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In this paper, a fusionmethod based onmultiple features and hiddenMarkovmodel (HMM) is proposed for recognizing dynamic
hand gestures corresponding to an operator’s instructions in robot teleoperation. In the first place, a valid dynamic hand gesture
from continuously obtained data according to the velocity of the moving hand needs to be separated. Secondly, a feature set is
introduced for dynamic hand gesture expression, which includes four sorts of features: palm posture, bending angle, the opening
angle of the fingers, and gesture trajectory. Finally, HMM classifiers based on these features are built, and a weighted calculation
model fusing the probabilities of four sorts of features is presented. (e proposed method is evaluated by recognizing dynamic
hand gestures acquired by leap motion (LM), and it reaches recognition rates of about 90.63% for LM-Gesture3D dataset created
by the paper and 93.3% for Letter-gesture dataset, respectively.

1. Introduction

Dynamic hand gesture recognition is a very intriguing problem
in recent years that, if efficiently solved, could be the wealthiest
means of communication that can be used. Because of this,
many scholars from all over the world have done a lot of
theoretical and practical research studies [1]. Compared with
static gestures, the meaning of dynamic gestures is more
abundant, and it is more common and natural to be an in-
teractive way. But, at the same time, the information of dy-
namic hand gestures, such as shape and location, varies as time,
which consequently increases the difficulty in recognition.

At present, there are two main types of sensors that are
capable of sensing hand gestures: wearable sensor or vision-
based sensor [2, 3]. (e former approach could capture the
movement of hands and fingers at the expense of conve-
nience and cost and sufficiently extract information of hand,
but it places an additional burden on users and could feel
unnatural enough to perform hand gestures. Some advan-
tages of a vision-based sensor are it can be less cumbersome
and has more natural interaction than the wearable sensor
due to no physical contact with users. However, its

computational complexity is quite high for hand detecting,
tracking, and extracting [4]. For instance, a hand should be
separated from the background before the final recognition,
which can be significantly affected by external environ-
mental factors like ambient light. On the contrary, due to the
complex 3D movements of hands or fingers, it is difficult to
properly understand the performed hand pose based on the
extracted information from 2D images [5]. Besides, once the
palm surface is not parallel to the camera, for example, the
recognition work could be harder.

(e classification is a crucial step to recognize hand
gestures. Five main classifying methods of hand gesture
based on 3D vision can be identified: support vector ma-
chines (SVMs), artificial neural network (ANN), template
matching (TM), HMM, and dynamic time warping (DTW)
[4]. (e SVM is a popular classifier for hand gesture rec-
ognition, in which support vectors are used to determine the
hyperplane to realize the maximum separation of the hand
gesture classes [6]. In vision-based hand gesture recognition
systems, the ANN is used as a classifier to handle only
fundamental and limited hand gestures [7]. When the high-
level discriminative 3D hand features are available, the TM is
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an excellent choice for recognizing hand gestures, which
works quite well with the contour- or boundary-based hand
features [8]. As the hand gesture is a continuous pattern
concerning time, the HMM is found to be the most suitable
pattern recognition tool for testing on a moderately large
dataset [9]. DTW is an indirect continuous hand gesture
recognition approach that automatically aligns the se-
quences with different lengths and returns the proper dis-
tance [10].

Martin Sagayam and Jude Hemanth [11] develop a
probabilistic model based on the state sequence analysis in
the HMM to recognize hand gestures taken from the
Cambridge hand dataset. (e experimental results show that
the proposed method achieves a 0.98% reduction in error
rate and a 1.55% improvement in the recognition rate over
that of the Viterbi prediction. Some work combines HMM
with other methods for gesture recognition. Zhou et al. [12]
use HMM to model the different information sequences of
dynamic hand gestures and use BP neural network (BPNN)
as a classifier to process the resulting hand gestures modeled
by HMM, which achieves a satisfactory real-time perfor-
mance and an accuracy above 84%. Martin Sagayam and
Jude Hemanth [13] propose a hybrid 1D HMM model with
artificial bee colony (ABC) optimization. (e method is
carried out with nine different classes of hand gestures that
are used for virtual reality applications. (e experimental
results show that the average value of the recognition rate
with ABC optimization increases by 2.72%, and the average
value of the error rate is decreased by 0.47%.

With the emergence and development of deep learning
technology, some scholars try to apply the technology for hand
gesture recognition. Oyedotun and Khashman [14] apply a
convolutional neural network (CNN) and stacked denoising
autoencoder (SDAE) to recognize 24 American Sign Language
(ASL) hand gestures obtained from a public database, which
achieves the recognition rates of 91.33 and 92.83%. Bao et al.
[15] propose a deep CNN that can classify hand gestures from
the whole image without any segmentation or detection stage
information. (e method can organize seven sorts of hand
gestures in a user-independent manner and achieve an accu-
racy of 97.1% in the dataset with simple backgrounds and
85.3% in the dataset with complex backgrounds.

