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In the era of the rapid development of today’s Internet, people often feel overwhelmed by vast official news streams or unofficial
self-media tweets. To help people obtain the news topics they care about, there is a growing need for systems that can extract
important events from this amount of data and construct the evolution procedure of events logically into a story. Most existing
methods treat event detection and evolution as two independent subtasks under an integrated pipeline setting. However, the
interdependence between these two subtasks is often ignored, which leads to a biased propagation. Besides, due to the limitations
of news documents’ semantic representation, the performance of event detection and evolution is still limited. To tackle these
problems, we propose a Joint Event Detection and Evolution (JEDE) model, to detect events and discover the event evolution
relationships from news streams in this paper. Specifically, the proposed JEDE model is built upon the Siamese network, which
first introduces the bidirectional GRU attention network to learn the vector-based semantic representation for news documents
shared across two subtask networks. *en, two continuous similarity metrics are learned using stacked neural networks to judge
whether two news documents are related to the same event or two events are related to the same story. Furthermore, due to the
limited available dataset with ground truths, we make efforts to construct a new dataset, named EDENS, which contains valid
labels of events and stories. *e experimental results on this newly created dataset demonstrate that, thanks to the shared
representation and joint training, the proposed model consistently achieves significant improvements over the baseline methods.

1. Introduction

In recent years, with the great development of the Internet
and AI technologies, tremendous volumes of news articles to
report the breaking events are being rapidly generated by
various media providers, for example, TV broadcast, the
governmental news website, and information Portals (sina.
com, Tencent News, Headlines Today, CNN, BBC, etc.).
Besides, some popular social media, such as Twitter, Sina
Weibo, and Facebook, also has become an attractive plat-
form for people for expressing opinions, broadcasting news,
and discussing topics. Compared with the former traditional
news media, the tweet stream produced by the emerging
social media or self-media often contains many informal
expressions or irrelevant information. Despite massive

information about a number of ongoing hot events is spread
at every moment, people still feel unable to acquire useful
information about the events of concern. In solving the
problem of information overload, event detection and
evolution on news streams have drawn extensive research
attention over the past few years [1–6]. Generally, an event
refers to a particular thing that happens at a specific time and
place [7], for example, Opening Ceremony of the 29th
Modern Summer Olympic Games held in Beijing on August
8th, 2008. Under the premise of this definition, event de-
tection aims to identify a group of news documents that
report the same topic possibly in different ways [8].
*erefore, a new topic can be detected if new news docu-
ments are found not belonging to existing topic clusters.
Followed by event detection, event evolution connects

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8859407, 13 pages
https://doi.org/10.1155/2020/8859407

mailto:wubin@bupt.edu.cn
http://sina.com
http://sina.com
https://orcid.org/0000-0002-5359-1540
https://orcid.org/0000-0002-7112-126X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8859407


related events logically to tell evolving stories. Event de-
tection and evolution provide an emerging andmore natural
alternative way to present news corpora; hence, people can
be easier to know the development process of topics of
interest. In this paper, we focus on the detection and evo-
lution of events from formal news media.

For decades, research has introduced many methods for
event detection [5, 6, 9] and event evolution [1–4, 8] in the
area of Topic Detection and Tracking (TDT) [10]. Of these
methods, a similar pipeline is followed; that is, event de-
tection and evolution are considered as two independent
subtasks. First, news documents are aggregated into event
clusters through any clustering algorithm such as K-means
[11], incremental clustering [12], and locality sensitive
hashing (LSH) [13]. In addition, there are some methods
based on topic modeling [14] and term weighting [15] for
event detection. After detecting extensive and diverse events,
various methods such as event timelines [16], event threads
[1], event evolution graphs [3], and information maps [17]
are used to identify the relationship between events and
present a clear story development process.

Despite great progress in these above methods, the in-
terdependence between the event detection and evolution
tasks is often ignored and has not been fully utilized. For
example, a news document that comprehensively indicates
the events in event detection should be scored high in the
corresponding story architecture. Furthermore, as the base
of events, the similarity of the two news documents also
depicts the similarity of the events that documents belong to;
hence, a better understanding of a news document is helpful
for both event detection and event evolution. Besides, some
of the popular clustering methods, for example, K-means,
which requires setting the number of clusters in advance to
discover events, may also not be applicable for the rapidly
varying news streams that occur daily in the real world.

To handle these challenges, in this paper, we investigate a
neural network model that monitors the news streams in the
open domain, jointly detecting new events and tracking the
evolution process of events, as illustrated in Figure 1. To
better describe the news documents, we introduce the ad-
vanced bidirectional GRU network followed by attention
operations to achieve the fix-length vectorial semantic
representation. Such a representation can depict both fine-
grained news documents and holistic events; hence, it is
shared across the event detection and evolution tasks.
Moreover, inspired by great achievements achieved by
multitask learning, we propose to jointly learn two con-
tinuous neural similarity metrics for judging whether two
news documents are related to the same event or two events
are related to the same story under the framework of the
Siamese network. During the testing, the online incremental
clusteringmethod of news documents and events are applied
for event detection and evolution, respectively. To further
promote the interaction between the two subtasks, the
strategy of neural stacking [18] is applied to the pipeline.
Specifically, the hidden neural layers of the event detection
model are fed as additional input features to the event
evolution model, and the errors of event evolution are
propagated to event detection during training, so that

information is better shared between the predecessor de-
tection and successor evolution.

*e contributions of this paper could be summarized as
follows.

(i) To the best of our knowledge, this is the first work
that considers the correlation of event detection and
event evolution and investigates a neural model for
Joint Event Detection and Evolution, which benefits
both the tasks.

