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In the increasingly complex electromagnetic environment of modern battlefields, how to quickly and accurately identify radar
signals is a hotspot in the field of electronic countermeasures. In this paper, USRP N210, USRP-LW N210, and other general
software radio peripherals are used to simulate the transmitting and receiving process of radar signals, and a total of 8 radar
signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and OFDM, are produced.+e signal obtains time-frequency images (TFIs)
through the Choi–Williams distribution function (CWD). According to the characteristics of the radar signal TFI, a global feature
balance extraction module (GFBE) is designed.+en, a new IIF-Net convolutional neural network with fewer network parameters
and less computation cost has been proposed. +e signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. +e
experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the
signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition
rate and better robustness under low SNR.

1. Introduction

Radar signal recognition is a key technology in the field of
radar electronic countermeasures. When receiving a radar
signal, it is crucial to demodulate the signal to obtain useful
information, and how to identify the signal type is the key.
+e accuracy of signal recognition in a complex electro-
magnetic environment determines the pros and cons of
electronic reconnaissance systems. Due to the emergence of
complex electromagnetic environments and various new
system radars in modern warfare, electronic reconnaissance
and electronic countermeasure systems have brought serious
challenges. How to identify the type of radar signal more
quickly and accurately is the key and difficult point of radar
signal recognition technology.

Traditional radar signal recognition technologies include
support vector machine learning (SVM) and traditional five-
parameter feature matching algorithm. Li and Ying [1]
achieved the purpose of identifying and classifying radar
signals by extracting different entropy features. Ying and

Xing [2] proposed an improved semisupervised SVM al-
gorithm for radar signal recognition which has high accu-
racy. Li et al. [3] proposed a deep joint learning method,
including deep representation and low-dimensional dis-
crimination, to enhance feature stability and environmental
adaptability. +e approach achieved a high recognition rate
for multiple radar signals under low SNR. Li [4] proposed an
SKLEARN system based on automatic machine learning.
+rough the automatic solution algorithm of the SKLEARN
system and the optimization of hyperparameters, the ac-
curacy of radar signal recognition is improved and the
stability is more reliable. Feng B et al. [5] proposed a
manifold method to reduce dimensionality in high di-
mensions, extract features, and set an appropriate threshold
as a classifier. +is method had good accuracy, but did not
have good generalization performance. Guo et al. [6] pro-
posed a frequency domain analysis method and an identi-
fication method based on the Fast Correlation-based Filter
Solution (FCBF) and adaboosting (AdaBoost). Under low
SNR conditions, this method is more efficient than manually
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extracting features for classification. Zhang et al. [7] pro-
posed a machine learning method based on Tree-based
Pipeline Optimization Too (TPOT) and Local Interpretable
Model-agnostic Explanations (LIME) and used genetic al-
gorithms to optimize the pipeline structure and related
parameters. +is method can not only optimize the machine
learning process for different data sets but also determine the
type of radar signal according to the interpretability of the
radar signal when there are indistinguishable radar signals in
the dataset.

However, traditional radar signal recognition tech-
nology requires artificial design of more complex features
extraction algorithms and classifiers, which are more dif-
ficult to implement and have poor generalization perfor-
mance. With the development of artificial intelligence (AI),
the application fields of deep learning are getting wider and
wider. In the field of image recognition, Convolutional
Neural Networks (CNNs) is a hotspot in many researches.
Its network has ability to represent learning, that is, it can
extract high-order features from input information, and
can respond to the translation of input features. Dena-
turation, which can identify similar features in different
positions in space, is widely used in computer visualization,
natural language processing, and other fields. Qu et al. [8]
proposed a multilabel classification network based on the
Deep Q-learning Network (DQN), which can be recognized
under low SNR. +rough the radar signal preprocessing
and feature extraction of the convolutional neural network,
the network can identify random overlapping radar signals
under low SNR. Cai et al. [9] proposed a radar signal
modulation and recognition algorithm based on an im-
proved CNN model. In this model, a dense connection
block layer and a global pooling layer were added to identify
8 radar signals. Limin et al. [10] proposed a radar signal
recognition method based on an improved AlexNet model.
At low SNR, they performed smooth pseudo-Wingner
time-frequency analysis on a variety of signals using an
improved AlexNet model, resulting in a high overall rec-
ognition rate.

