
Research Article
An Empirical Investigation of Transfer Effects for
Reinforcement Learning

Jung-Sing Jwo,1,2 Ching-Sheng Lin ,1 Cheng-Hsiung Lee,1 and Ya-Ching Lo1

1Master Program of Digital Innovation, Tunghai University, Taichung 40704, Taiwan
2Department of Computer Science, Tunghai University, Taichung 40704, Taiwan

Correspondence should be addressed to Ching-Sheng Lin; cslin612@gmail.com

Received 9 September 2020; Revised 28 October 2020; Accepted 5 December 2020; Published 16 December 2020

Academic Editor: Wassim Ayadi

Copyright © 2020 Jung-Sing Jwo et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Previous studies have shown that training a reinforcement model for the sorting problem takes very long time, even for small sets
of data. To study whether transfer learning could improve the training process of reinforcement learning, we employ Q-learning as
the base of the reinforcement learning algorithm, apply the sorting problem as a case study, and assess the performance from two
aspects, the time expense and the brain capacity. We compare the total number of training steps between nontransfer and transfer
methods to study the efficiencies and evaluate their differences in brain capacity (i.e., the percentage of the updated Q-values in the
Q-table). According to our experimental results, the difference in the total number of training steps will become smaller when the
size of the numbers to be sorted increases. Our results also show that the brain capacities of transfer and nontransfer rein-
forcement learning will be similar when they both reach a similar training level.

1. Introduction

Reinforcement learning (RL) aims at learning policies to
map from states to actions for the purpose of maximizing the
expected accumulated reward and reaching the goal.
Compared with the supervised learning approaches where
the models are trained on the input set and the given output
set, the RL agent has to interact with the environment and
learn from those experiences through trial and error to yield
the optimal behaviour.

Mathematically, RL can be formulated as a Markov de-
cision process (MDP) which is a framework to model deci-
sion-making problems [1]. An MDP is represented by the
tuple <S, A, T, R> where S denotes the state space in the
environment and A is the action set to take in a given state.
Function T is defined as P(s′|st, na) which indicates the
probability of the next state s′ ∈ S at time step t+1 given the
current state s ∈ S and the action a ∈ A taken at time step t.
Function R is a reward scheme used to assign the score for the
action performed under the state s and is used as a guidance for
the agent to produce suitable behaviours.,en, the objective of
the RL agent is to learn a policy πθ(a|s) which tells the agent

what the best action a ∈ A to perform is while the envi-
ronment is in the state s ∈ S with the parameter θ. In general,
there are two main approaches to solving RL problems,
model-based and model-free learning. In the model-based
approaches, the goal is to learn the model of the environment
and obtain the optimal policy relying on the past transitions.
On the other hand, model-free approaches learn to directly
acquire the optimal policy by the trial-and-error interactions
without modelling the underlying environment. Model-based
approaches are often sample-efficient, but the requirement of
specifying the model of real-world tasks is often restrictive and
difficult to satisfy. ,erefore, model-free approach is com-
monly preferred over the model-based approach if it is not
hard to sample the trajectories [2, 3]. Q-learning [4] and
SARSA [5] are two well-known model-free RL algorithms
which fit the optimized policy by learning the action-value
(Q-value) function. Note that an action-value function is used
to express the expectation of the reward for each state-action
pair (s, a). In recent years, since the development of deep
learning methods has gained significant attention and
achieved innovations in many fields, it is common to adopt
deep learning methods for RL algorithms in order to boost the

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8873057, 10 pages
https://doi.org/10.1155/2020/8873057

https://orcid.org/0000-0002-6172-8201
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8873057

performance. A combination of the convolutional neural
network (CNN) [6] and Q-learning called deep Q-networks
(DQN) [7, 8] is proposed to handle large state-action space.
DQNs have been shown to reach at or even beyond
human-level performance on many games. An alternative
double estimatormethod, double Q-learning [9], is introduced
to reduce the overestimations of the action values in the
Q-learning algorithm. As double Q-learningwas proposed in a
tabular setting and DQN algorithm suffers from overesti-
mations, double DQN is used for large-scale function ap-
proximation and to reduce the overestimations by combining
double Q-learning and DQN [10–12].