(ii) *e introduced GRU attention network produces a
more powerful shared semantic representation than
traditional features as the basis of two subtasks.
Furthermore, the continuous similarity metric
learning from data provides a direct, effective, and
robust criterion to calculate the similarity of doc-
ument pairs in event detection and event pairs in
event evolution, respectively. *e joint learning of
shared semantic representation and continuous
similarity metrics provides a good foundation for
later incremental clustering based event detection
and evolution pipeline.

(iii) Due to the limited available datasets with ground
truths, we manually annotate a new dataset, named
EDENS (Event Detection and Evolution from News
Streams), in which the number of stories is 12, the
number of events is 694, and each story contains 58
events on average. *e dataset is freely available to
the community upon request. Experimental results

News stream 

Event evolution 
Event detection

GRU-ATT 

Shared semantic representation

Figure 1: *e overall architecture of our model. (1) *e top left
corner shows the input of our model, which is news stream
consisting of a lot of news reports. (2) *e top right corner shows
the shared semantic representation of news stream, which is the
input of both event detection network and event evolution net-
work. Note that we utilize a standard bidirectional gated recurrent
unit (GRU) model with attention mechanism to learn the shared
representation across two subtasks (event detection subtask and
event evolution subtask). (3) *e bottom right corner shows the
event detection module, in which our goal is to aggregate news
reports related to the same event together. (4) After detecting a
series of events, we further organize these events into multiple
stories in an online manner, which forms the event evolution
module in the bottom left corner.
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on the real-world EDENS dataset demonstrate that
our model significantly outperforms several base-
line methods in both event detection and evolution
benchmarks.

*e remainder of this paper is organized as follows: in
Section 2, the related literature is reviewed. In Section 3,
some concepts and problems are defined. In Section 4, we
elaborate on the proposed joint model for event detection
and evolution. Experiments and analysis are presented in
Section 5. Finally, we conclude the paper and talk about
future work in Section 6.

2. Related Work

In this section, some related literature about event detection,
event evolution, and joint model is reviewed.

2.1. Event Detection. Following the original Topic Detection
and Tracking (TDT) program [10], event detection aims to
discover new or previously unidentified events from the
information stream. Most of the works detect events of in-
terest from news media [8, 11, 19] or social media [5, 20, 21].
In addition, some research works are also called event de-
tection but are essentially different from the former task; for
example, [22] talks about ACE event detection task which
focuses on extracting events with entities from sentences and
[23] considers the event detection as a text classification
problem, that is, categorizing each event to predefined types.
*ere are also some works concerning the detection of certain
types of events, such as violent and disaster events [5, 24],
significant events in the calendar [25]. In this paper, we study
the problem of detecting events in the open domain from the
news streams in an unsupervised clustering manner. *e
types of events are not specially restricted.

In general, the work on event detection can be divided
into three categories, that is, word and phrase-based ap-
proaches, distance-based clustering approaches, and prob-
abilistic model-based approaches. Specifically, word and
phrase-based approaches detect events by utilizing impor-
tant words or phrases. Zhou et al. [11] utilize Jaccard
similarity coefficient× Inverse Dimension Frequency with
time order to identify words with salient scores as event
words and then extract the document embedding by ap-
plying word2vec to event words, and, finally, Bikmeans is
employed to cluster all news documents based on obtained
document embeddings. Slonim and Tishby [26] propose a
two-phase strategy for document clustering. *ey first find
word-clusters such that most of the mutual information
between words and documents is preserved and then le-
verage the word-clusters to perform document clustering.

Word and phrase-based approaches mainly focus on
mining event words and do not directly utilize the event-
related documents. On the contrary, distance-based clus-
tering approaches group documents into events by mea-
suring the similarity between documents with some distance
metrics like Euclidean distance or Cosine distance. *e
performance of clusteringmainly relies on document feature
representations and clustering methods. *e common

feature representations include TF-IDF [27, 28], BM25 term
weighting [29], and neural vector [5, 20]. *e clustering
methods include K-means [30], density-based algorithms
[31], incremental clustering [5, 20, 27], or self-organizing
map clustering [28]. Among these approaches, those based
on neural representation and online incremental clustering
show the best performance in both accuracy and efficiency;
hence, the proposed model in this paper also follows this
strategy.

Probabilistic model-based approaches assume a docu-
ment generation process and then infer topic distributions of
documents by optimizing generation probability [32, 33].
Some representative topic models include Latent Dirichlet
Allocation (LDA) [14], Probabilistic Latent Semantic
Indexing (PLSA) [34], and GaussianMixture Model (GMM)
[35]. *ese models are computationally intensive and do not
produce satisfying results for a finer clustering.

2.2. Event Evolution. Traditional Topic Detection and
Tracking (TDT) program [10] only detects new events or
tracks previously spotted events, but the relationship be-
tween events is not interpreted. To help users better know
the developing structure of events, different approaches have
been proposed from various aspects. Reference [2] proposes
a topic evolution model by discovering the temporal pattern
of events with timestamps of the text stream. Reference [4]
further proposes to construct a temporal event graph to
analyze event evolution and determines the dependencies of
two events by considering their temporal relationships,
content dependencies, and event causality. Reference [1]
proposes the concept of Event*reading and tries to append
each new event to its most similar earlier event. *e simi-
larity between two events is measured by the TF-IDF cosine
similarity of the event centroids. Reference [3] proposes to
measure the similarity relationship of events by analyzing
content similarity, time proximity, and document distri-
bution and models the event evolution structure by a di-
rected acyclic graph (DAG).