In this paper, USRP N210 and USRP-LW N210 Uni-
versal Software Radio Peripheral (Universal Software Radio
Peripheral) are used to simulate the radar signal transmis-
sion and reception process, and a total of 8 classes of radar
signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and
OFDM, are produced with the SNR between −10∼6 dB.
+en, all classes of signals were distributed through the
Choi–Williams distribution function (CWD) transforma-
tion to generate two-dimensional time-frequency images
(TFIs). As the TFI information location distribution of
different radar signals is quite different, some signal infor-
mation is concentrated in the central area, and some signal
information is distributed at the edge. Aiming at the
abovementioned problems, this paper designed a global
feature balance extraction module (GFBE) and a new IIF-
Net convolutional neural network structure which has
strong recognition ability for radar signals. By improving the
classifier, IIF-Net has reduced the number of parameters and
computation and has better identification accuracy and
reliability.

2. GFBE Module and IIF-Nets

2.1. GFBE Module. +e traditional radar signal recognition
method is based on the conventional 5 parameters: carrier
frequency (RF), angle of arrival (DOA), pulse arrival time
(TOA), pulse amplitude (PA), and pulse width (PW).
However, most of the signal parameters are external features,
which are easy to be interfered by the external environment.
+e external interference will cause the distortion and loss of
the signal and reduce the recognition accuracy. CNNs can
adaptively learn image features for recognition, which can
improve the accuracy of radar signal recognition.

With the development of computer hardware, CNN is
widely used in various fields. In the article of the develop-
ment of convolutional neural network and its application in
image classification, Wang et al. [11] analyzed the appli-
cation and development of CNN in detail. In 2012, Hinton
and Alex Krizhevsky proposed AlexNet [12] and successfully
applied ReLU [13], Dropout [14], and LRN [13] in CNN for
the first time. Visual geometry group networks (VGG-Nets)
[15] proposed a 3× 3 small convolution filter, which
deepened the network to 19 layers. With the increase of the
network depth, the problem of network degradation
appeared. After enough training times, the accuracy rate on
the training set will be saturated or even decreased, and the
problem of gradient and information disappearance also
hinders the increase of the network depth. Residual net
(ResNet) [16] solved this problem by using short skip
connection and continued to increase the network depth. In
image recognition, in order to extract features better, the
image can be reconstructed with super resolution [17]. +e
improved lightweight network [18] also achieves a good
classification effect.

Different convolutional layers of CNN can extract dif-
ferent features of the target. +e shallow convolutional layer
extracts the features of the target such as texture and con-
tour, while the deep convolutional layer extracts the abstract
features of the target and contains richer semantic infor-
mation. However, with the deepening of the network layers,
there will be problems such as information loss, gradient
disappearance, and degradation.+e location distribution of
TFI information for different classes of radar signals is
different, so this paper designed a global feature balance
extractionmodule (GFBE), as shown in Figure 1. In Figure 1,
“Conv1,” “Conv3,” and “Conv5” represent 1× 1, 3× 3, and
5× 5 convolution kernels, respectively, and “Maxpool (3)”
represents a 3× 3 pooling layer with a stride of 1.+emodule
contains multiple sizes of convolution kernels. +e short
skip connection layer of the module is composed of two
“Conv1” and “Conv3”.+rough the short skip connection, it
can prevent information loss, increase the network depth,
and solve the problem of network degradation to a certain
extent. +e first Conv1 is used to reduce the dimension, and
the second Conv1 is used to increase the dimension. +e
main purpose is to reduce the number of parameters and
increase the nonlinear learning ability of the network. +e
next is the parallel convolution structure and point con-
volution layer, which contains convolution kernels of var-
ious sizes: “Conv5,” “Conv3,” “Conv1” and 3× 3 MaxPool.
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For TFI of different radar signals, larger convolution kernel
are used for images with more dispersed information dis-
tribution, while a smaller convolution kernel is used for
images with more local information distribution, which can
ensure balanced extraction of image features.

2.2. IIF-Nets Structures. Based on the GFBE module, 3 IIF-
Net deep CNN structures are proposed: IIF-Net56, IIF-
Net107, and IIF-Net Net158. In these networks, a GFBE
structure has 5 layers, where a “Conv” is a composite
structure containing “convolution,” “batch standardization,”
and “activation function”.+e network structure is shown in
Table 1.