RL algorithms usually require large amounts
of trial-and-error and many learning iterations to determine an
effective policy from very large-scale state-action space, making
them very time-consuming. Recently, there has been a strong
interest in the development of deep learning models with the
ability to transfer experiences across similar tasks. ,e two
representative types of methods are the transfer of trained
models and transfer of learned knowledge [13]. ,e first
methods transform the neural network layers from the pre-
trained model to the target model [14, 15] whereas the second
approaches aim at transferring learned knowledge from the
trained network to the target network [16, 17]. A Q-learning-
based approach has been applied for the sorting problem [18].
However, it takes large number of training steps to finish the
training process, even for small sets of data. Since transfer
learning has been widely adopted to speed up the training
process, this motivates us to devise a transfer scheme and
compare it with the nontransfer method in the training per-
formance. In this paper, we conduct a series of experiments
using the sorting problem as a case study. We transfer the
knowledge learned from the task n to the task n+1 where n is
the size of the numbers to be sorted and continuously use a
Q-learning-based method to train the model. ,e total number
of training steps and the size of the brain capacity, which denotes
the knowledge in the Q-table, are two metrics to measure the
impact of transfer learning techniques.

,e rest of this paper is organized as follows. Section 2
reviews the background and related work of this paper.
Section 3 describes our training strategies and detailed
methodology. Experimental setup and results are presented
and discussed in Section 4. In Section 5, we discuss con-
clusions and future work.

2. Background and Related Work

In this section, we first give an overview of Q-learning which
is the base RL algorithm in this paper. ,e application of RL
in the sorting problem is discussed as well.

Q-learning, a form of model-free method, is one of the
most known RL algorithms initially designed for the use of
Markov decision processes. It updates the Q-value with the
following rule:

Q st, at(􏼁⟵Q st, at(􏼁 + α rt + cmax
a

Q st+1, a(􏼁 − Q st, at(􏼁􏼒 􏼓,

(1)

where Q(st, at) is the action-value function to compute the
expected reward of a state-action pair at time step t, α is the
learning rate, c is the discount factor, and rt is the reward
obtained after selecting action at given state st. ,e max
operator from the update rule indicates that the agent
chooses the best action a by computing the maximum
Q-value for the next state st+1. ,e mechanism to exploit the
maximum Q-value while updating is called an off-policy
algorithm, i.e., the choice of taking action at and a does not
follow the same policy. On the contrary, the SARSA updates
the Q-value based on the policy being followed by the
following equation:

Q st, at(􏼁⟵Q st, at(􏼁 + α rt + c × Q st+1, a(􏼁 − Q st, at(􏼁(􏼁.

(2)

When the algorithm uses the same mechanism for the
behaviour policy (i.e., Q(st, at)) and the estimation policy
(i.e., Q(st+1, a)), it is called on-policy [19].

,e sorting problem is a quintessential computer science
task and has been applied to many fields since its emergence.
Based on the analysis of all comparison-based sorting al-
gorithms, the computation requires O (n log n) complexity.
A RL-based approach, which applies stability and resiliency
ideas from feedback controls, is proposed to overcome the
errors and early program termination limitations for the
traditional computing [20]. An empirical exploration
compares the RL model with two traditional sorting algo-
rithms and shows that the RL sorting model completes the
task with less array manipulations. In order to investigate the
effect of two different reward schemes, immediate reward
and pure delayed reward, a Q-learning algorithm is
implemented to compare the total number of training steps
and average number of sorting steps [18]. A case study of the
sorting problem is conducted and concludes that immediate
reward takes much less steps to finish the task.

3. Methodology and Learning Design

In this section, we describe important features in our pro-
posed methodology, which include training level and brain
capacity. We also discuss how we designed the RL algorithm
in order to formulate the sorting problem into RL settings.

3.1. RL-Based Setting for Sorting Problem. We model the
initial state s0 Step t, which consists of n elements, as the list
of numbers to be sorted, and hence, there will be n factorial
possible states denoted by Sn. For any state s at time, an
action a (i, j) is defined as the swap of values in position i and

position j. ,us, there will be C
n

2􏼠 􏼡 possible actions in the

action setAn. Once the action a(i, j) is chosen under state st,
the next state st+1 is determined by exchanging the element
in position i with the element in position j of the state st. For
example, assuming the initial state is s0 � [4, 5, 3, 2, 1] and
an action a(1, 4) is performed, this state-action pair will
result in the next state s1 � [2, 5, 3, 4, 1].