In recent years, 3D sensors, such as binocular cameras,
Kinect, and LM, have been applied for hand gesture rec-
ognition with excellent performance. LM can detect and
track hands and fingers with an accuracy of about 0.01mm
and feedback the gesture information in real time with a
sampling rate of 120 fps [16]. Because of its superior per-
formance, many researchers consider that it is a promising
3D sensor and particularly suitable for hand gesture rec-
ognition. For instance, Chen et al. [17] extract directional
codes of 3D motion trajectory as the feature and exploit a
classifier based on SVM to classify letter and number ges-
tures. Ameur et al. [18] extract the positions of fingertips and
palm center as features that are then trained with an SVM
classifier. (eir method reaches an average recognition rate
of about 81% with 11 kinds of dynamic gestures. Xu et al.
[19] and Zeng et al. [20] also conducted similar studies.
Besides t, some researchers are working on dynamic gesture

recognition. Lu et al. [21] build two kinds of features and
feed them into the hidden conditional neural field classifier
to recognize dynamic gestures. Avola et al. [22] propose a
long short-term memory (LSTM) and recurrent neural
networks (RNNs) combined with an effective set of dis-
criminative features based on both joint angles and fingertip
positions to recognize sign language and semaphoric hand
gestures, which achieves an accuracy of over 96%. Vam-
sikrishna et al. [9] propose a low-cost computer-vision-
assisted setup based on LM to detect precise movements of
palm or finger within the field of view of the sensors.(en, it
presents a set of discrete HMM for classifying the gesture
sequences performed during rehabilitation.

(e paper is aimed at recognizing the hand gestures cor-
responding to an operator’s hand commands in robot tele-
operation. For the problem, the paper develops four feature
vectors and their extraction models based on 3D information
acquired by LM to describe the hand gestures. And then, the
article establishesHMMs to calculate the occurrence probabilities
of four feature sequences in an unknown hand gesture, re-
spectively. Lastly, the paper uses a weighted algorithm to fuse the
occurrence probabilities of four features. (e most considerable
hazard is taken as can be taken as a recognition result.(e rest of
the paper is organized as follows. Prophaseworks of hand gesture
recognition are introduced in Section 2. (e methods of feature
extraction are presented in Section 3, including valid dynamic
gesture judgment, feature definition, and feature sequence
clustering. HMM training model and hand gesture recognition
by fusing the feature probabilities are proposed in Section 4.
Section 5 comprises experiments and the result and discussion.
Conclusion and possible future extensions are given in Section 6.

2. Prophase Work of Gesture Recognition

2.1. Leap Motion and Data Acquisition. LM, based on time-
of-flight technology, mainly consists of three infrared LEDs
and two infrared cameras, which can take photos from
different directions to obtain gesture information in 3D
space [16]. LM has about 150 degrees view field and an
effective range of approximately 0.03 to 0.06 meters above
itself. LM could feedback data frames that consist of posi-
tions and velocities of key points, rotation information, and
frame timestamp.

When collecting gestures, LM will establish a right-hand
coordinate system, as shown in Figure 1, based on all ob-
tained data such as position, speed, and gesture of human
hands. As shown in Figure 1, the five fingertips are denoted
by fi(i � 1, . . . , 5), and palm center is denoted by C. We
mainly focus on the following data: (1) palm normal vector
n
→ and palm direction vector h

→
, which represent unit

vectors perpendicular to the palm plane and point from the
palm position toward the fingers, respectively; (2) finger
direction vector f

→
i and the finger extension length points di,

which represent the unit vector pointing to the point of the
finger point Fi and the distance between two points, re-
spectively; (3) instantaneous velocity vi of five fingertips and
instantaneous velocity vC of the palm center; and (4) co-
ordinate pt(xt, yt, zt), which represents the coordinate of
the palm position in the frame t.
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2.2. Dynamic Gesture Definition. (ere are relatively few
publicly available hand gesture datasets created by LM-
sampled images, especially for dynamic hand gestures in
robot teleoperation. We analyze the movement character-
istics of the operator’s hand command in the robot tele-
operation, such as translation and rotation of three degrees
of freedom, and create a gesture dataset named LM-Ges-
ture3D, which contains eight different dynamic gestures, as
shown in Table 1. All these gestures collected by LM rep-
resent some practical operations or command signs and can
be performed easily and naturally. Besides, there are simi-
larities among the gestures in some respects, which will be
illuminated in more detail later.

3. Feature Extraction

3.1. Valid Dynamic Gesture Judgment. Despite the fact that
LM has many merits, it mainly acts as a gesture data collector
similar to a wearable device and camera. Hence, conditions for
judging the beginning and the end of a valid dynamic gesture
need to be given first. Take LM-Gesture3D as an example; it can
be seen that the fingertips and palm center will inevitably
produce rapid and continuous displacement when either
gesture is performed. Even for a simplest dynamic gesture,
click, for example, is no exception. A simple discriminant,
based on the above analysis, is established as follows:

v � max vC, vi|i � 1, . . . , 5􏼈 􏼉> vτ , (1)

where vC and vi are the instantaneous velocity of palm center
and fingertips, respectively, and vτ is the predefined velocity
threshold.

When the total number of continuous frames up to 60,
vC and vi, satisfy discriminant (1), the data frames will be
regarded as the original data of a valid dynamic gesture.

As LM is quite sensitive, in both cases when hand makes
a slight shaking at rest and the obtained data contain noise,
discriminant (1) could be satisfied in a few consecutive
frames. So the total number (i.e., 60 frames) is set to
eliminate these useless data. In addition, dynamic gesture
with a low speed will be judged as invalid by discriminant
(1), which means there is a degree of freedom for hand
movement.