Although the above structures effectively describe the
evolution process of events, sorting events by timestamps
omits the logical connection between events, while graph
structures do not consider the evolving consistency of the
whole story, leading to unnecessary connections between
events. To solve these problems, [17] proposes the Metro
Map model, which defines some metrics such as coherence
and diversity for story quality evaluation and identifies the
storyline by solving an optimization problem to maximize
the topic diversity of storylines while guaranteeing the co-
herence of each storyline. Reference [36] further proposes a
cross-modal solution, where two requisite properties of an
ideal storyline, that is, coherence and diversity, are inves-
tigated; then, a unified algorithm is devised to extract all
effective storylines by optimizing these properties at the
same time. *ese works regard the event evolution as an
optimization problem with given news corpora. However,
they do not deal with newly generated documents at any
time and update story structures in an online manner.
Recently, [8] proposes a structure of story tree to
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characterize the evolution of the story, grows story trees with
events online, and presents the most effective representation
effect according to extensive user experience. In this paper,
various evolution structures are investigated in conjunction
with deep learning based event clustering algorithm.

2.3. Neural Joint Modeling. *e joint model has been ex-
tensively researched in various NLP tasks, for example, joint
entity and relation extraction [37], joint event extraction and
visualization [38], joint event detection and summarization
[5, 39], joint event detection and prediction [23], and joint
parsing and name entity recognition [40]. *e key to joint
models is designing shared features to capture mutual in-
formation between the integrated tasks. For this purpose,
neural network models have been shown effective by in-
ducing semantic features automatically after data-driven
joint training [5, 41].

Among most of the neural joint models, two main
strategies have been employed. On one hand, shared se-
mantic representation learning between different tasks is
crucial; for example, a shared LSTM layer is used for joint
event detection and summarization [5], as well as joint event
detection and prediction [23]. On the other hand, neural
stacking is also widely applied by feeding the hidden layer of
a predecessor model as additional input features to its
successor model [5, 18, 42]. During training, errors of the
predecessor model can thus be propagated to its successor
model, so that information is better shared between the
predecessor and successor models. In this paper, we first
investigate the joint neural model for event detection and
event evolution through a shared semantic representation
and stacking model.

3. Preliminary

In this section, we first describe some key concepts and
notations used in this paper and formally define our
problem.

3.1.NewsReport. A news report (often edited by journalists)
is usually to report significant real-world breaking news.
Different from popular tweets in social media, which contain
various expressions of the same meaning, many informal
colloquial phrases, or irrelevant information, most news
reports formally describe time, location, person, organiza-
tion, action, and some important keywords related to the
news. In this paper, a news report Ri is represented as
Ri � (di, τi, ti), where di, τi, and ti are the news body, news
title, and news publish time, respectively.

3.2. News Stream. A news stream is a continuous and
temporal stream of news reports R1, R2, . . . , Rk, . . .􏼈 􏼉 start-
ing at an initial time t0.

3.3. Event. An event E is a particular thing that happens at a
specific time and place [7, 43]. Specifically, it is a set of news
documents reporting the same real-world breaking news [8].

3.4. Event Timestamp. As mentioned before, an event
consists of several news reports, and each report may have a
different publish time. In order to clearly suggest the tem-
poral information of an event, we simply consider the
earliest news report time as the event timestamp.

3.5. Story. A story S describes a news topic and comprises a
set of related events that report a series of evolving real-
world breaking news [8]. A directed link from events E1 to
E2 indicates a temporal development or a logical connection
between two events. An example can help further clarify the
concept of stories versus events; that is, “*e ZTE incident”
in Table 1 is a story, which consists of several events, such as
“2018-04-17: the US government bans ZTE from buying
sensitive products from the US companies,” “2018-04-19:
ZTE issues an internal letter and sets up a crisis task force to
urge employees to be clear-headed,” “2018-04-23: ZTE issues
a further announcement: measures have been taken to
comply with the rejection order,” . . ., “2018-06-08: ZTE’s
ban is lifted and $1 billion is fined,” . . ., “the ZTE incident is
over, and ZTE will start again with confidence.”

3.6. Event Detection. Following the Topic Detection and
Tracking (TDT) program [10], the task of event detection (or
event clustering) is to cluster news reports of the same real-
world events, so that a new event can be detected if new news
reports are found not belonging to existing event clusters.

3.7. Event Evolution. *e task of event evolution is to
connect the extracted related events to form a story, that is,
S � E1, E2, . . . , En􏼈 􏼉. Since the relationship of event evolu-
tion includes temporal relationship or logical relationship
[8], we can describe event evolution from different aspects in
this paper.

3.8. Joint Event Detection and Evolution. Given a news
stream R � R1, R2, . . . , Rk, . . .􏼈 􏼉, where Ri � (di, τi, ti) rep-
resents the news report published at time ti, our objective is
to jointly cluster all news reports R into a set of events E �

E1, E2, . . . , E|E|􏽮 􏽯 and connect the extracted events to form a
set of stories S � S1, S2, . . . , S|S|􏽮 􏽯, where each story
Si � Ei1

, Ei2
, . . . , Ein

􏽮 􏽯 contains a set of related events E of the
same topic.

4. Joint Model for Event Detection
and Evolution

In this section, we elaborate on the proposed neural model
for Joint Event Detection and Evolution (JEDE). *e
overall framework is illustrated in Figure 2, where H∗ is
the shared semantic representation of a news report
document, Hdec is the hidden state of event detection, and
Hevo is the hidden state of event evolution. Specifically, the
proposed JEDE model consists of two submodels: event
detection network and event evolution network, which are
based on the shared semantic representation. Besides, two
submodels are stacked by feeding the hidden layer of the

4 Computational Intelligence and Neuroscience



predecessor event detection network as additional input
features to its successor event evolution network. *e
above design brings two advantages. On the one hand, as
the common input of two subtasks, the shared semantic
representation can achieve the optimal parameters
through joint training across tasks, which benefit both
subtasks. On the other hand, the neural stacking manner
makes the errors of event evolution be propagated to event
detection during the training stage, so that information is
better shared between the predecessor event detection and
successor event evolution. Hence, the stacked hidden
layer can provide more useful information to assist the
successor task during the inference stage.