As suggested by the previous study [18] that immediate
reward performs better than pure delayed reward, we use

2 Computational Intelligence and Neuroscience

immediate reward scheme in this research. We give the
reward by considering whether the action actually improves
the number of elements in the correct position. A similarity
value is introduced to measure the similarity between the
current state st and the goal state Sgoal (i.e., the sorted list) as
follows:

sim st, Sgoal􏼐 􏼑 � 􏽘
n

i�1
Equal st[i], Sgoal[i]􏼐 􏼑, (3)

where Equal function will return one if two states have the
same value at position i and zero otherwise. We then
compute the difference of sim(st, Sgoal) and sim(st+1, Sgoal) to
assign the reward as follows:

Reward �

reward_better, sim(st+1, Sgoal)> sim(st, Sgoal),

reward_equal, sim(st+1, Sgoal) � sim(st, Sgoal),

reward_worse, sim(st+1, Sgoal)< sim(st, Sgoal).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

In this paper, reward_better is 1, reward_equal is 0, and
reward_worse is −1. For the aforementioned example, since
s0 � [4, 5, 3, 2, 1] will receive a similarity value of 1 and
s1 � [2, 5, 3, 4, 1] will receive a value of 2, the reward value
of reward_better will be given.

3.2. Learning Algorithm. ,e objective of the learning al-
gorithm is to sort a given example which consists of n
numbers for a series of episodes until the success rate reaches
a predefined threshold. Algorithm 1 (RL_Sort) represents
how we executed the model training on one training instance
based on the Q-learning algorithm. ,e algorithm gives a list
Straining and a Q-table as inputs and then produces a new
Q-table and the number of training steps as output. RL_Sort
begins with the initialization of upper_bound, train_steps,
and success_rate. ,e upper_bound is used to define the
maximum allowed number of swaps for sorting and we set
n+1 as the threshold. ,e variable train_steps is to store the
number of episodes spent for training. ,e variable suc-
cess_rate is the criterion to terminate the training process and
is set to 0.75 in our experiments. Sgoal is the correct sorting
result. ,e experimental parameters are as follows: α� 0.05,
c � 0.9, and ε� 0.85. In each episode from line 11 to line 31,
the model chooses an action a(i, j) given current state s based
on ε-greedy [21] and receives a new state s’ (lines 12∼13).
,ere are two conditions in which the episode will end. In one
condition, s′ is the Sgoal and a positive reward
(reward_win� 1) will be given (lines 16∼18). In the other
condition, the number of swapping times already exceeds
upper_bound and a negative reward (reward_lose� −1) will
be received. Since the first condition reaches a success state,
we will examine the success rate for the latest 100 episodes to
determine whether the training process should stop or a new
episode should begin. For the cases that the current episode
needs to continue (lines 23∼28), the Q-table is updated based
on the reward equation (4).

When the training task moves from the example of
sorting n numbers to n+ 1 numbers, values in Q-table are

usually set to zero or randomly initialized. In our transfer
setting, the knowledge learned from sorting n numbers is
migrated to solve the problem of sorting n+ 1 numbers. For
the Q-table obtained from sorting n numbers (denoted as

Q_source with size (n!) × C
n

2􏼠 􏼡), we expand its state

representation by appending a number n+ 1 at the end of
each state to fit in the Q-table representation for sorting n+ 1
numbers (denoted as Q_target with size

(n + 1)! × C
n + 1
2􏼠 􏼡). ,erefore, each state s in Q_source

will become s.append(n+ 1). We then are able to map the
Q-value of the state-action pair from Q_souce to Q_target.
In this way, as the number in position n+ 1 is already in the
correct position, we try to encourage themodel to exploit the
prior knowledge from Q_souce and avoid touching the
action related to the position n+ 1. For example, when n
equals 3 and one of the state is [1, 3, 2] with actions a(1, 2),
a(1, 3), and a(2, 3), we will transfer these 3 Q-values in
Q_source to Q_target where the corresponding state is [1, 3,
2, 4] with actions a(1, 2), a(1, 3), and a(2, 3). ,ose
nontransferable Q-values will be set to zero or randomly
initialized. Figure 1 demonstrates how we transfer a Q-table
from n� 3 to n� 4.