3.2. Feature Definition. To effectively recognize dynamic
gestures, changes in hand posture and position are analyzed

separately. (e former can be further divided into the
bending angle of fingers, opening perspective between fin-
gers, and palm posture. (e gesture trajectory can be rep-
resented later. (erefore, the paper describes the changes in
gestures through the above four features.

(e specific extraction process and expression of the four
features are as follows.

3.2.1. Palm Attitude Feature. If the palm shape changes little
in a dynamic gesture, the change in palm posture can be
regarded as the problem of attitude angle calculation of a
rigid body. (e paper draws lessons from the 3D attitude
measurement method, which is pointed out in [23].

As shown in Figure 1, the palm posture in the 3D space at
any time could be uniquely determined by palm normal
vector n

→ and palm direction vector h
→
. Let m

→
� h

→
× n

→,
then a new coordinate system [ h

→
t, n

→
t, m

→
t] can be obtained

to represent the palm posture in frame t. We take the initial
data frame of the dynamic gesture as the fixed coordinate
system and denote it as [ h

→
t, n

→
t, m

→
t]. So, the change in palm

posture between the current frame and the first frame can be
represented with three Euler angles:

ψt � arc tan −
n
→

1 · h
→

t􏼒 􏼓

n
→

1 · n
→

t( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

ϕt � arc sin n
→

1 · m
→

t( 􏼁,

θt � arc tan −
h
→

1 · m
→

t􏼒 􏼓

m
→

1 · m
→

t( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

f
→

1

f
→

5

f
→

4f
→

3f
→

2C

+X

+Y

+Z

(a)

F2 d1

d2

F1

(b)

Figure 1: Data acquisition from leap motion.

Table 1: Definition of LM-Gesture3D dataset.

Num Gestures Num Gestures

G1 G2

G3 G4

G5 G6

G7 G8
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3.2.2. Bending Angle of Fingers. As we mainly focus on the
bending angle of the finger, the thickness of the finger could
be regarded as useless, and then, each finger can be sim-
plified to a planar model, as shown in Figure 2. Based on the
two models, Hong et al. [24] propose a method to estimate
the hand’s attitude or instead bending angle of fingers and
coordinates of joint points. At all conditions, their method
require a merely total length of the finger li, visible length of
the finger di, and several constraint constants. Combining
with their research, we define the finger bending angle as

ωi � ⌊100 ×
di

li
􏼠 􏼡⌋, i � 1, . . . , 5, (3)

where di can be obtained directly from LM and li equals to di

when the finger is straight.
In equation (3), li is used for normalization in order to

make the approach robust to people with hands of different
sizes. For li, a simple method is proposed to calibrate before
data acquisition. (e user keeps his/her palm plane parallel
to LM and open fingers as straight as possible. When data of
total continuous frames satisfy (1) ny⟵ 0.94 and (2)
| f
→

i · n
→

|< 0.008, i � 1, . . . , 5, up to 30, the obtained visible
lengths of five fingers could be recorded as total lengths,
where ny is the component of normal vector n

→ along the Y-
axis direction in the LM coordinate system.

3.2.3. Opening Angle of Fingers. (e other descriptor for the
fingers is the opening angle between fingers. As mentioned
above, every single finger can be modeled on a plane.(us, the
problem of computing the angle between two fingers can
convert to one calculating the angle between two planes. Here,
the plane consists of h

→
, and n

→ is taken as the benchmark plane
in the computation. Let h

→
× n

→ and f
→

i × n
→ be the normal

vector of the benchmark plane and finger planes, respectively.
So, the opening angle can be calculated as follows:

ci � arc cos
f
→

i × n
→

􏼒 􏼓 · ( h
→

× n
→

)

f
→

i × n
→

􏼒 􏼓

������

������ × ‖( h
→

× n
→

)‖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, i � 1, . . . , 5.

(4)

3.2.4. Trajectory Feature. A specific and meaningful tra-
jectory usually accompanies some dynamic gestures, such as
circling with a finger (like G5). So, the paper considers the
path of the dynamic gesture and extracts a simplified feature
for gesture recognition. When LM works, it can detect the
palm center’s return space coordinates with high accuracy
and stability. So the moving trajectory of a hand can be
expressed by a series of discrete points. (e paper projects
the gesture trajectory onto the LM’s principal gesture plane,
i.e., the XOZ plane. (e detailed feature extraction processes
are as follows:

(1) Let (x1, z1), . . . , (xT, zT) be the discrete points of the
2D gesture trajectory, then the central point
po(xo, zo) of these points can be expressed as follows:

po xo, zo( 􏼁 �
1
T

􏽘

T

t�1
xt,

1
T

􏽘

T

t�1
zt

⎛⎝ ⎞⎠. (5)

(2) Any point pt(xt, zt) and po(xo, zo) form a vector of
popt

����→ together with the central point po as the starting
point. (en, the norm of popt

����→ and the direction
angles between popt

����→ and the X-axis can be repre-
sented as follows:

dt pt, po( 􏼁 �

�����������������

x − xo( 􏼁
2

+ z − zo( 􏼁
2

􏽱

,

φt pt, po( 􏼁 �
180
π

× tan−1 zt − zo( 􏼁

xt − xo( 􏼁
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

(3) Norm of the vectors dt is normalized with the
maximum norm dmax, thus obtaining δt. Besides,
direction angles of the vectors φt are converted into
codes ψt according to the angular regions, as shown
in Figure 3. δt and ψt can be computed as follows:

δt � ⌊20 × dt

pt, po( 􏼁

dmax
􏼠 􏼡⌋,

ψt � ⌊φt

pt, po( 􏼁

18°
⌋ + 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

Before coding the direction angle φt, we change the
coordinate system from the original LM one into the co-
ordinate system, as shown in Figure 3(a), the z′ axis of which
always points from the central point p0 to the first point p1.
(e obtained trajectory feature δt and ψt are of scale and
rotation invariance based on the operation plane.