In the following, we first introduce the shared semantic
representation via learning a GRU attention network. *en,
we describe the event detection network where the key issue
is the calculation of similarity between news report docu-
ments. Next, we describe the event evolution network where
the key issue is the calculation of similarity between events.
Finally, the training process of the proposed approach is
presented in detail.

4.1. Shared Semantic Representation. We apply a standard
bidirectional gated recurrent unit (GRU) model [44] with an
attention mechanism to learn the shared semantic

Table 1: *e details of our EDENS dataset.

ID Story Document Event Time
1 *e ZTE incident 474 108 2018/4/17–2018/7/15
2 Zhang Yingying’s disappearance 201 87 2017/6/8–2018/6/11
3 Yulin pregnant woman jumps to death 55 29 2017/8/31–2017/11/28
4 *e Wei Zexi incident 322 137 2016/5/1–2018/5/22
5 Home Inns hotel attack 105 37 2016/4/6–2016/11/5
6 *e Luo Yixiao donation incident 151 51 2016/11/30–2018/1/22
7 *e Lei Yang whoring incident 31 13 2016/5/10–2016/12/24
8 Kindergarten child abuse 101 30 2016/10/28–2018/5/30
9 Hangzhou babysitter arson 326 103 2017/6/22–2018/6/4
10 Xu Yuyu Telecommunications fraud 62 39 2016/8/25–2018/2/13
11 Yu Huan kills the mother abuser 31 20 2017/3/26–2018/5/8
12 *e tiger biting incident 64 40 2016/7/25–2017/12/21

News stream

Weights

Word2vec

Shared semantic
representation H∗

Attention Attention

Sigmoid layer

Softmax layer

Sigmoid layer

Softmax layer

 Event detection network

Event evolution network 

εtj

H∗

ti H∗

tj
H∗

jH∗

i

HjHi

Xi

d1 d2 di dn

Xj

εjεi
εti

Bidirectional GRU Bidirectional GRU

Hevo

Hdec

Figure 2: Illustration of our JEDE model. JEDE consists of two submodels: event detection network and event evolution network. *ey are
based on the shared semantic representation and additional temporal information.*e submodels are stacked to enable information sharing
between the two tasks.
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representation across two subtasks. Let d � (w1, w2, . . . , wn)

be the body words sequence of a news report, where n is the
news length and wi is the i-th word in the news report. We
first map each word wi into a vector xi using a pretrained
word2vec tool (http://code.google.com/p/word2vec). Spe-
cifically, after training using the skip-gram algorithm [45],
there is a word embedding matrix; that is, Wwrd ∈ RdW×|V|,
where V is the vocabulary of the preset size and dw is the
embedding dimension of word w. *en, each word is
transformed into a real-valued vector by looking up the
pretrained Wwrd; that is, xi � Wwrdvi, where vi is a one-hot
representation of |V| dimension. Hence, a news report
document can be represented as X � (x1, x2, . . . , xn).

*en, we employ a bidirectional gated recurrent unit
(GRU) network to extract the hidden vector representation
H � (h1, h2, . . . , hn) of X. *e GRU can effectively solve the
problem of long-term dependencies in RNN network, and,
compared with traditional LSTM, GRU has fewer param-
eters and is easier to converge; hence, it is more suitable for
our real-time system. Specifically, the GRU recurrently
processes elements in the sequence X. At each step i, the
hidden state vector hi of GRUmodel is updated based on the
current vector xi and the previous state vector hi−1, for-
mulated as hi �GRU(xi, hi−1), where GRU refers to the
standard GRU function [44].

Based on the general GRU representation and following
the [33], bidirectional GRU processes the word embedding
sequence X from both head to tail (⟶ ) and tail to head
(←) and then concatenates two state vectors as output.
Formally, it is calculated as follows:

h
→

i � GRU
����→

xi, h
→

i−1􏼒 􏼓,

h
←

i � GRU
←

xi, h
←

i−1􏼒 􏼓,

hi � h
→

i, h
←

i􏼔 􏼕,

(1)

where h
→

i and h
←

i represent the i-th state vector generated by
GRU from two directions, respectively, xi is the i-th input
embedding vector, hi is the i-th hidden state vector, and [·, ·]

represents the concatenation operation.
Finally, the attention mechanism [46] is applied to ag-

gregate the hidden vector representation sequence
H � (h1, h2, . . . , hn) into a fix-length vector as the shared
semantic representation for d; that is,
H∗ � Att([h1, h2, . . . , hn]). Specifically, we first map each
hidden vector representation hi into a normalized vector
representation ui in a hidden space; that is,
ui � tanh(Whhi + bh), where Wh and bh are trainable pa-
rameters and the value range of ui is between −1 and 1.*en,
an attention weight αi is computed from the inner product
between ui and a trainable vector us, followed by a softmax
operation; that is,

αi �
exp u

T
s ui􏼐 􏼑

􏽐rexp u
T
s ui􏼐 􏼑

. (2)

*e final output vector is the product between the input
hidden vector representation sequence H � (h1, h2, . . . , hn)

and the learned attention weights α � (α1, α2, . . . , αn); that
is, H∗ � 􏽐iαihi. It can be seen that, by assigning different
attention weights to each vector representation, important
features are emphasized and noisy or irrelevant information
is suppressed, so that we can achieve a more discriminative
semantic representation of news report documents for
subsequent tasks.

