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)e traditional label relaxation regression (LRR) algorithm directly fits the original data without considering the local structure
information of the data. While the label relaxation regression algorithm of graph regularization takes into account the local
geometric information, the performance of the algorithm depends largely on the construction of graph. However, the traditional
graph structures have two defects. First of all, it is largely influenced by the parameter values. Second, it relies on the original data
when constructing the weight matrix, which usually contains a lot of noise. )is makes the constructed graph to be often not
optimal, which affects the subsequent work. )erefore, a discriminative label relaxation regression algorithm based on adaptive
graph (DLRR_AG) is proposed for feature extraction. DLRR_AG combines manifold learning with label relaxation regression by
constructing adaptive weight graph, which can well overcome the problem of label overfitting. Based on a large number of
experiments, it can be proved that the proposed method is effective and feasible.

1. Introduction

Information technology is developing rapidly and has be-
come a hot topic in recent years. We can get a lot of in-
formation from the data, but the dimension of the data is
getting higher and higher [1]. On the one hand, the increase
of data dimension makes the description of data samples
more comprehensive and provides more bases for further
analysis and processing of data samples [2]. On the other
hand, the increase in the number of features will bring more
redundant features, which not only put forward great re-
quirements for hardware and software equipment to com-
plete data processing but also directly affect the reliability
and effectiveness of data analysis and processing results [3].
In order to effectively analyze and process the data, by
mapping (or transforming) the original data to the low-
dimensional space, the features that best reflect the intrinsic
nature of the sample data can be obtained. )is process is
called feature extraction or data dimensionality reduction
[4]. )e core task of feature extraction or data

dimensionality reduction is how to find out which features
are most effective for the final data analysis and processing
and how to retain the useful information in the data
transformation process to the maximum extent. Feature
extraction is always a key problem in pattern recognition,
which will directly affect the design and performance of the
classifier [5–7]. Feature extraction can not only reduce the
dimension of data but also retain useful information in the
data. It is also widely used in the processing and analysis of
complex data.

In recent years, the feature extraction method based on
manifold learning has made remarkable achievements in
nonlinear data analysis and research and has been widely
used in nonlinear data processing and analysis. According to
the current popular learning methods, the nonlinear char-
acteristics and manifold structures of the sample data are
usually distributed in low-dimensional space [8–11], and the
traditional nonlinear subspace method is difficult to describe
and extract the information effectively [12–14]. At present,
the popular learning method is to obtain the embedded
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mapping of low-dimensional manifold structure and high-
dimensional feature manifold of the sample and then
complete the feature extraction of nonlinear information in
the sample data [15–18].

Discriminative Fisher embedding dictionary learning
(DFEDL) algorithm simultaneously establishes Fisher
embedding models on learned atoms and coefficients
[19, 20]. In 2000, Tenenbaum from Stanford University
published the first manifold learning method based on
isometric mapping (ISOMAP) [21] in Science. ISOMAP
method is a globally optimized method to preserve the
manifold structure between data effectively by main-
taining the geometric relationship between sample data
(also known as geodesic distance). Roweis proposed a
locally linear embedding (LLE) method in literature [22].
By constructing the reconstruction weight between each
sample and the neighboring samples, this method can
better preserve the manifold features between the
neighboring samples when embedding in low-dimen-
sional space [23–26]. Based on Roweis and Tenenbaum’s
basic research on manifold learning, researchers pro-
posed some improved feature extraction methods, in-
cluding Laplacian eigenmap (LE) [27], local learning
projection (LLP) [28], linear representation-based clas-
sifiers (CRC) [29], and linear regression classification
(LRC) [30].