Select typical data once for each gesture in the LM-
Gesture3D dataset and build their feature diagrams, as
shown in Figure 4. Each row in Figure 4 corresponds se-
quentially to one of the gestures in the LM-Gesture3D. Four
descriptions in each row from left to right are palm posture,
finger bending angle, finger opening angle, and trajectory,
respectively. It is not hard to see that each feature diagram
depicts how its corresponding gesture is performed nicely.
Gesture with complicated changes usually corresponds to
complex feature curves, and vice versa. Different gestures
may have similar features. (e palm posture feature of
G1–G3, for example, is similar to that of G6–G8 finger
bending angle, and finger opening angle of G6–G8 is similar
to each other. (erefore, it is not easy to distinguish these
gestures just with a single feature. Of course, there are some
gestures with significantly different features like G1 and G2.
So, there is no misrecognition between G1 and G2.

(eremay be somemore distinguishing features that can
improve the recognition rate as well as reduce the com-
putation cost for a given gesture. However, considering eight
kinds of gestures in LM-Gesture3D that have obvious
similarities, we prefer to select a feature set with com-
pleteness and redundancy that meets the requirements of
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unified modeling and recognizes the gestures. According to
the description of Figure 4, some features in the defined
feature set are similar to each other for different gestures.
However, there are some distinct features that are also in-
cluded in the defined feature set. So, on the whole, the
collected LM-Gesture3D or other more kinds of dynamic
gestures can be adequately represented and distinguished by
the defined four types of features.

In all four features, finger bending angle and finger
opening angle are not affected by acquisition direction. To
verify whether the rest two kinds of features are rotation
invariance, we obtain the hand data of the gesture G6 from
an experimenter, who is asked to make the gesture G6 twice
during the collecting period. (en, we extract the posture
feature and trajectory feature from the collected hand data
and draw the feature curves, as shown in Figure 5.

3.3. Feature Sequence Clustering. As shown in Table 2, in a
single data frame of a gesture, four features can be repre-
sented by mi(i � 1, 2, 3, 4) dimensional vectors, respectively.
Accordingly, each feature in T data frames of a dynamic
gesture formsT × mi dimensional vector sequences. In order
to build the model of discrete HMM, K-means algorithm
[25] is used to cluster the feature vector in the sequence.
After clustering a feature vector into q class, the feature
vector sequence can be expressed as O � o1, . . . , ot, . . . , oT􏼈 􏼉,

where ot � 1, . . . , q indicates that the feature vector is closest
to the cluster center numbered ot. In the paper, the cluster
number q of four kinds of features is shown in Table 2.

In short, we take the discrete feature sequence composed
of cluster tags as inputs of the discrete HMM. (erefore,
both the sample data for HMM training stage and the
gesture data for HMM recognizing need to go through the
steps of feature extraction and clustering.

4. Gesture Modeling and Recognition

4.1. Recognizing Flow. (e recognizing process of gesture is
shown in Figure 6, which can be divided into two parts. (e
first part deals with the accurate gesture segmentation and
four features extraction and quantification. (e second part
includes HMMmodel training and gesture recognition, both
of which are based on the premise of feature sequences
extraction.

(e formal features of HMM can be expressed with a 5-
tuple (ΩX,ΩO,A,B, π), where ΩX � q1, . . . , qN􏼈 􏼉 is a finite
set Markov chain state, and N is the number of states; ΩO �

V1, . . . , VM􏼈 􏼉 is a finite set of observation symbols, andM is
the number of symbols. A � (aij)N×N is the matrix of state
transition probability, B � (bij)N×M is the matrix of ob-
servation probability, and π � (π1, . . . , πN) is the initial state
probability distribution.

B (DIP)

A (PIP) C (TIP)
X

Y

d

α

θ

β

(a)

B (PIP)

A (MCP) D (TIP)
X

Y

d

C (DIP)

α

θ1
θ2

β

(b)

Figure 2: Simplified planar model of fingers: (a) triangular model for the thumb; (b) quadrilateral model for the other four fingers. MCP,
PIP, DIP, and TIP represent metacarpophalangeal point, proximal interphalangeal point, distal interphalangeal point, and fingertip,
respectively.

X′

Z′
p1 (x1, z1)

po (xo, zo)

pt (xt, zt)

φt

(a)

6

3

18

X′

Z′

15

12

9

(b)

Figure 3: Schematic diagram of normalization process: (a) norm and direction angle of the vectors; (b) angular regions in the XOZ plane.
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Figure 4: Continued.
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Figure 4: Features of the gestures in the LMC-Gesture3D training dataset.
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Figure 5: Palm posture and trajectory feature diagrams of gesture G6. a1 and a2 are the feature diagrams of palm posture corresponding to
two gestures; a3 and a4 are the feature diagrams of trajectory corresponding to two gestures.