4.2. Event Detection Network. For the event detection task,
our goal is to aggregate news reports related to the same
event together [10]. To this end, an online incremental
clustering algorithm [27] is employed to cluster incoming
news reports into corresponding event groups. Specifically,
suppose that we have detected k events E � E1, E2, . . . , Ek􏼈 􏼉,
where each event includes several news reports; that is,
Ei � Ri1

, Ri2
, . . . , Rin

􏽮 􏽯, i � 1, 2, . . . , k. For an incoming news
report R, we first calculate the similarity score sij

between it
and each new report Rij

in the existing event cluster Ei and

take the maximum similarity score si � maxj sij
􏼚 􏼛 to mea-

sure the similarity between it and the event cluster Ei. *en,
we consider a threshold μ − 3δ to decide whether the news
report R belongs to an existing cluster, where μ is the mean
of all previous similarity scores and δ is the standard de-
viation. If all similarity scores si􏼈 􏼉, i � 1, 2, . . . , k are below
the threshold, we empirically think a new event cluster is
detected by including the news report R. Otherwise, the
news report is added to the most similar existing event
cluster, that is, Em, m � argmaxi si􏼈 􏼉.

According to the above description, it can be seen that
the core of the incremental clustering is to calculate the
similarity between two news reports Ri and Rj. For this, we
consider the Siamese network [5]. Specifically, for two news
reports Ri and Rj, we first extract their own semantic
representation vector H∗i and H∗j , as described in Section
4.1.*en, two vectors are concatenated together, followed by
a multilayer perception (mlp) and softmax layer to output
the final similarity probability score Pdec, as formulated in

Hdec � σ W
h
dec H

∗
i ⊕H
∗
j􏼐 􏼑 + b

h
dec􏼐 􏼑, (3)

Pdec � softmax WdecHdec + Bdec( 􏼁. (4)

Here, ⊕ denotes the concatenation operation, σ repre-
sents the sigmoid function, and Wh

dec, b
h
dec, Wdec, and Bdec are

trainable model parameters.
In addition, for the event detection task, the temporal

information is also crucial. Hence, we additionally feed the
temporal vector H∗t of Ri and Rj from the news publish time
to the Siamese network, resulting in

Hdec � σ W
h
dec H

∗
i ⊕H
∗
j⊕H
∗
ti
⊕H∗tj

􏼒 􏼓 + b
h
dec􏼒 􏼓. (5)

Here, H∗ti
and H∗tj

denote the news publish time vector of
Ri and Rj, respectively. It is noted that the temporal vector
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H∗t of time t is mapped from the Unix timestamp of t using
the same pretrained word2vec tool as Section 4.1.

*e result of event detection network is the detected
events set; that is, E � E1, E2, . . . , E|E|􏽮 􏽯, where |E| is the
number of events in the whole dataset, and
Ei � Ri1

, Ri2
, . . . , Rin

􏽮 􏽯, where in is the number of news report
documents in the event Ei.

4.3. Event Evolution Network. After detecting a series of
events, we further organize these events into multiple stories
in an online manner. Each story covers several interrelated
events, which are connected based on their temporal order
to characterize the evolving process of that story. Suppose
that we have discovered l stories S � S1, S2, . . . , Sl􏼈 􏼉, where
each story includes several detected events, that is,
Si � Ei1

, Ei2
, . . . , Ein

􏽮 􏽯, i � 1, 2, . . . , l. For an incoming event
E, our online algorithm to grow the story first identifies the
story to which the event belongs. If it does not belong to any
existing stories, we create a new story by including it. Af-
terwards, for all events in each story, we simply connect
them by their timestamp order. More specifically, we first
calculate the similarity score δij

between E and each event Eij
in the existing story cluster Si and further take the maximum

similarity score δi � maxj δij
􏼚 􏼛 to measure the similarity

between it and the story cluster Si. *en, we still apply a
similar threshold strategy to event detection to decide
whether the new event E belongs to an existing story Si. If the
similarity δi is below the threshold, a new story is estab-
lished. Otherwise, the event is added to the most similar
existing story group, that is, Sm, m � argmaxi δi􏼈 􏼉.

Similar to the predecessor event evolution, we still
consider a Siamese network to calculate the similarities
between events due to its high accuracy and ease of inte-
gration, and the input of event evolution network is the
event set. Concretely, for two events Ei and Ej, we first take
the average of semantic representation vectors of news re-
ports which are subordinate to them, as their own semantic
representation vectors εi and εj. *en, two vectors and
corresponding timestamp vectors are concatenated together
and fed into the former event detection network to generate
the hidden feature vector Hdec, as formulated in (5).

Furthermore, since the similarity between news reports
is highly related to the similarity between corresponding
events, for better integration between event detection and
event evolution, we additionally feed the obtained hidden
feature vector Hdec of event detection network to the Sia-
mese network, as is formalized in

Hevo � σ W
h
evo εi ⊕ εj ⊕ εti

⊕ εtj
⊕Hdec􏼒 􏼓 + b

h
evo􏼒 􏼓, (6)

Pevo � softmax WevoHevo + Bevo( 􏼁, (7)

where ⊕ denotes the concatenation operation; σ represents
the sigmoid function; Wh

evo, bh
evo, Wevo, and Bevo are model

parameters; εi or εj is semantic representation vector of the
event Ei or Ej; and εti

or εtj
is the timestamp vector of the

event Ei or Ej.

Finally, the proposed model generates a series of story
sets; that is, S � S1, S2, . . . , S|S|􏽮 􏽯, where |S| is the number of
stories, and Si � Ei1

, Ei2
, . . . , Ein

􏽮 􏽯, where in is the number of
event from Si. Moreover, events in each story are connected
from front to back based on their temporal or logical
relationship.