3.3. Performance Metrics. In this paper, we define three
performancemetrics which include training level, number of
training steps, and brain capacity.

Training level is a performance-oriented indicator to
measure how well the model can use the existing knowledge
to perform the task during training. After finishing a training
procedure of one instance for sorting n numbers, the model
is scheduled to sort n! tasks where each task is given by a
permutation of those n numbers. Subsequently, we compute
the average number of sorting steps for these n! tasks as the
model’s training level. Number of training steps, which is
denoted as train_steps in Algorithm 1, is the number of
episodes that the model spends on training an example. It is
an important factor to measure the effectiveness of the al-
gorithm. Brain capacity is concerned with the status of
Q-table and is an important measure to compare the
knowledge usage between nontransfer and transfer methods.
It is defined as the ratio of entries which have been updated
in a Q-table.

3.4. Experimental Setup andResults. In order to compare the
difference and efficacy between nontransfer and transfer
methods, a case study in the sorting problem is presented.
We illustrate a series of experiments for both nontransfer
and transfer RL to investigate the difference of training speed
and the contrast of knowledge requirement.

3.4.1. Experimental Setup. We design an experimental set-
ting to train the model to sort lists of n numbers where each
list is from a permutation of {1, 2, ..., n}. In order to provide
an equitable comparison, we run nontransfer and transfer

Computational Intelligence and Neuroscience 3

RL in parallel and propose an algorithm, which is presented
as pseudocode in Algorithm 2, to satisfy our needs.

,e input of Algorithm 2 consists of a list Straining
which is a permutation of {1, 2, ..., n} and a Q-table
(TRQn−1[Sn−1, An−1]) which is learned from sorting n − 1
numbers. A Q-table (NRQn[Sn, An]) of nontransfer RL is
initialized to zero for all Q-values and a Q-table
(TRQn[Sn, An]) of transfer RL is transferred from TRQn−1
[Sn−1, An−1] as the mechanism discussed in Section 3.
B. A variable upper_bound is used as one of the con-
straints for the training level. ,e input list Straining is given
to both Snt and Str as the initial sorting list for both
methods. ,en, the algorithm starts iteratively to solve the
sorting tasks. We will begin with the nontransfer RL. ,is
process consists of training and evaluation. In the training
part, we input the current Q-tables (NRQn[Sn, An]) and
the list Snt to Algorithm 1 to train the model (line 11). ,e
number of training steps returned from Algorithm 1 is
accumulated to the variable NonTrans_Tr_Steps (line 13).
For the evaluation part, the returned NRQn[Sn, An] of
Algorithm 1 is then used to sort n! lists from the

permutation of {1, 2, ..., n} and the average number of
sorting steps is model’s training level denoted as Avgnt.
We then select the list which takes the maximum number
of steps to sort as the new Snt (line 15). ,e same pro-
cedure is also applied for transfer RL as seen in lines 12,
14, and 16. ,e above process is repeated until two models
reach a similar training level (i.e., Avgnt and Avgtr are very
close or both of them are lower than upper_bound). ,is
restriction is to ensure that both two methods exhibit
comparable abilities to sort n! lists and affirm that it is fair
to conduct a further comparison of the total number of
training steps and the brain capacity.

3.4.2. Experimental Results. As an empirical study, we il-
lustrate our results for n equal to 5, 6, 7, and 8. In order to
produce a more fair view of the comparison, we repeat Al-
gorithm 2 for 30 episodes for each n. ,e total number of
training steps and the brain capacity are two perspectives to
measure the performance. ,e total number of training steps
for the nontransfer method is abbreviated to

input: Straining, Qn[Sn, An]
(1) initialize
(2) upper_bound� n+ 1
(3) train_steps� 0
(4) success_rate� 0.75
(5) Sgoal � [1, 2, ..., n]
(6) repeat
(7) end� FALSE
(8) swap_times� 0
(9) s� Straining
(10) current_rate� 0
(11) repeat
(12) Select an action a based on ε-greedy
(13) Perform the action a and observe s′ and the corresponding reward
(14) swap_times � swap_times + 1
(15) if (s′ is S_goal) then
(16) Qn[s, a]⟵ Qn [s, a] + α× (reward_win−Qn [s, a])
(17) end�TRUE
(18) Check the success rate for the latest 100 episodes and assign to current_rate
(19) elseif (swap_times>upper_bound) then
(20) Qn[s, a]⟵ Qn[s, a] + α × (reward_lose + c × maxa′Qn[s′, a′] − Qn[s, a]),

