MultiPart
3_directi...

Figure 7: Algorithm evaluation chart.

Table 2: Notation table.

Symbol Explanation
(xk, yk,ωk, hk) �e state of the object in the frame k

η �e ratio between the weight/height of the object
at the first frame

ε Epsilon
Δx Dirac delta function at x
Δ Kronecker function
N(0, σ2x) Gaussian transition function
HOG Histogram of oriented gradients
Neff Effective sample size

5 pixels

5 pixels

True-positive sampling

False-positive sampling

5 pixels

w

h

h

h

w w

Figure 8: Limitations for false-positive and true-positive sampling
[19].
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B. Create Gentle Adaboost

C. Update Gentle Adaboost

Input: Image at initial time, position and object size (x0, y0,ω0, h0)

Output: Data set D size N+ + N− , including N+ positive patern, N− negative patern.
Step 1: Initialize a feature stack to hold feature vectors.
Step 2: Get the Haar-like characteristics [34] of the area (x0, y0,ω0, h0), v � getHaarlike(the area (x0, y0,ω0, h0))

Put v on stack features, features.push (v)
Step 3:

for i� 1 to N+ − 1 do
Beginfor
Randomly draw rectangular area S from the image at a position of ±5 pixels from the object
Get the Haarlike feature vector over the region S, v� getHaarlike(S)
Put vector v in the stack features, features.push(v)

Endfor
Step 4:

for i� 1 to N− − 1 do
Beginfor
Randomly take the area of S rectangle in the green part of Figure 8
Get the Haarlike feature vector over the region S, v � getHaarlike(S).
Put vector v in the stack features, features.push (v)

endfor

ALGORITHM 4: Sample to train gentle Adaboost.

Input: Training set (x1, y1), (x2, y2), . . . , (xN, yN) with yi ∈ 1, − 1{ } is the label of xi

Output: Strong classification function F
Step 1: Initialize coefficients ω1 � ω2 � · · · � ωN � (1/N) for training set
Step 2:
for t� 1 to s do
Beginfor

for j� 1 to m do
Beginfor
Training weak classification hj, mean that calculate (a, k, θ, b) according to the formula

Endfor
Select the weak classification with the lowest error, set to ft

Update strong classification F(x) � F(x) + ft(x)

Update weight ωi � ωi × exp(− yift(xi))

Endfor

ALGORITHM 5: Gentle Adaboost [35].

Input: Old strong classification F is a 4 × s matrix, new D data set
Output: A new strong classification F∗

Step 1:
Initialize the weight set (w1, w2, . . . , wN) consisting of N equal numbers, that equal 1/N, where N is the number of elements in the

data set.
Initialize matrix F∗ size 4 × s to contain weak classifications
Initializes the chosen stack to save the position of the weak classification that have been selected

Step 2:
for i� 1 to s-T do
Beginfor

ALGORITHM 6: Continued.
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D. Calculate the Classification Point

E. Calculate the Likelihood of the Image on the Hypothesis of the State of the Object

Initialize the loss stack to store error values
for j� 1 to s do
Beginfor
if − (j ∈ chosen) then
Calculate the error of classification j according to the following formula:

Jj � 􏽐
N
m�1 wm · (ym − aj · (D[m][kj]> θj) − bj)

2

Put Jj into loss, loss.push(Jj)
Endif

Endfor
Select the classification with the smallest error value, j0 � argmin(loss)

Put j0 into loss, loss.push (j0)
for j� 1 to s do
Beginfor
Update weight wj � wj × exp(− yj · (aj0

(D[j][kj0
]> θj0

) + bj0
))

Endfor
Endfor

Step 3: freshly train weak classification T on data set D∗ by Algorithm 5
Step 4: combine s-T weak classification in Step 2 and T weak classification in Step 3 to create a new strong classification F∗.

ALGORITHM 6: Update gentle Adaboost.

Input: Strong classification F is a 4 × s matrix (find strong classification based on Algorithm 5), Haar-like x feature vector of area to be
calculated
Output: Classification point conf
Step 1: Assign point conf � 0
Step 2:
for i� 1 to s do
Beginfor

Get a, b, θ, k are i th classification
Update conf � conf + a × δ(x[k]> θ) + b

Endfor

ALGORITHM 7: Calculate the Classification point.

Input: Observation image, hypothesis(x, y,ω, h), vector HOG1 of object in the first image, strong classification F.
Output: Likelihood p(observated image| hypothesis(x, y,ω, h)

Step 1: Extract image area in rectangle (x, y,ω, h), h � crop(image, (x, y,ω, h))

Step 2: Resize image h for the size of the object in the first image
Step 3:
Extract feature HOG on h, HOG2 � getHOG(h)

Extract feature Haar-like on h, Haar2 � getHaarlike(h)

Step 4: Calculate classification point conf � F(Haar2) by Algorithm 7
Step 5: Calculate likelihood � exp(α∗ conf − c||HOG1 − HOG2||

2)

ALGORITHM 8: Calculate the likelihood of the image on the hypothesis of the state of the object.
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