4.4. Training and Parameters Setting. *e training of the
joint model is based on a pair of news reports as input. For
the event detection, our training objective is to minimize the
cross-entropy loss between the predicted similarity proba-
bility and the one-hot ground truth derived from the labeled
event ids. Afterwards, we take the H∗i and H∗j as εi and εj,
respectively. And they are fed into the subsequent event
evolution network to predict the story similarity. A cross-
entropy loss between the predicted similarity probability and
the ground truth derived from the labeled story ids is used to
optimize the event evolution network and is also propagated
to the predecessor event detection network by the hidden
feature vector Hdec. Hence, the model parameters from the
two networks can be jointly updated using the Nesterov
Adam optimizer with the learning rate of 1e− 4. It should be
noted that it is reasonable to take the semantic vector of news
reports to represent the event for training the event evo-
lution network because an event consists of several related
news reports, which should have similar semantic repre-
sentations; thus, they are close to their average, which is used
in the testing.

*e model is implemented in Keras with Tensorflow
backend. *e batch size is set to 16, and the number of
epochs is set to 8. Besides, we train word embeddings using
the skip-gram algorithm [45] and fine-tune them during the
training of the joint model. *e size of word embeddings is
set to 32, the size of the hidden layers Hdec, Hevo, and shared
semantic representation H∗ is set to 16. Before the exper-
iment, we calculated the size of the word bag in advance, and
our model predicted 2,500 words, with an extra token
covering all the other words.*e Dropout technology [47] is
used on the word embeddings with a ratio of 0.2 for avoiding
overfitting.

5. Experiments

In this section, the proposed model is evaluated on a real-
world dataset and proved its effectiveness.

5.1. Dataset. *e proposed JEDE model is evaluated on a
real-world Chinese News Report Documents dataset col-
lected by the crawler tool (https://github.com/liuhuanyong/
EventMonitor). *e original dataset does not contain
available labels for all the two subtasks that we investigate.
Hence, we have taken efforts to manually annotate 1,931
news report documents with their corresponding event id
and story id, which we from now on refer to as EDENS
(Event Detection and Evolution from News Streams)
dataset, where the number of stories is 12, the number of
events is 694, and each story contains 58 events on average,
covering different topics in the open domain, as presented in
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Table 1. During the annotation of the EDENS dataset, we
invited four human annotators, including two doctoral
students and two senior undergraduate students majoring in
Computer Science and Chinese Language and Literature, to
read news reports, respectively, mark news events and event
evolution orders artificially, and review the results jointly.
*e interrater agreement is to refer to Baidu Encyclopedia
and Wikipedia.

In addition, we removed common stop words and only
kept tokens which are verbs, nouns, or adjectives from these
news report documents. In the experiments, 80% of docu-
ments with annotated event id and story id are randomly
selected as the training set, and the remaining data serves as
the test set.

5.2. Evaluation Metrics. We choose several metrics to
evaluate the effectiveness of our model for event detection
and evolution.

5.2.1. P, R, and F1. *e Precision (P), Recall (R), and F1
score are used to evaluate the clustering performance of the
event detection and evolution tasks. Formally, they are
defined as follows:

P �
T∩T′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

T′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

R �
T∩T′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|T|
,

F1 �
2PR

P + R
,

(8)

where T � E1, E2, . . . , E|E|􏽮 􏽯 or S1, S2, . . . , S|S|􏽮 􏽯 is the set of
artificially detected real-world events or stories (ground
truth), and T′ � E1′, E2′, . . . , E|E′|′􏽮 􏽯 or S1′, S2′, . . . , S|S′|′􏽮 􏽯 is the
set of events or stories detected from ourmodel in this paper.

Among the above metrics, Precision measures the
percentage of correctly detected events or stories. Recall
gives the percentage of events or stories in the ground truth
which are correctly detected. F-measure is defined as the
harmonic mean of Precision and Recall to balance the two
metrics. Higher values for Precision, Recall, and F1 indicate
a better model for event detection and evolution.

5.2.2. Normalized Topic Weighted Minimum Cost (Cmin).
For the event detection task, we also take the same evaluation
method as in [5] that the normalized Topic Weight Mini-
mum Cost (Cmin) from the standard TDT evaluation pro-
cedure [10] is used to evaluate clustering accuracy. Formally,
it is defined as follows:

Cmin �
Cmiss ∗Nmiss( 􏼁

len(cluster)
+

Cfa ∗Nfa( 􏼁

len(cluster)
, (9)

where Cmiss and Cfa are the costs of a missed detection and a
false alarm, respectively, and set to Cmiss � 0.5, Cfa � 0.5 in
the experiments. In addition, Nmiss and Nfa are the number

of missed detections and false alarms, respectively, and
len(cluster) is the size of the event cluster.

From the above formulation, it can be seen that Cmin is a
linear combination of missed detection and false alarm error
probabilities, which allows a fair comparison between dif-
ferent methods based on such a single metric value. Lower
Cmin shows better performance.

5.2.3. ACC. Besides, we use ACC (i.e., accuracy) to evaluate
the accuracy of event detection and evolution, which is the
ratio of the correctly detected results of our model in all
annotated results.

5.3. Evaluation of Event Detection Task. We first report the
performance of different models for event detection on the
Chinese News Report Documents dataset. *e following
state-of-the-art baseline methods are used for comparisons:

(i) JEDS [5] is a joint neural model that includes three
subtasks: event filtering, detection, and summary,
which is specially tailored for Twitter events. It uses
shared text representation and neural stacking for
joint event detection and summarization. In addi-
tion, it uses LSTM as the document representation
of each tweet.