Table 2: Number of cluster centers of four features.

Feature Feature vector q

Palm posture [ψt,φt, θt] 16
Finger bending angle [ω1,ω2,ω3,ω4,ω5] 14
Finger opening angle [c1, c2, c3, c4, c5] 10
Trajectory [δt,ψt] 10
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4.2. HMM Training. Unlike common one HMM for one
kind of gesture modeling pattern, we build one HMM
model for each feature, which means that 4 HMMmodels
are adopted to achieve the recognition of each performed
unknown gesture. Taking LM-Gesture3D for example,
the designed 8 gestures are denoted by gu, u � 1, . . . , 8;
then, for the feature sequence Sv

u(v � 1, . . . , 4 ) of gesture
gx, the following HMM modeling processes are carried
out:

(1) HMM initialization: according to Table 1, in the
paper, N is set to be 6. (e number of observation
symbols M is set as the same value of the number
of cluster centers shown in Table 2; the initiali-
zation model parameters are described as
λv

u � (A,B, π).
(2) HMM parameters revaluation: assume that the

feature sequence Sv
u consists of K observation se-

quences O(k), where k � 1, . . . , K, and each obser-
vation sequence could be represented as
O(k) � O

(k)
1 , . . . , O

(k)
T􏽮 􏽯.

For computing πi, aij, and bjs, respectively, the ob-
servation sequence O(k) and the original model parameter
λv

u are substituted into the reestimation equations as
follows:

πi � 􏽘
K

k�1

a
k
1(i)βk

1(i)

P O
(k)

􏼌􏼌􏼌􏼌􏼌 λ􏼒 􏼓

,

aij �
􏽘

K

k�1􏽘
Tk−1
t�1 a

k
t (i)aijbj O

(k)
i+1􏼐 􏼑b

k
t+1(j)/P O

(k)
􏼌􏼌􏼌􏼌􏼌 λ􏼒 􏼓

􏽘
K

k�1􏽘
Tk−1
t�1 a

k
t (i)βk

t+1(i)/P O
(k)

􏼌􏼌􏼌􏼌􏼌 λ􏼒 􏼓

,

bjs �

􏽘

K

k�1
􏽘

Tk−1

t � 1

ok
t � vs

a
k
t (j)βk

t (j)/P O
(k)

􏼌􏼌􏼌􏼌􏼌 λ􏼒 􏼓

􏽘
K

k�1􏽘
Tk−1
t�1 a

k
t (j)βk

t (j)v/P O
(k)

􏼌􏼌􏼌􏼌􏼌 λ􏼒 􏼓

,

(8)

where 1≤ i, j≤N.
(us, a new model λ

v

u � (π, A, B) is obtained. (e above
process would be repeated until the parameters in two
adjacent iterations meet as follows:

logP O | λ
v

u􏼐 􏼑 − logP O | λv
u( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< ε, (9)
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Figure 6: Implementation flow of the proposed method for recognizing dynamic gesture.
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where P(O | λ) is calculated from the forward-backward
algorithm, which indicates the occurrence probability of the
observation sequence O under the parameter λ, and ε is the
predefined convergence threshold.

(e final model parameter λv

u is the optimal parameter of
feature sequence Sv

u, that is, the single feature HMM of its
corresponding gesture. By repeating the above modeling
process for each feature sequence Sv

u of 8 dynamic gestures,
we can obtain 32 single-feature HMM models in total.

4.3. Gesture Recognition with HMM Fusion. In the stage of
gesture recognition, once original data of an unknown and
valid dynamic gesture are obtained, it would be first
extracted into 4 observation sequences O1, O2, O3, andO4.
(en, the forward-backward algorithm is used to calculate
the occurrence probability P(O1 | λ1u)(u � 1, . . . , 8) of the
observation sequence under 8 single feature HMM
λ1u(u � 1, . . . , 8). Similarly, the occurrence probability of the
observed sequence O2, O3, andO4 under their corre-
sponding HMM λ

2
u, λ

3
u, and λ

4
u can be obtained. For dem-

onstration purposes, we represent the occurrence
probabilities P(Ov | λ

v

u) as Puv(v � 1, 2, 3, 4).
We present an algorithm of weighted probability fusion

to compute the probability that an unknown gesture belongs
to the gesture u in LM-Gesture3D as follows:

P
F
u � 􏽘

4

v�1
ωuvPuv, (10)

where ωuv(0≤ωuv ≤ 1 and 􏽐
4
v�1 ωuv � 1) is the weight of

feature v corresponding to the gesture u.
According to equation (10), there are 8 calculation re-

sults, in which the maximum is regarded as the recognition
result of the unknown gesture.

(e paper employs least square method (LSM) to de-
termine ωuv in equation (10). Here is a brief introduction to
the LSM weight method. Firstly, we calculate the proba-
bilities of four features for all samples in the training dataset
and can obtain Pm � Pm

1 ,Pm
2 , . . . ,Pm

8􏼈 􏼉(m � 1, . . . , L), where
L is the number of samples and Pm

u � (Pm
u1, Pm

u2, Pm
u3, Pm

u4).
Secondly, for the gesture u in LM-Gesture3D, if the sample
m belongs to it, we set the probability of the sample m

corresponding to the gesture u as follows:

P
F
m,u

� 􏽘
4

v�1
ωuv,

P
m
uv � ωu,

Pm
u( 􏼁

T
� ps.