Due to the validity of the least-squares regression
method in data analysis and the completeness of statistical
theory, it is widely used as a basic tool in many machine
learning problems including discriminant analysis, clus-
tering, multiview learning, multilabel classification, and
semisupervised learning. Sun et al. [31] proposed a least-
squares regression model based on generalized eigenvalue
decomposition, and Suzanna et al. [32] proposed a weighted
least-squares regression model. When solving the multilabel
classification problem with least-squares regression, if the
data points belong to different categories, then should be
considered as the increase of the distance between the data.
For example, in order to increase the distance between
different types of data points, Leski [33] proposed a qua-
dratic approximation least-square regression model based
on misclassification error. However, this model only con-
siders two categories of classification problems. In multilabel
classification, the distances among data points from different
classes are also expected to be as large as possible [34, 35], as
well as in multilabel feature selection. )erefore, multiple
least-squares regression models proposed by Leski [33] can
be used simultaneously, but the time cost of algorithm
implementation will be relatively high.

)e traditional label relaxation regression algorithm
directly fits the original data without considering the local
structure information of the data [36–38]. While the label
relaxation regression algorithm for graph regularization
considers local geometric information, its performance is
largely dependent on graph construction [39, 40]. However,
there are two defects in the construction of traditional
graphs: first, it is largely influenced by the parameter values;
second, it relies on the original data when constructing the
weight matrix, which usually contains a lot of noise [41].)is

makes the constructed graph often not to be optimal, which
affects the subsequent work. To guarantee the global optima
of the latent representation and graphs of all views, we
integrate the graph completion and common representation
learning into a joint optimization framework. [42–44].
)erefore, it is proposed to combine manifold learning with
label relaxation regression and construct weight graph
through adaptive method. At the same time, local identi-
fication information is added on the basis of original linear
identification analysis so that the projection learning can
grasp the local identification information to expand the
identification of the projection. A label relaxation regression
algorithm for image classification and feature extraction
based on adaptive graph is proposed. In this paper, the main
innovation points are as follows:

(1) )e adaptive graph construction can rightly capture
the local structure information of the data

(2) )e problem of overfitting is avoided by introducing
adaptive graph into the objective function of label
relaxation regression

(3) In order to take full advantage of discriminant in-
formation, the global discriminant information
based on the LDA is considered

)e rest of this paper is arranged as follows: Section 2
briefly reviews DLSR and structured optimal graph. In
Section 3, discriminative label relaxed regression with
adaptive graph learning (DLRR_AG) is described in detail,
and the convergence of the proposed algorithm is proved.
Section 4 mainly provides a lot of experiments to verify the
performance of the proposed algorithm. )e last Section
gives the conclusion.

2. Related Work

2.1. Discriminative Least-Squares Regression (DLSR)
Algorithm. )e classification training samples are given N

numbers, and these samples (xi, yi)􏼈 􏼉
N
i�1 fall into C(C≥ 2)

classes, where yi ∈ 1, 2 . . . , c{ } is the class label of xi, and xi is
a data point in Rm. )e linear equation can be satisfied as
follows:

XW + eNt
T ≈ Y, (1)

where X � [x1, x2, . . . , xn]T ∈ RN×m and Y � [fy1, fy2, . . . ,

fyN]T ∈ RN×C. For the ith class, i � 1, 2, . . . , c,
fi � [0, . . . 0, 1, 0, . . . , 0􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

i− 1
]T ∈ Rc, W is a transformation

matrix in Rm×c, t is a translation vector in Rc, and eN �

[1, 1, . . . , 1] ∈ RN is a vector with all 1 s.
Each column vector in Y is of a binary regression type,

with the target of class jth being “+1” and the target of the
rest being “0.” We can drag these binary outputs far away
along two opposite directions. )at is, with a positive slack
variable, we hope the output will become for the sample
grouped into “1” and for the sample grouped into “0.” )is
treatment can help enlarge the distance between the classes
and mapping data point.
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Let B ∈ RN×C be a constant matrix, in which the ith row
and jth column element Bij is defined as

Bij �
+1, if yi � j,

− 1, otherwise.
􏼨 (2)

Each element in B corresponds to the direction of the
drag. Performing the above ε drag on each element of Y,
matrix M ∈ RN × C records these ε{ }. )e residual can be
obtained as follows:

XW + eNt
T

− (Y + B⊗M) � 0, (3)

where ⊗ is the Hadamard matrix product operator.
)e objective function of DLSR can be obtained as

follows:

min
W,t,M

XW + eNt
T

− Y − B⊗M
����

����
2
F

+ λ‖W‖
2
F,

s.t. M≥ 0,

(4)

where λ is a positive regularization parameter. By solving the
optimization problem of equation (4), the optimal W and t
can be obtained:

W � X
T
HX + λIm􏼐 􏼑

− 1
X

T
HR,

t �
R

T
eN − W

T
X

T
eN􏼐 􏼑

N
,

(5)

where Im is a m × m identity matrix and H � IN−

(1/N)eNeT
N, in which IN is a N × N identity matrix, and

R � Y + B⊗M ∈ RN × C.

2.2. StructuredOptimalGraph. It is well known that the data
in high-dimension space is usually embedded in low-di-
mensional manifold [40]. It is a key success factor to preserve
local manifold structure information for graph-based
methods. )e local manifold structure is captured by the
similarity matrix, which determines the ultimate perfor-
mance of graph-based methods.

Suppose that there are N training samples from c classes
which are denoted by X � [x1, x2, . . . , xN] ∈ RN×m, where
N is the number of samples used for classifier training, while
all N samples are used for determination of S, wherem is the
dimension of observed data, and xi � (i � 1, 2, . . . , N) ∈
Rm×1 is the i-th sample for sample set X. For any sample xi, it
can be connected by all other samples with probability sij,
where sij is an element of similarity matrix S ∈ RN×N. If the
distance of two samples is closer, the greater their probability
(or similarity) will be, and vice versa. )erefore, the simi-
larity sij between xi and xj is inversely proportional to their
distance. )e similarity sij can be obtained by solving the
following equation:

min􏽘
i,j

xi − xj

�����

�����
2

2
Sij + αS

2
ij􏼒 􏼓,

s.t. ∀i, s
T
i 1 � 1, 0≤ sij ≤ 1,

(6)

where Si ∈ RN×1 is a vector whose jth element is sij in
similarity matrix S and α is a regularization parameter. )e
second item in equation (6) is mainly to avoid trivial
solutions.

It is the ideal state for each sample to include c-nearest-
neighbor numbers. )at is to say, each Sij(i � 1, 2, . . . , N) in
similarity matrix S has exact c connected components. In
fact, the obtained similarity matrix S in equation (6) does not
meet this requirement in most cases. )e problem can be
solved as follows. )e spectral analysis has an important
equation as follows:

􏽘
i,j

fi − fj

�����

�����
2

2
Sij � 2Tr F

T
LSF􏼐 􏼑, (7)

where F � [f1, f2, . . . , fN] ∈ RN × C is a class label matrix
corresponding to the observed data X, LS � D − (ST + S)/2
is the Laplacian matrix, and matrix D is a diagonal matrix
whose ith entry is 􏽐jSij + Sij/2.

If the rank of Laplacian matrix LS equals to N − C,
namely, rank(LS) � N − C, the obtained similarity matrix S

will include exact C connected components [45]. By com-
bining the constraint to equation (6), equation (6) is written
as

min􏽘
i,j

xi − xj

�����

�����
2

2
Sij + αS

2
ij􏼒 􏼓. (8)

In order to solve equation (6), the ith smallest eigenvalue
of Laplacian matrix LS is denoted by σi(LS). It is well-known
that the solutions of positive semidefinite matrix are more
than zero. Laplacian matrix LS is positive semidefinite, so
σi(LS)≥ 0. Based on rank(LS) � N − C, 􏽐

C
i�1 σi(Ls) � 0 is

satisfied [45]. According to KyFan’s )eorem [46], we have

􏽘

C

i�1
σi Ls( 􏼁 � min

FTF�I
Tr F

T
LSF􏼐 􏼑. (9)

)erefore, based on equation (9), equation (8) can be
rewritten as

min􏽘
i.j

xi − xj

�����

�����
2

2
sij + αs

2
ij􏼒 􏼓 + 2λTr F

T
LSF􏼐 􏼑,

s.t. ∀i, s
T
i 1 � 1, 0≤ sij ≤ 1, F

T
F � I.