(ii) LSH [9] (locality sensitive hashing) is used to detect
and track events on unbounded high volume tweet
stream in constant time and space, and it utilizes
bag-of-words to represent each tweet.

(iii) DBSCAN [31] (Density-Based Spatial Clustering of
Applications with Noise) is a classical density-based
clustering algorithm. Unlike the K-means algo-
rithm, it does not need to preset the number of
clusters but can generate clusters for arbitrary
shapes based on the number of data speculation
clusters.

According to Section 5.2, we use P, R, F1, Cmin, and ACC
as the evaluation metrics of events detection results, as il-
lustrated in Table 2. We can see that all neural networks
based models significantly outperform traditional clustering
models by a large margin, which can be explained by the fact
that neural network models can capture a richer feature
representation compared to discrete models. Among all the
methods, our proposed JEDS model yields the best per-
formance, reducing Cmin by around 3%, and improving the
F1 score and ACC by around 4% and 1%, respectively,
compared to the state-of-the-art method JEDS. *is may
because our proposed JEDE model uses a more discrimi-
native GRU attention network in place of the regular LSTM
in JEDS. Besides, the highest accuracy rate of 77.21% in our
model implies that most of the detected document clusters
(events) are pure; that is, most events only contain docu-
ments that talk about the same real-world breaking news.

5.4. Evaluation of Event Evolution Task. Given the set of
events extracted by our JEDE model, we further evaluate the
performance of the event evolution task on the large twelve
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stories mentioned above. As described in [8], the event
evolution task essentially involves two aspects: (a) identi-
fying the story to which the event belongs and (b) presenting
the evolving structure of that story. *erefore, the following
experimental results are reported based on these two aspects.

Specifically, for task (b), following [8], events in a story
can be organized in one of the following four structures, as
shown in Figure 3:

(a) Flat structure [10]: this structure does not include the
dependencies between events.

(b) Timeline structure [48]: this structure linearly or-
ganizes events by their timestamps.

(c) Graph structure [3]: this structure checks the con-
nection between all pairs of events and keeps a subset
of most strong connections.

(d) Tree structure [8]: this structure, called story tree,
applies a tree to characterize the structures of evolving
events within a story. *e regular updating operations
include merging, extending, and inserting.

To make fair comparisons, we use the same pre-
processing and event cluster procedures proposed in our
JEDE model to develop different story structures. Specifi-
cally, the JEDE models with flat, timeline, graph, and tree
structures are termed as JEDE-Flat, JEDE-Timeline, JEDE-
Graph, and JEDE-Tree, respectively. In addition, the Story
Forest model, which introduces the tree structure (d) in
Figure 3, clusters events into stories by calculating the
compatibility between events and story tree based on their
keyword sets. *erefore, based on the same events clustering
results from our JEDE model and event evolving structure,
the Story Forest model is used to compare with our proposed
JEDE-Tree model on the task (a). Overall, the above five
models are used for benchmarking the event evolution task.

We enlisted 50 volunteers to blindly evaluate the results
given by different approaches, and, in line with [8], the
output story structures are compared from three aspects: the
logical coherence of paths (Consistent Paths), the readability
of different story structures (Best Structures), and the
numbers of one’s repeat reading for understanding the story
structure (Repeat Readings). In terms of effectiveness, the
Consistent Paths and Best Structure are used to evaluate
whether a model can help news readers correctly capture the
development of events in a short time. In terms of efficiency,
the number of repeat readings for understanding the de-
velopment of a story is recorded in order to compare the
efforts a user spent on understanding. As shown in Table 3,
in terms of four evolution structures, the tree structure

shows the best performance, followed by the timeline structure,
which basically accords with human perception. Besides, the
flat structure also presents better results than the graph
structure, whichmay indicate that the logic structures of a large
portion of real-world news stories are simple, and thus complex
graphs are easy to generate an overkill. It should be noted that
path coherence is meaningless for flat or graph structure;
hence, we ignore the corresponding metric results. A further
observation can find that our proposed JEDE-Tree outperforms
the Story Forest model on all metrics, with their only difference
is in clustering events into a story. *is may be explained that
our model learns a better event similarity metric by adopting
the Siamese neural network models.

5.5. Evaluation of Joint Model. In order to investigate
whether the joint model improves the accuracy of both tasks
in our pipeline setting, we compare our model with several
variants, including the following:

(i) JEDE w/o shared uses a separate bidirectional GRU
attention network in event detection and evolution
to learn a semantic representation of news reports
or events. In this pipeline setting, there is no pa-
rameter sharing. *e temporal information is not
used in learning the similarity metrics of event
detection and evolution.

(ii) JEDE w/o stack employs a bidirectional GRU at-
tention network to learn a shared semantic repre-
sentation H∗ for event detection and evolution
without neural stacking and backpropagation be-
tween tasks.*e temporal information is not used in
learning the similarity metrics of event detection
and evolution.

(iii) JEDE w/o time uses a shared semantic represen-
tation and stacked event detection and evolution.
*e temporal information is not used in learning the
similarity metrics of event detection and evolution.

(iv) JEDE is the proposed Joint Event Detection and
Evolution model, which learns a shared semantic
representation from a bidirectional GRU attention
network for both subtasks and stacks both subtasks
with backpropagation training. *e temporal in-
formation is also used in learning the similarity
metrics of event detection and evolution.

Table 4 tabulates the results of different ablation settings,
where the performance of task (a) in the event evolution,
namely, events clustering into stories, is reported. As can be
seen from the table, (1) the original pipeline model (i.e.,
JEDE w/o shared) shows the worst results but achieves a
significant improvement on both tasks by simply sharing the
representation of each task (i.e., JEDE w/o stack). (2)
Stacking of event detection and evolution is highly beneficial
to the joint model, considering backpropagation from event
evolution errors to detection (see JEDEw/o time vs. JEDE w/
o stack). (3) Removing the input of the temporal information
makes the performance of our JEDE model drop on both
event detection and event evolution (see JEDE w/o time vs.