(11)

Else, the probability of the sample m corresponding to
the gesture u is set to be as follows:

P
F
m,u

� 􏽘
4

v�1
ωuvP

m
uv � ωu Pm

u( 􏼁
T

�
1 − ps( 􏼁

7
, (12)

where ps(0.5≤ps ≤ 1) is a set probability.
Calculating the probabilities of all samples corresponding to

the gesture u, we can obtain the following formula:

ωu

P1
u􏼐 􏼑

T

P2
u􏼐 􏼑

T

⋮

PV
u􏼐 􏼑

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

P
F
u,1

P
F
u,2

⋮

P
F
u,V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

We use the least square method (LSM) to compute ωu �

(ωu1,ωu2,ωu3,ωu4) in equation (15). Finally, ωu is nor-
malized to ωu

′ � (ωu1′ ,ωu2′ ,ωu3′ ,ωu4′ ). ωu
′ is the weight vector

of the fusion model.

5. Experiments

To test the performance of the proposed method, several
experiments are carried out on a desktop PC with an Intel
Core i5-3230M processor and 4Gb of RAM, and the soft-
ware environment consists of Visual Studio 2013, Leap
Motion SDK 2.3.1 + 3154, and MATLAB 2012a.

5.1. LM-Gesture3D Recognition Experiment. We select four
participants with certain experiences in robot teleoperation
to join the experiment. Each participant is asked to imitate
each gesture in LM-Gesture3D 40 times repeatedly, and LM
samples their gestures. So, there are 160 samples of each
gesture.

To verify the feasibility of the proposed method, we
define the recognition rate as follows:

RR �
NRec

MSam
× 100%, (14)

where NRec is the number of gestures correctly recognized
and MSam is the total number of gestures recognized.

Firstly, we use K-fold cross-validation to evaluate the
recognition performance and stability of the proposed
method. In this experiment, K is set to be 10. So, each subset
has 128 samples. Figure 7 is the result of K-fold cross-val-
idation, which shows that the recognition rates of different
trained models range from 89.8% to 92.9%. (e fluctuation
ranges of recognition rates of all 10 trainedHMMmodels are
about 3%, which shows that the proposedmethod has a good
generalization ability. (e average recognition rate of all 10
trained HMM models is about 90.8%, which indicates that
the proposed method has a good recognition performance.

Furthermore, we analyze the recognition performance of
the proposed method for different types of gestures in LM-
Gesture3D. We randomly select 60 samples of each gesture
as the testing set and the remaining samples as the training
set. Table 3 shows the recognizing results. From the table, we
can see that our method has a good representation of the 8
dynamic gestures with the average recognition rate of about
90.6%.(e recognition rates for all gestures fluctuate slightly
between 88.3% and 91.7%. (e recognition rates of G4 and
G6–G8 are higher than those of G1–G3 and G5. (e reason
is that these gestures are relatively simpler and easier for
different users to repeat, while the participant’s individual
habits easily influence G1–G3 and G5. In addition, gestures
G1–G3 are easily confused with G6–G8, respectively.
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In general, the recognition results are jointly determined
by four kinds of features, and our method based on multiple
features and HMM can represent most kinds of complex
gestures, which proves that our method is effective.

5.2. Dynamic Gesture Recognition Experiments. (is exper-
iment mainly tests our method’s recognition rate for two
kinds of relatively simple dynamic gestures, which are
named letter-gesture dataset and the waving-gesture dataset,
respectively. As shown in Figure 8(a), letter-gesture set
consists of 6 gestures numbered 1 to 6, which are similar to
each other. (e waving-gesture dataset contains the rest 6
gestures shown in Figure 8(b). It can be seen that the main
feature of two gesture sets is trajectory feature and palm
posture feature, respectively.

(e gestures in the experiment are sampled from four
participants. Each participant is asked to repeat each gesture
50 times. When collecting the letter-gesture dataset, each
participant keeps the shape as unchanged as possible and
parallel to the horizontal plane of LM. Each gesture’s ob-
tained data are further divided into 120 sets of training
samples and 80 sets of testing samples.

Chen et al. [17] propose a rapid early recognition system
based on SVM to achieve multiclassification among the 36
dynamic gestures (the 3D motion trajectory of the numbers
and the alphabet). Chen’s method uses LM to capture 3D
motion trajectories of the gestures, which is the same as our
method. In Chen’s method, the orientation angle is utilized
as a unique feature of the gesture trajectory projected into

the XOZ plane. It is quantized by dividing it by 45° and
coded from 1 to 9, which is similar to our method. Chen’s
method is also used to recognize the gestures in the letter-
gesture dataset.

Figure 9 shows the recognition results of our method and
Chen’s method. Our method and Chen’s method get the
average recognition rates of 96.0% and 93.5%, respectively.
Two approaches have very similar recognition rates. How-
ever, the fluctuation of our method’s recognition rate with
LSM weights is smaller than that of Chen’s approach. It
shows that our method has better recognition stability than
Chen’s method.