(10)

3. Discriminative Label Relaxation Regression
Algorithm Based on Adaptive
Graph (DLRR_AG)

In this section, the motivation of our DLRR_AG is firstly
introduced. )en, the optimum solution of DLRR_AG is
given.

3.1.4eMotivation of DLRR_AG. Traditional label relaxation
regression algorithms directly fit the original data, which often
results in overfitting. In general, to overcome overfitting, a
regularization term is added to the target equation, and a
regularization factor is used to balance the target equation and
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regularization term. In addition to this one, maintaining the
information of local manifold structure plays a very important
role in improving classification or clustering. )ere are two
kinds of classical nearest-neighbor graphs, one is k-nearest-
neighbor graph, and the other is ε-nearest-neighbor graph. A
large part of graph-based algorithms rely on these twomethods
to preserve localmanifold structure information.However, two
problems often occur when these two methods are used. First,
the performance of graph learning is greatly affected by the
parameter k or ε, the results of taking different parameter
values are sometimes far apart, and the optimal value is not
easy to determine, which requires a lot of experiments to
obtain, which consumes a lot of time. Second, the traditional

graph construction method requires two complicated steps:
first, the corresponding weighted matrix should be constructed
in adjacent graphs, and then the relaxation regression should
be carried out. However, once the weightedmatrix is generated
from the most primitive observation data, it will not change
any more. )ere is no flexibility. )is kind of weighted matrix
generated in advance is not practical in practical application,
because the original observation data often contain a lot of
errors, which will lead to the destruction of the local manifold
structure. To solve this problem, we propose a relaxation re-
gression algorithm for adaptive graph. )e objective function
of the algorithm is described as follows:

min
W,M

‖XW − Y − B⊗M‖
2
F + 􏽘

i.j

W
T
xi − W

T
xj

�����

�����
2

2
sij + αs

2
ij􏼒 􏼓 + 2λTr F

T
LSF􏼐 􏼑,

s.t. M≥ 0,∀i, s
T
i 1 � 1, 0≤ sij ≤ 1, F

T
F � I.

(11)

In order to take advantage of intraclass discriminative
information, the discriminant information based on the

LDA is introduced into the objective function. Equation (11)
can be rewritten as

min
W,M

‖XW − Y − B⊗M‖
2
F + 􏽘

i.j

W
T

xi − W
T
xj

�����

�����
2

2
sij + αs

2
ij􏼒 􏼓 + 2λTr( F

T
LSF ) + c( Tr( W

T
( Sw − Sb )W ),

s.t. M≥ 0,∀i, s
T
i 1 � 1, 0≤ sij ≤ 1, F

T
F � I,

(12)

where Sw and Sb are the within-class scatter matrix and
between-class scatter matrix, respectively.

3.2. Optimization of DLRR_AG. Equation (12) of the ob-
jective function is convex, so it is difficult to get the global
optimal solution. )erefore, we can obtain the local optimal
solution through continuous iteration. Because the target
function contains four different variables, optimization
solution (12) is not directly available; it requires an iterative
solution to this problem (12). We propose an iterative al-
gorithm to update the rules to solve these problems.

3.2.1. Fixing W, M, and F to Update S. When other variables
are fixed, except S, equation (12) can be transformed into

min􏽘
i.j

W
T
xi − W

T
xj

�����

�����
2

2
sij + αs

2
ij􏼒 􏼓 + 2λTr F

T
LSF􏼐 􏼑,

s.t. ∀i, s
T
i 1 � 1, 0≤ sij ≤ 1.

(13)

According to equation (7), equation (13) can be re-
written as

min􏽘
i.j

W
T
xi − W

T
xj

�����

�����
2

2
sij + αs

2
ij􏼒 􏼓 + λ􏽘

i,j

fi − fj

�����

�����
2

2
Sij,

s.t. ∀i, s
T
i 1 � 1, 0≤ sij ≤ 1.