Radar signal recognition technology requires high real-
time performance, and recognition must be made imme-
diately when the signal is captured. +e network is required
to have less parameters and low calculation cost to reduce
the consumption of hardware, so the global average pooling
(GAP) [19] is used as the classifier of IIF-Net. +is classi-
fication method does not require a fully connected layer,
which can greatly reduce the number of parameters and can
avoid overfitting under certain conditions.

2.3. NetworkComplexity. When different classifiers are used
to identify 8 classes of radar signals, the network parameters
and calculations are different. Suppose the size of the output
feature map of the last layer is H × W × D, when using three
fully connected layers, the number of parameters in the
classifier is 16, 818, 184 + 4096 × H × W × D. When a single-
layer fully connected layer is used, the parameters in the
classifier areH × W × D × 8 + 8. When using GAP, since the
pooling layer has no parameters, the number of parameters
can be further reduced toD × 8 + 8.

+e number of parameters for different networks is
shown in Figure 2, and the number of calculation is shown in
Figure 3.

It can be seen from Figure 2 that IIF-Net slowly increases
the parameter amount with the increase of the network
depth, and the network depth has little effect on the pa-
rameter amount.+eVGG16 network has only 16 layers, but
the amount of parameters is 5.44 times that of IIF-Net56,
3.11 times that of IIF-Net107, and 2.30 times that of IIF-
Net158. IIF-Net has 6 more layers than ResNet, but the
number of parameters is reduced by about 110,000. +e
radar system requires high real-time performance, but the
small equipment, such as bombs, has insufficient memory,
and its hardware is hard to support too many parameter
quantities. IIF-Net is relatively small in parameter quantity,
which is a kind of a better choice.

According to Figure 3, the calculation of the VGG
network is very huge. +e floating-point operations per
second (FLOPs) of VGG16 is as high as 15.583 billion, which
is 2.94 times that of the 56-layer IIF-Net. Network structure
and network depth have a great impact on the amount of
computation. IIF-Net is deeper than ResNet, so the amount
of calculation is increased. +e number of layers of IIF-
Net107 is 1.80 times that of IIF-Net56, so the amount of
calculation is 1.71 times that of IIF-Net56. +e amount of
IIF-Net158 is 2.42 times that of Net56, which is very huge.
+erefore, when the difference in the signal recognition rate
is not large, IIF-Net56 has the highest cost performance.

3. Experimental Results

3.1. Dataset. +e dataset is generated by USRP N210, USRP-
LW N210 simulating the process of real radar signal trans-
mission and reception.+e generated signal is transformed by
CWD to obtain TFI. Unlike SAR images [20] in radar target
recognition and high-resolution radar target images [21], TFI
is a digital image with low image information loss, which is
convenient for computer processing and analysis.

+ere are many methods of time-frequency analysis,
including short-time Fourier transform (STFT), continuous
wavelet transform (CWT), bilinear models including
Wigner–ville distribution, pseudosmooth (WVD), CWD,
adaptive parameter models (such as the ARMAmodel, time-
frequency rearrangement model (RS), and synchronous
extraction model SET). But, they have some shortcomings.
For example, the time-frequency resolution of STFT and
CWT is insufficient. +e effect of WVD on multicomponent
signal interference is poor. +e RS complexity is too high;
SST and SET are very advantageous for instantaneous fre-
quency extraction and signal reconstruction, but the signal
energy is too compressed, resulting in only one line at the
frequency point. In this paper, high definition CWD
transform is adopted, and an appropriate mask function is
selected to avoid the cross-term problem, which improves
the recognition performance of the radar signal.

+e Choi–Williams distribution function is one of a
series of Cohen’s class distribution functions. +e distri-
bution uses an exponential core function to filter out cross
terms. +e core function of the Choi–Williams distribution
does not increase with the increase of μ and τ, so it can filter
out the cross terms with different frequencies and time
centers.
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Figure 1: GFBE structure.
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Ax(μ, τ)φ(μ, τ)exp(j2π(μt − τf))dμdτ,

(1)

where Ax(μ, τ) � 􏽒
∞
−∞ x((t + τ)/2)x∗((t − τ)/2)e−j2πtμdt is

the fuzzy function, μ and τ are, respectively, the frequency
offset and delay, and x(t) is the received signal.