In addition, the directional code extracted by Chen’s
method is determined by two neighboring points on the
trajectory. In contrast, that of our method is determined by
the trajectory points and the central point. At the same time,
we also introduce a distance feature.(erefore, the extracted
trajectory feature by our method is not affected by the
amplitude of the gesture and is of rotation invariance.

Based on the above analysis, we believe that our method
performs better than Chen’s method.

(e waving direction of gestures 7–10 in the waving-
gesture dataset is from upper right to lower left, from upper
left to lower right, from top to bottom, and from bottom to
top, respectively. And other gestures 11 and 12make roughly
90° clockwise and counterclockwise rotations, respectively. It
can be seen that this kind of dynamic gesture could be
distinguished easily once using palm posture features. We
carry an experiment to test the recognition performance of
our method aiming at the 6 kinds of gestures. In the ex-
periment, the method of data acquisition and processing is
the same as that in the experiment of the letter-gesture
dataset.

Pan et al. [26] present a combination method based on
rule-based classification and SVM recognizes the gestures,
which also use LM to capture real-time frame data of hand
motion and define a 14-dimensional feature set including
the absolute pose of hand in the 3D coordinate system and
the pose changes in the hand between the two frames. Pan’s
method is also used to recognize the gestures in the waving-
gesture dataset.

Figure 10 shows the recognition results of our method
and Pan’s method. (e recognition rates of two methods for
gestures 7–12 are all over 90, and the average recognition
rates are 90.4% and 90.8%, respectively. (e average rec-
ognition rate of Pan’s method is slightly higher than that of
our method.

Compared with our method, Pan’s method will lead to
more computational costs because it selects high dimension
features and adopts a two-step recognizing strategy. Our
method has not only a high recognition rate but also has the
rotational invariance for selecting the rotation angle based
on the initial posture of hand as features. Our method has a
good effect on recognizing the wave or rotation gestures,
such as those in the waving-gesture dataset.

In addition, all three methods above use LM to sample
the gestures. (e data of the features defined by three
methods can be obtained quickly and accurately by LM. But
adopting the camera approach, we have to depend on the
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Figure 7: Recognition accuracies of LM-Gesture3D by using k-fold
cross-validation.

Table 3: Recognition rate of the proposed method for the gestures
in LMC-Gesture3D.

Gesture G1 G2 G3 G4 G5 G6 G7 G8 RR
G1 54 3 3 90.0
G2 54 6 90.0
G3 53 3 4 88.3
G4 2 3 55 91.7
G5 3 3 55 90.0
G6 5 55 91.7
G7 6 54 90.0
G8 3 2 55 91.7
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hand area feature to recognize the gestures, which is more
complex and challenging. Hence, we can conclude that LM
brings excellent benefits to our research.

5.3. Generalization Experiment. A generalization experi-
ment is carried out to verify the adaptability of our method
to nonstandard gestures. We select four inexperienced
participants for the experiment. In the experiment, each
participant is asked to repeat each gesture from LM-Ges-
ture3D 40 times. A total of 1280 different gestures are
sampled, which are recognized by the built HMMmode and

the same weights in the LM-Gesture3D recognition ex-
periment. (e average recognition rate of 90.5% shown in
Figure 11 is very similar to that of the LM-Gesture3D
recognition experiment. So, the method is adaptable to
different nonstandard gestures and has a good generalization
ability.

We defined positive prediction value (PPV) and accu-
racy (ACC) of the gesture Gi (i� 1, 2, . . ., 8) as follows:

PPV �
TGi

TGi + FGi

, (15)

where TGi is the number of gesture Gi correctly recognized
and FGi is the number of other seven gestures that are in-
correctly recognized as Gi.

ACC �
TGi

TGi + 􏽐1≤j≤8,j≠iFGj

, (16)

where FGi is the number of gesture Gi that is incorrectly
recognized as gesture Gj.

Table 4 shows the confusion matrix of the generalization
experiment using the proposed method. According to Ta-
ble 4, except for G5 with a PPV of about 0.96, the recognition
precisions for the other seven gestures have a small differ-
ence ranging from 0.89 to 0.91.

5.4. Comparison Experiment with Other HMM-Based
Methods. Here, we compare the recognition performance of
the proposed method with other recognition methods based
on HMM.

(e authors in [11] define three features, including
handshape, palm trajectory, and distance from the
camera to extract the hand model from image features. It
proposes a combinatorial method based on HMM and
BPNN.(e HMM-BPNNmethod uses the classical HMM
to evaluate and decide the dynamic gesture features and,
then, uses the BP neural network to classify the input state
sequence.

In this experiment, the experimental samples are from
the LM-Gesture3D recognition experiment in Section 5.1,
from which 60 samples of each gesture and the remaining
samples are randomly selected as the testing and training
sets, respectively. (e experiment is divided into two parts,
including the feature testing and algorithm testing.