(14)

Because it is independent for the similarity vector of each
data point, we can solve the optimal problem for each sample
as follows:

min􏽘
i.j

W
T
xi − W

T
xj

�����

�����
2

2
sij + αs

2
ij􏼒 􏼓 + λ􏽘

i,j

fi − fj

�����

�����
2

2
Sij,

s.t. ∀i, s
T
i 1 � 1, 0≤ sij ≤ 1.

(15)
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Let mij � ‖WTxi − WTxj‖
2
2, nij � ‖fi − fj‖

2
2, and

dij � |mij + λnij; equation (15) can be rewritten as

min si +
1
2α

di

�������

�������

2

2
,

s.t. s
T
i 1 � 1, 0≤ Sij ≤ 1.

(16)

3.2.2. Fixing S, W, and M to Update F. When other variables
are fixed, except F, equation (12) can be transformed into

minTr F
T
LSF􏼐 􏼑,

s.t. F
T

F � I.
(17)

)e optimal solution of F is formed from the eigen-
vectors of the c minimum eigenvalues in the LS.

3.2.3. Fixing S, W, and F to Update M. When other variables
are fixed, except M, equation (12) can be transformed into

min‖XW − Y − B⊗M‖
2
2,

s.t. M≥ 0.
(18)

Let us now consider optimization in terms of M ∈ RN×C.
Given W and T, and let P � XW − Y record the regression
error of n data points, then the optimization problem can be
solved from the following aspects:

min‖P − B⊗M‖
2
F,

s.t. M≥ 0.
(19)

According to the square of matrix Frobenius norm, the
fact that an element can be decoupled, (10) can be decoupled

equivalently into n × c subproblems. For the ith row of the
matrix and the jth column element Mij, we have

min
Mij

Pij − BijMij

�����

�����
2

F
,

s.t. M≥ 0,

(20)

where Pij and Bij are the ith row and jth elements of P and B,
respectively.

Note that B2
ij � 1. )us, we have (Pij − BijMij)

2

� (Bij − PijMij)
2. )en, the optimization problem of

equation (20) can be rewritten as

min
Mij

BijPij − Mij􏼐 􏼑
2
,

s.t. Mij ≥ 0.

(21)

Obviously, the optimal solution of equation (21) is given
as follows:

M � max(B⊗P, 0). (22)

3.2.4. Fixing S, M, and F to Update W. Equation (12) is a
constrained convex optimization problem. According to the
properties of convex optimization, the local optimal solution
is also the optimal solution of the whole. Next, this paper
uses the iterative method to solve the optimal solution of
equation (12).

To solve W, given M, equation (12) is an unconstrained
convex optimization problem for W. You just take the
derivative of that and you set the derivative to 0 and you get
W.

When other variables fix, except W, equation (12) can be
transformed into

min
W

‖XW − Y − B⊗M‖
2
F + 􏽘

i.j

W
T
xi − W

T
xj

�����

�����
2

2
+ c tr W

T
Sw − Sb( 􏼁􏼐 􏼑W􏼐 􏼑. (23)

Let N � Y + B⊗M, then the problem in (23) can be
transformed into the following problem:

min
W

‖XW − N‖
2
F + λTr W

T
XLX

T
W􏼐 􏼑 + c tr W

T
Sw − Sb( 􏼁W􏼐 􏼑􏼐 􏼑

� Tr W
T
X

T
XW − W

T
X

T
N􏼐 􏼑 + λTr W

T
XLX

T
W􏼐 􏼑 + c tr W

T
Sw − Sb( 􏼁W􏼐 􏼑􏼐 􏼑

� Tr W
T

X
T
X + λXLX

T
+ c Sw − Sb( 􏼁􏼐 􏼑W − W

T
X

T
N􏼐 􏼑

⇒W � X
T
X + λXLX

T
+ c Sw − Sb( 􏼁􏼐 􏼑

− 1
X

T
N,

(24)
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where L � D − S is the graph Laplacian and D is a diagonal
matrix whose diagonal elements Dii � 􏽐jSij.