Table 2: Comparison of different models on event detection.

Method P (%) R (%) F1 (%) Cmin (%) ACC (%)

DBSCAN 51.39 70.49 59.44 72.57 51.71
LSH 59.31 61.06 60.17 69.47 57.92
JEDS 67.44 71.19 69.26 53.20 76.08
JEDE 75.14 71.75 73.41 50.06 77.21
*e bold values highlight the performance of the proposed JEDE model on
several metrics. It can be seen from Table 2 that our model performs better
than other baseline models. We have described these results in Section 5.3.
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JEDE). It demonstrates that temporal information can in-
deed enhance event detection and evolution. In summary,
based on the shared semantic representation, neural stacking
between both subtasks, and temporal information, the
proposed joint model JEDE outperforms all baseline models
on event detection and evolution tasks.

5.6. Case Study. In this subsection, we provide a qualitative
analysis to present the evolution process of events from our
model JEDE, taking the story of “*e ZTE incident” for
example. According to Section 5.4, we select the most ef-
fective “Story Tree” structure to represent the event evo-
lution, as shown in Figure 4. *e detected story contains 90
nodes, where each node indicates an event in the ZTE in-
cident, and each link represents a temporal or logical

connection between two events. For brevity, we randomly
delete some nodes for display. Specifically, for instance,
event 12 says “*e U.S. side agrees to let ZTE submit ad-
ditional evidence,” and event 55 says “ZTE’s ban is lifted and
$1 billion is fined.” Most events are arranged by timeline, but
there are 5 paths to represent the evolution of events by
logical relationship, where the path “0->2->29” talks about
the beginning of the ZTE incident, branch “30->46->54” is
about the China-US trade consultation and its impact on
ZTE, branch “49->59->75->84” is related to the ZTE share
price, and so forth. Overall, qualitative results from our
model JEDE show that our model successfully aggregates
related news reports to the same event and further clearly
present the development process of the whole story by the
“Story Tree” structure, which demonstrates the effectiveness
of our model.

Table 4: Comparison of our model with variants.

Task Event detection Event evolution
Model P (%) R (%) F1 (%) Cmin (%) ACC (%) P (%) R (%) F1 (%) ACC (%)

JEDE w/o shared 53.73 59.42 56.43 68.02 55.23 56.09 64.74 60.11 53.98
JEDE w/o stack 57.57 63.83 60.54 67.35 56.39 63.52 64.68 64.09 68.06
JEDE w/o time 68.36 70.19 69.26 51.11 64.94 69.41 70.75 70.07 70.04
JEDE 75.14 71.75 73.41 50.06 77.21 73.83 68.63 71.14 72.18
*e bold values highlight the performance of the proposed JEDE model on several metrics. It can be seen from this ablation study that shared semantic
representation, neural stacking, and time information help the proposed JEDE model achieve the optimal performance. We have described these results in
Section 5.5.
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Figure 3: Different structures to characterize a story [8]. (a) Flat structure. (b) Timeline structure. (c) Graph structure. (d) Tree structure.

Table 3: Results of event evolution about different story structure generation algorithms.

Method Consistent Paths Best Structures Repeat Readings
JEDE-Graph — 6.1784 15
JEDE-Flat — 6.2996 12
JEDE-Timeline 7.5004 7.1860 12
Story Forest 7.8244 7.2706 11
JEDE-Tree 8.1106 7.8626 8
*e bold values highlight the performance of the proposed JEDE-Tree model on several metrics. It can be seen from Table 3 that our model with the tree
structure performs better than other baseline models. We have described these results in Section 5.4.
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6. Conclusions and Future Work

In this paper, we propose an effective neural network model
JEDE for Joint Event Detection and Evolution, which
benefits both tasks through information sharing between the
two tasks. Our model takes the vast streams of trending and
breaking news as input and clusters related news reports into
several events as well as organizing events in various sensible
story structures such as either a tree or a timeline or a flat
structure in an online manner. Different from previous
popular pipeline settings, our model first uses the bidirec-
tional GRU network and attention mechanism to learn the
vectorial semantic representation of news reports as well as
events, without the bag-of-words assumption, which is
globally shared on both event detection and evolution tasks.
*en, two similarity metrics about a pair of news documents
or events are learned continuously by neural stacking, so that
information is better shared between the predecessor event
detection and successor event evolution networks. Empirical
experiments on a newly annotated real-world dataset
EDENS demonstrate the superior performance of our model
over several baseline models on both subtasks. In summary,
our model is able to effectively deal with event detection and
evolution online for massive amounts of breaking news data.

Despite the remarkable improvements, the proposed
model still faces some challenges. For example, as we all
know, event description is crucial in event mining task.
However, our model just simply uses the title of the earliest
news report to summary an event, but without considering
the richer contextual information contained in the clustered
news reports. Hence, a well designed summarization module
is necessary in the future joint model. Besides, this paper
primarily talks about events about formal news media, and it
is implicitly assumed that detected events are all realistic, due
to the authority of formal news reports. However, for
emerging social media, lack of supervision and free Twitter
expressions may produce some rumor events, which may
hinder people’s understanding of the truth about topics of
interest [49, 50]. *is issue has not yet been solved by the
proposed model; hence, it is worth thinking deeply about
how to detect and exclude the interference of rumors and

present a clean and clear event evolution process for in-
formal social media. *e rumor propagation [51–53]
mechanism is also another research topic of interest in the
future.
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