(e feature testing experiment uses the features defined
in the paper [12] to describe the gestures and analyze the
HMM-BPNN method’s recognition rate. Table 5 shows the
recognition results of the experiment. From the table, we can
see that the HMM-BPNN method has an average

1 2 3 4 5 6

(a)

7 8 9 10 11 12

(b)

Figure 8: Gestures in letter-gesture set and waving-gesture set: (a) 6 kinds of gestures in letter-gesture set; (b) 6 kinds of gestures in waving-
gesture set.
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Figure 9: Results of using our method and Chen’s method to
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Figure 10: Results of using our method and Pan’s method to
recognize the waving-gesture dataset.
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recognition rate of only about 50.83% for 8 dynamic ges-
tures. Moreover, for different types of gestures, its recog-
nition rate fluctuates greatly. (e main reason for the low
recognition rate of the HMM-BPNNmethod for the gestures
in LM-Gesture3D is that the three types of 2D features
defined by the method are only suitable for representing
simple and highly differentiated gestures but cannot fully
represent complex and highly similar gestures, such as G5.

(e algorithm testing experiment uses the features de-
fined by our method to describe the gestures and analyze the
recognition rate of the HMM-BPNN method again. Table 6
shows the recognizing results of the experiment.

From Table 6, we can see that the HMM-BPNN
method has an average recognition rate of about 80.83%
for 8 dynamic gestures. (e recognition rate of the ex-
periment is 30% higher than that of the feature testing
experiment. Moreover, for different types of gestures, its
recognition rate fluctuates less. (e results show that the
paper’s features can more effectively represent complex
gestures in LM-Gesture3D than that of the HMM-BPNN
method.

For the same gesture samples and the same defined features,
the recognition rate of our method, shown in Table 3, is more
than 90%, which is about 10% higher than that of the HMM-
BPNN method. We think there are two main reasons for the
relatively low recognition rate of the HMM-BPNN method.
Firstly, the input of the BPNN classifier is decided by a max-
imum assessment of the probabilities of the trained HMM
models of four types of features, which does not consider the

interference between similar features. Secondly, the BP neural
network is prone to fall into local minima, which increases the
risk of misrecognition when different sample features have
significant similarities.

863 90 21 54 7
Gesture

86

88

90

92

94

Re
co

gn
iti

on
 ra

te
 (%

)

Figure 11: Recognition rate on nontrainer’s gestures in LM-Gesture3D.

Table 4: Confusion matrix of the recognition results.

Gesture samples
PPV

G1 G2 G3 G4 G5 G6 G7 G8

Recognition results

G1 140 1 3 5 2 2 1 1 0.90
G2 2 146 3 2 3 2 3 2 0.90
G3 1 2 138 3 3 2 1 1 0.91
G4 6 2 3 144 2 1 1 1 0.90
G5 1 1 1 1 143 1 1 0 0.96
G6 7 1 2 2 2 147 2 2 0.90
G7 1 5 3 1 3 3 150 3 0.89
G8 2 2 7 2 2 2 1 150 0.89

ACC 0.88 0.91 0.86 0.90 0.89 0.92 0.94 0.94 0.90

Table 5: Recognition rate of the HMM-BPNN method of the
feature test.

Gesture G1 G2 G3 G4 G5 G6 G7 G8 RR
G1 35 7 3 5 1 4 2 3 58.3
G2 6 34 4 4 2 3 4 3 56.7
G3 5 5 30 5 2 4 4 5 50.0
G4 4 5 6 31 1 4 4 5 51.7
G5 5 4 3 5 25 5 5 6 41.7
G6 5 4 5 4 4 30 4 4 50.0
G7 4 6 4 4 2 4 29 7 48.3
G8 5 5 3 4 2 5 6 30 50.0

Table 6: Recognition rate of the HMM-BPNN-based method of the
algorithm testing.

Gesture G1 G2 G3 G4 G5 G6 G7 G8 RR
G1 49 2 3 2 3 1 1 81.7
G2 3 48 1 1 2 3 2 80.0
G3 2 1 50 1 2 1 2 83.7
G4 2 2 3 48 1 2 2 80.0
G5 3 2 2 1 48 2 2 80.0
G6 4 2 1 1 50 2 1 83.3
G7 1 4 1 1 1 2 48 2 80.0
G8 2 2 3 2 1 3 47 78.3

12 Computational Intelligence and Neuroscience



6. Conclusion

In the paper, a fusion recognition method based on multiple
features and HMM for the dynamic gesture is proposed. We
consider both the change in handshape and moving trajectory
and build four sorts of hand features with the advantages of
being straightforward, simple, and rotation invariance, which
bring better operation naturalness and flexibility for the op-
erators. What is more, it offers a further expansion of more
kinds of complex dynamic gestures by using these features. For
each feature, we have built its corresponding HMM. In the
recognition stage, we innovatively present a weighted fusion
algorithm to calculate the occurrence probabilities and get the
final recognition result. In the above way, the result is not easily
affected by a particular feature.

(e experimental results show that the proposed method is
suitable for relatively simple dynamic gestures like letter ges-
tures and waving gestures. Still, it also has strong robustness for
complex dynamic gestures like LM-Gesture3D. (e average
recognition rate of the proposed method for LM-Gesture3D is
up to 90.6%. Besides, the average recognition rate for inexpe-
rienced participants is about 90%.(ese results demonstrate the
usability and feasibility of the proposed method.

Like other gesture recognition methods, the proposed
method inevitably has certain limitations, and a more in-
depth study needs to be carried out. Firstly, as we have
adopted four HMMs for each gesture recognition, the al-
gorithm’s efficiency remains to be raised. Secondly, we have
not yet done more research on the adaptive weight method
and their further impact on the recognition rate, which will
also be a future research direction.
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