4. Experiments

In this section, we perform a large number of experiments,
and the experimental results can prove that our proposed
DLRR_AG algorithm can achieve high classification accu-
racy. In order to prove the effectiveness of our DLRR_AG
algorithm, six public image databases are used to validate
our method. For the sake of contrast, the proposed
DLRR_AG algorithm is compared with other typical feature
extraction methods as follows:

(i) Collaborative representation-based classification
(CRC) [29]: CRC is a combined result of machine
learning and compressed sensing, which shows its
good classification performance on face image data.
Considering the training samples from a specific
class and the query set as two linear subspaces, the
classwise prototypes most correlated with the query
set are learned, resulting in a condensed gallery set.

(ii) Linear regression classification (LRC) [30]: LRC has
attracted a great amount of attention owning to its
promising performance in face recognition. How-
ever, its performance will dramatically decline in the
scenario of limited training samples per class,
particularly when only single training sample is
available for a specific person.

(iii) Flexible manifold embedding (FME) [45]: FME is a
semisupervised manifold learning framework with
good applicability. It can effectively utilize label
information from labeled data as well as a manifold
structure from both labeled and unlabeled data.

(iv) Joint global and local structure discriminant anal-
ysis (JGLDA) [46]: for linear dimension reduction,
it preserves the local intrinsic structure, which
characterizes the geometric properties of similarity
and diversity of data by two quadratic functions.

(v) Flexible linear regression classification (FLRC) [47]:
the inferences are based on the least-squares esti-
mators of the model which have been shown to be
coherent with the interval arithmetic defining the
model and to verify good statistical properties.

(vi) Discriminative least-squares regression (DLSR)
[34]: DLSR is to embed class label information into
the LSR formulation such that the distances between
classes can be enlarged. In order to implement this
idea, a technique called ε-dragging is introduced to
force the regression targets of different classes
moving along with opposite directions.

4.1. Experiments on YALEDatabase. Yale faces a database of
15 people containing 165 photos. )ey were taken by 15
people under different lighting conditions and with different
facial expressions. Each person took 11 pictures. In our
experiment, each image was manually cropped to a size of 50

by 40 pixels. Figure 1 shows the sample images of one of
them.

In this experiment, the first 2, 3, to 6 images from each
object are used for training set, and the rest is utilized for test
set. In order to evaluate the algorithm more objectively, we
will eliminate random effects on the algorithm in the process
of implementation, and all the methods are repeated 10
times. )e recognition rates of all algorithms are shown as
Table 1.

It can be seen from Table 1 that we can draw two points.
Firstly, the recognition performance of the proposed
DLRR_AG method is better than DLSR method irrespective
of the number of training samples. Secondly, our method is
superior to all other methods, except when the training
sample is 4.

4.2. Experiments on ORL Database. )e ORL dataset in-
cludes 400 face images from 40 different objects, and each
object has 10 face images. For some people, their images
were taken at different time and different light; image
content includes different facial expression and facial details.
Figure 2 shows the sample images of one of them.

In this experiment, the training set was the first 3, 4, 5,
and 6 images of each person, and the test set was the
remaining images. All algorithms are repeated 10 times. )e
recognition rates of each algorithm are shown in Table 2.

We can clearly see from Table 2 that the proposed
DLRR_AG is superior to CRC, LRC, FLRC, FME, LRR
JGLDA, and DLSR.

4.3. Experiments on Georgia Tech Database. )e Georgia
Tech face database contains photos of 50 people taken during
two or three sessions and produced at Georgia Tech. In the
database, each individual took 15 color JPEG images with a
cluttered background and a resolution of 640 by 480 pixels.
)e faces in these pictures may be front and tilted, or they
may be front or tilted. )ese images include the different
expressions, illuminations, and proportions. Each image is
manually cropped to 60 by 50 pixels. All images are con-
verted to grayscale images in the experiment. Figure 3 shows
the sample images of one of them.

In this experiment, the training set was the first 4, 5, to 8
images of each person, and the test set was the remaining
images. Repeat the algorithm 10 times. )e recognition rates
of each algorithm are shown in Table 3.