+e core function φ(μ, τ) � exp[−α(μτ)2] is a Gaussian
function, where α is an adjustable parameter.

In the radar signal dataset, there are 8 types of signals.
Each class of signal generates 2592 TFIs, and the SNR is
−10∼6 dB. Each class of signal has a total of 20,736 samples,
and every 2 dB contains 288 samples. Figure 4 shows the TFI
of the signal after passing through CWD.

It can be seen from the images that the distribution of
different signal information is different: the distribution of
chaotic code information is relatively concentrated, the
distribution of OFDM signal information is relatively
scattered, and the information distributions of P1–P4,
Barker, and Frank are below the center, with irregular signal
characteristics.

3.2. Preprocessing. In the experiments, we downsample the
samples of the training set and the test set to a fixed reso-
lution of 224× 224 and, then, expand the data: randomly flip
the image horizontally, randomly flip vertically, and ran-
domly rotate 90°. +e data set is expanded by 3 times to
prevent the network from overfitting.

In order to maintain the unity of the experiments, the
experiments are conducted on the same platform. +e
platform of signal generation is shown in Table 2.

During the experiment, the parameters were set up, the
learning rate is 0.001, the momentum is 0.9, the weight decay
is 5e− 4, and the batch size is 10. +e experimental platform
configuration is shown in Table 3.

3.3. Experimental Results. In order to make the radar signal
recognition more authentic and simulate the interference of
a complex external environment, noises with an SNR of
−10∼6 dB are added to the signal. +e real radar signal
transmission and reception process is simulated by USRP
N210 and USRP-LW N210. +e generated signals are
transformed by CWD to obtain TFI for radar signal

Table 1: IIF-Net configuration.

IIF-Net56 IIF-Net107 IIF-Net158
Conv7-64, stride: 2, padding: 3× 3 Maxpool, stride: 2, padding: 1

Conv1-64
Conv3-64
Conv1-256

×2
Conv1-64
Conv3-64
Conv1-256

×2
Conv1-64
Conv3-64
Conv1-256

×2

GBFE-256
Conv1-128
Conv3-128
Conv1-512

×3
Conv1-128
Conv3-128
Conv1-512

×3
Conv1-128
Conv3-128
Conv1-512

×7

GBFE-512
Conv1-256
Conv3-256
Conv1-1024

×5
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Conv1-1024

×22
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Conv1-1024

×35

GBFE-1024
Conv1-512
Conv3-512
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×3
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×3
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×3
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Figure 2: Parameters.
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identification. Under the same training set and test set, we
use different depths of IIF-Net to identify radar signals
under different SNRs. +e experimental results are shown in
Table 4.

According to Table 4, the signal recognition rate of IIF-
Net56 is 99.36% and in the case of SNR is −4 dB. When the
SNR is −10 dB, the noise causes a lot of interference, but the
recognition rate is still higher than 92%. +e results indicate
that the IIF-Net networks are robust. +e recognition rate of
IIF-Net56 is about 1% lower than that of the other 2 net-
works. It shows that, with the deepening of network depth,
there is no obvious difference in the extraction of signal
features. +e parameter amount of IIF-Net158 and IIF-
Net107 is 2.36 times and 1.75 times of that of IIF-Net56, and
the calculation amount is 2.42 times and 1.71 times of that of
IIF-Net56. Based on the experimental results, we found that

IIF-Net158 had the best recognition performance, but the
network parameters and calculation amount increased
greatly. +erefore, based on the abovementioned analysis,
IIF-Net56 has the highest cost-performance ratio.

Under the same training set and test set, we also compare
IIF-Net56 with other networks. Experimental results of
other CNN networks are shown in Table 5.

According to Table 5, various classic CNNs have a good
recognition rate for radar signals when the SNR is above
0 dB. However, when the SNR is between −10 dB and 0 dB,
IIF-Net has the highest recognition performance. Compared
with IIF-Net, the signal recognition rate of VGG-Net is
about 6% lower than that of IIF-Net. Because of VGG-Net’s
shallow network, it cannot fully extract the features of the
image, resulting in low signal recognition rate. Moreover,
VGG-Net has too large parameters and calculation and
requires too much hardware equipment and more calcu-
lation time. +erefore, VGG-Net is not suitable for the radar
electronic countermeasure field which needs high real-time
performance.

+e signal recognition rate of ResNet is close to IIF-Net,
which is about 2% lower. Because ResNet uses short skip
connection, it can deepen the network and solve the problem
of “network degradation” to a certain extent. It can also
prevent information loss during network transmission.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 4: TFI of various radar signals. (a) Barker, (b) Frank, (c) chaotic, (d) OFDM, (e) P1, (f ) P2, (g) P3, and (h) P4.

Table 2: Signal generation platform configuration.

Parameter USRP N210/USRP-LW N210
REF IN 15 dBm
PPS IN 5V
Power 6V, 3A
ADC sampling rate 100MS/s
DAC sampling rate 400MS/s
LO accuracy 2.5 ppm

Table 3: Experimental platform configuration.

Attributes Configuration information
Operating system Ubuntu 14.04.5 LTS

CPU Intel (R) Xeon (R) CPU E5-
2670 v3 @ 2.30GHz

GPU GeForce GTX TITAN X
CUDNN CUDNN 6.0.21
CUDA CUDA 8.0.61
Frame PyTorch

Table 4: IIF-Net recognition accuracies at different depths (%).

SNR (dB) IIF-Net56 IIF-Net107 IIF-Net158
−10 92.36 92.54 92.85
−8 94.55 95.56 95.64
−6 96.53 96.73 97.52
−4 99.36 99.48 99.53
−2 99.74 100 100
0 100 100 100
2 100 100 100
4 100 100 100
6 100 100 100
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However, the distribution of TFI feature information of a
radar signal is irregular, and ResNet mostly uses small
convolution kernel of 3× 3, which has good recognition
effect for images with concentrated information distribution
and has low recognition effect for TFI features of radar
signal. +e GFBE module proposed in this paper solves this
problem to a certain extent. For images with different in-
formation distribution, it can extract image features in a
global and balanced way, improve signal recognition rate,
and enhance generalization.

We further compare IIF-Net56 with other radar signal
recognition methods, and the results are shown in Table 6.

According to Table 6, the signal recognition rate of the
DQN network at −6 dB is higher than that of IIF-Net56,
which is 1.05% higher, but at −10 dB, the recognition rate is
much lower than that of IIF-Net56, which is reduced by
4.81%. +is indicates that high-intensity noise has little
influence on IIF-Net, and IIF-Net can still fully extract image
information, obtain high signal recognition rate, and have
good robustness. It can also be seen from the table that when
the SNR is above −6 dB, the signal recognition rate obtained
by I-CNN has little difference from that of IIF-Net, and both
of them have good recognition effect. When the SNR is
−10 dB and −8 dB, the signal recognition rate of IIF-Net is
much higher than that of I-CNN, which shows that IIF-Net
has strong anti-interference ability and can extract image
features in a balanced and sufficient way. Fusion Image uses
transfer learning and a cascaded automatic encoder based on
self-learning to extract the effective information of the fused
image, thereby ensuring the recognition performance.
Meanwhile, Fusion Image adopts multifeature Fusion al-
gorithm to fuse features, which reduces redundant infor-
mation of features, but its recognition rate is 1.03% lower
than that of IIF-Net56 at −6 dB. FCBF-AdaBoost and En-
tropy are traditional image classification methods, which are
mostly designed for certain classes of image features. +eir
recognition rates are relatively poor in multitask and low
SNR environments.

Under the same training set and test set, the recognition
rates of IIF-Nets proposed in this paper under different
SNRs are shown in Table 7.

It can be seen from Table 7 that, under the environment
of low SNR (−10 dB), 3 IIF-Net networks have little dif-
ference in the recognition effect of different radar signals.
+e deepening of the network depth has a significant effect
on the recognition rate of various radar signals. +e

influence range of network depth on the recognition rate of
various radar signals is between 1% and 2%. +is indicates
that when the network depth reaches a certain degree, the
signal feature information can be fully extracted. Further
deepening of the network has little impact on the recog-
nition effect of signals, but the recognition effects of different
classes of radar signals under the same network are greatly
different. Among them, Barker has the best recognition
effect, over 97%. chaotic, Frank, OFDM, P2, and P3 receive
the next highest recognition rates, with accuracy rates of
over 94 percent, while P1 and P4 have relatively poor rec-
ognition effects, at about 80 percent. According to the TFI of
the radar signal, P1 and P4 are very similar. Under the
environment of −10 dB, the energy of noise is much greater
than that of the signal, and the information features of the
signal are drowned by the noise, which makes P1 and P4
more similar and greatly increases the difficulty of identi-
fication. However, IIF-Net56 has a comprehensive recog-
nition rate of 92.36% under −10 dB, and its recognition
performance is higher than that of other methods.