As can be seen from Table 3, DLRR_AG performs well
compared with all other algorithms on the Georgia Tech
database. In particular, the performance of DLRR_AG is
much higher than that of CRC.

4.4. Experiments on CMU PIE Database. )e CMU PIE
database contains 41,368 facial images. )e images were
taken by 68 people with different expressions, decorations,
and postures. )e acquisition of multiple images of each
object is based on the premise of fixed expression and at-
titude, and the illumination is changed to obtain 14 face
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images, and then these images are cut to 32× 32 pixels.
Figure 4 shows multiple images from an object.

In this experiment, the first 4, 5, 6, 7, and 8 face images of
each object are selected to act as training set, and the rest are

taken as test set.)e proposed algorithms are repeated for 10
times. )e recognition rates of all algorithms are shown in
Table 4.

From Table 4, we can know that the proposed DLRR_AG
can respectively obtain the best recognition performance in
the corresponding comparison algorithms irrespective of the
variations of training sample size.

4.5. Experiments onARDatabase. )e AR face database [44]
contains color face images of 120 people, and the total
number of face images exceeds 4,000. Among them, 120
subjects were photographed twice with different facial ex-
pressions, light conditions, and shade, with a 14-day interval,

Figure 4: Some face images of one object from CMU PIE database.

Figure 1: Sample face images from Yale database.

Table 1: Average recognition rate of different methods on the Yale
database (%).

Methods

)e number (or proportion) of the training samples
per class

2
(18.18%)

3
(27.27%)

4
(36.36%)

5
(45.45%)

6
(54.54%)

CRC 67.14 66.79 65.83 70.06 74.52
LRC 65.73 62.94 61.89 69.76 73.79
FLRC 66.17 65.98 67.85 70.85 74.85
FME 60.73 62.94 70.89 71.86 76.34
JGLDA 68.55 69.45 69.64 75.48 75.82
DLSR 67.38 67.62 66.07 70.60 75.48
DLRR_AG 69.17 70.71 70.60 73.10 76.55
Bold values indicate the highest recognition rate of all methods.

Figure 2: Sample face images from ORL face database.

Table 2: Average recognition rate of different methods on the ORL
database (%).

Methods
)e number (or proportion) of the training

samples per class
3 (30%) 4 (40%) 5 (50%) 6 (60%)

CRC 87.86 91.25 92.00 93.75
LRC 82.14 85.42 89.50 95.60
FLRC 86.56 88.50 93.20 95.61
FME 83.00 86.42 90.12 95.33
JGLDA 88.55 89.63 92.93 93.61
DLSR 88.45 90.23 92.66 93.25
DLRR_AG 88.93 91.67 94.50 95.63
Bold values indicate the highest recognition rate of all methods.

Figure 3: Sample face images from Georgia Tech face database.

Table 3: Average recognition rate of different methods on the
Georgia Tech database (%).

Methods

)e number (or proportion) of the training samples
per class

4
(26.67%)

5
(33.33%)

6
(40.00%)

7
(46.67%)

8
(53.33%)

CRC 57.64 61.43 68.11 71.25 75.40
LRC 56.36 59.60 66.67 70.00 74.57
FLRC 58.22 60.18 67.10 71.38 75.20
FME 53.28 58.56 67.55 70.22 73.55
JGLDA 57.68 59.32 66.79 68.95 72.84
DLSR 50.55 54.40 65.33 69.88 72.10
DLRR_AG 59.27 63.60 68.22 73.00 75.42
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and each person produced 26 images. In our experiment, out
of the 26 facial images of 120 people, seven were selected
from each stage, or 14 face images per person. Each image is
manually cropped to 50 by 40 pixels. All images are con-
verted to grayscale images. Figure 5 shows the sample images
from one object.

In this experiment, we obtained 14 images of unmasked
faces from the first and second experiments. )e images in
the first stage (ranging from 3 to 7) were used as training
images, and the face images in the second stage were used as
test images. )e proposed algorithms are repeated for 10
times. )e experiment results are shown in Table 5.

As can be seen from Table 5, compared with the pro-
posed DLRR_AG algorithm, the classification results of
CRC, LRC, FLRC, FME LRR, and JGLDA are poor. In other
words, the proposed method can achieve the best recog-
nition performance.

4.6. Experiments on UMIST Database. )e UMIST face
database contains a total of 575 facial images of 20 people.
)e 575 photos had all the poses of 20 people in the database,
a mix of race, gender, and physical appearance.)e views are
different for each topic, between 19 and 48 views for each
topic.)e size of the face image in the view is 56 by 48 pixels.
Figure 6 shows example images of a person.

In this experiment, the first 1, 2 to 5 face images of each
person are generally selected as the training set, while other
images are used as the test images. )e algorithm is repeated
10 times for each test. )e experimental results are shown in
Table 6.

As can be seen from Table 6, when the training sample
size is 3, the recognition rate of DLRR_AG algorithm is
slightly lower than that of DLSR algorithm. However, the
recognition rate of the proposed DLRR_AG algorithm is
higher than other algorithms when the training sample size
is not 3.

5. Conclusion

)is paper presents a discriminative label relaxation re-
gression algorithm based on adaptive graph (DLRR_AG)
algorithm, which can effectively alleviate the overfitting
problem caused by label relaxation by correctly capturing
the local structure information of the original observed data.
)e main innovation of this paper has the following points.
(1) )e adaptive neighborhood graph can well capture the
essential local structural information of the original data. (2)
Label relaxation, manifold learning, and discriminant
analysis are integrated into a unified framework. A large
number of experiments in six public image databases show
that the proposed method is superior to other related

Table 4: Average recognition rate of different methods on the
CMU PIE database (%).

Methods

)e number (or proportion) of the training samples
per class

4
(19.05%)

5
(23.81%)

6
(28.57%)

7
(33.33%)

8
(38.10%)

CRC 79.43 84.27 87.68 88.99 92.20
LRC 70.72 79.61 82.86 87.57 89.62
FLRC 78.22 80.23 84.36 88.45 91.33
FME 70.93 77.52 81.33 85.07 86.96
JGLDA 78.55 79.78 79.95 88.63 88.69
DLSR 74.25 80.29 85.98 88.74 91.95
DLRR_AG 81.50 84.71 88.15 89.75 92.59
Bold values indicate the highest recognition rate of all methods.

Figure 5: Sample face images from AR database.

Table 5: Average recognition rate of different methods on the AR
database (%).

Methods

)e number (or proportion) of the training samples
per class

3
(21.43%)

4
(28.57%)

5
(35.71%)

6
(42.86%)

7
(50.00%)

CRC 70.71 70.60 73.10 76.55 77.38
LRC 66.79 65.83 70.06 74.52 75.12
FLRC 67.62 66.07 70.60 75.48 75.71
FME 70.88 70.96 73.30 76.85 77.84
JGLDA 68.55 69.45 69.64 75.48 75.82
DLSR 67.62 66.07 70.60 75.48 75.71
DLRR_AG 71.50 72.19 74.67 77.29 79.31
Bold values indicate the highest recognition rate of all methods.

Figure 6: Sample face images from the UMIST database.

Table 6: Average recognition rate of different methods on the
UMIST database (%).

Methods

)e number (or proportion) of the training samples
per class

1
(21.05%)

2
(26.31%)

3
(31.58%)

4
(36.84%)

5
(42.10%)

CRC 46.77 60.00 71.55 74.68 84.33
LRC 48.53 60.56 71.72 75.63 84.60
FLRC 49.93 60.88 72.87 76.24 83.97
FME 56.25 58.28 69.79 75.31 83.29
JGLDA 53.13 59.67 69.66 78.59 87.80
DLSR 55.45 60.00 74.25 80.23 85.98
DLRR_AG 56.78 61.69 73.79 81.61 88.28
Bold values indicate the highest recognition rate of all methods.
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methods. )erefore, the proposed method is effective and
feasible.
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