+e IIF-Net proposed in this paper can extract infor-
mation globally for images with irregular information dis-
tribution, which has a good recognition effect. Other
traditional methods are mostly designed for specific classes
of images. When the image changes greatly, their recogni-
tion effects are poor. +e artificially designed feature ex-
traction algorithm is also relatively complex, and its
generalization performance is low. Compared with other
CNNs, IIF-Net still has a recognition rate of 92.36% under
−10 dB, which is higher than that of those other CNNs.

3.4. Experiments Analysis. +is paper proposes 3 IIF-Net
structures, namely, IIF-Net56, IIF-Net107, and IIF-Net158.
According to the experimental results, their signal recog-
nition rates are above 99.74% when the SNR is higher than
−2 dB. At −10 dB, the recognition rates are as high as 92.36%.
When deepening the networks, the differences between the
recognition rates of the three networks are within 1%, but
the parameters and calculations have increased significantly.
+erefore, IIF-Net56 has the best overall performance.

+e information characteristic distribution of the radar
TFI signal is irregular. +erefore, the distribution charac-
teristics and irregularity of image information should be
taken into account when extracting image features. A par-
allel convolutional layer can be used to extract different types

Table 5: Recognition accuracy rates of other CNNs (%).

SNR (dB) ResNet50 ResNet101 ResNet152 VGG16 VGG19 IIF-Net56
−10 90.49 90.85 91.24 86.85 88.59 92.36
−8 92.68 93.79 94.46 89.26 90.27 94.55
−6 94.65 95.15 96.31 92.57 94.16 96.53
−4 97.47 97.83 98.52 95.61 96.54 99.36
−2 98.87 99.26 99.49 98.42 99.62 99.74
0 99.51 100 100 99.53 99.75 100
2 100 100 100 100 100 100
4 100 100 100 100 100 100
6 100 100 100 100 100 100
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of image information. +e network depth should be kept
moderate. It is difficult to fully extract image features when
the network is too shallow, but the recognition rate cannot
be significantly improved when the network is too deep. If
the network is too deep, the degradation problemmay occur,
and the amount of parameters and calculation will increase
greatly. To a certain extent, the problem of network deg-
radation can be solved by using a short skip connection
mode, while the integrity of image information can be
maintained. +e classifier can choose GAP to reduce the
number of network parameters and calculations. +e GFBE
module includes Conv1, Conv3, Conv5, and MaxPoo(3) to
deepen the network through short skip connection to
prevent the loss of image information and uses Conv3,
Conv5, and the MaxPool(3) parallel convolutional layer to
extract global information. At the same time, it controls the
dimensions of the network through Conv1 and improves the
nonlinear learning ability of the network.

4. Conclusions

In this paper, USRP N210 and USRP-LW N210 are used to
simulate the transmitting and receiving process of radar
signals to generate near-real radar signals. +en, CWD is
used to get the radar TFI. According to the irregular in-
formation distribution characteristics of radar signal TFI, we
designed a GFBE module. Based on this module, three
network structures, IIF-Net56, IIF-Net107, and IIF-Net158,
are proposed. +rough analysis, we conclude that IIF-Net56
has the best comprehensive performance. +e network has a
recognition rate of 92.36% at a low SNR of −10 dB. GAP is
added into the network, and the number of parameters and
calculation amount are relatively less, which reduces the
requirement for hardware equipment. IIF-Net56 uses a GAP
layer to reduce the amount of parameters and calculation
and reduces the requirements of hardware equipment.

+erefore, the network proposed in this paper has a good
application prospect in the field of high real-time radar
electronic countermeasures. In the field of radar electronic
countermeasures, transmitting jamming signals for elec-
tronic countermeasures is a common method. In the future,
we will do further research on radar jamming signal
recognition.
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