(21) end�TRUE
(22) else
(23) if (dist(s′, S_goal)> dist(s, S_goal))
(24) Qn[s, a]⟵ Qn[s, a] + α × (reward_better + c × maxa′Qn[s′, a′] − Qn[s, a]),

(25) elseif (dist(s′, S_goal)< dist(s, S_goal))
(26) Qn[s, a]⟵ Qn[s, a] + α × (reward_worse + c × maxa′Qn[s′, a′] − Qn[s, a]),

(27) else
(28) Qn[s, a]⟵Qn[s, a] + α × (reward_equal + c × maxa′Qn[s′, a′] − Qn[s, a]),

(29) s⟵ s′
(30) until end is TRUE
(31) train_steps� train_steps + 1
(32) until current_rate>� success_rate
(33) return Qn , train_steps

ALGORITHM 1: ,e Q-learning based algorithm for the sorting task. RL_Sort.

4 Computational Intelligence and Neuroscience

(1, 2) (1, 3) (2, 3) (1, 4) (2, 4) (3, 4)

{1, 2, 3, 4} 0 0 0

{1, 3, 2, 4} 0 0 0.05

{2, 1, 3, 4} 0.992 –0.272 0.331

{2, 3, 1, 4} 0.05 0.05 0.691

{3, 1, 2, 4} 0 0.265 0

{3, 2, 1, 4} –0.042 0 0

{1, 2, 4, 3}

{1, 3, 4, 2}

{1, 4, 2, 3}

{1, 4, 3, 2}

{2, 1, 4, 3}

{2, 3, 4, 1}

{2, 4, 1, 3}

{2, 4, 3, 1}

{3, 1, 4, 2}

{3, 2, 4, 1}

{3, 4, 1, 2}

{3, 4, 2, 1}

{4, 1, 2, 3}

{4, 1, 3, 2}

{4, 2, 1, 3}

{4, 2, 3, 1}

{4, 3, 1, 2}

{4, 3, 2, 1}

(1, 2) (1, 3) (2, 3)

{1, 2, 3, 4} 0 0 0

{1, 3, 2, 4} 0 0 0.05

{2, 1, 3, 4} 0.992 –0.272 0.331

{2, 3, 1, 4} 0.05 0.05 0.691

{3, 1, 2, 4} 0 0.265 0

{3, 2, 1, 4} –0.042 0 0

(1, 2) (1, 3) (2, 3)

{1, 2, 3} 0 0 0

{1, 3, 2} 0 0 0.05

{2, 1, 3} 0.992 –0.272 0.331

{2, 3, 1} 0.05 0.05 0.691

{3, 1, 2} 0 0.265 0

{3, 2, 1} –0.042 0 0

Append

Transfer

Figure 1: An illustration of transferring the Q-table from n� 3 to n� 4.

input: Straining, TRQn−1[Sn−1, An−1]
(1) initialize
(2) new NRQn[Sn, An]
(3) new TRQn[Sn, An]
(4) TRQn[Sn, An]⟵TRQn−1[Sn−1, An−1]
(5) upper_bound� n+ 1
(6) Assign Straining to snt and str
(7) finish� FALSE
(8) NonTrans_Tr_Steps� 0
(9) Trans_Tr_Steps� 0
(10) repeat
(11) NRQn[Sn, An], Stepsnt �RL_Sort(snt , NRQn[Sn, An])
(12) TRQn[Sn, An] , Stepstr �RL_Sort(str , TRQn[Sn, An])
(13) NonTrans_Tr_Steps�NonTrans_Tr_Steps + Stepsnt
(14) Trans_Tr_Steps�Trans_Tr_Steps + Stepstr
(15) Sort n! lists in Sn by NRQn, compute the average Avgnt and pick the list with max value as snt
(16) Sort n! lists in Sn by TRQn, compute the average Avgtr and pick the list with max value as str
(17) if (|Avgnt −Avgtr|/Avgtr<� 0.1) or (Avgnt<� upper_bound and Avgtr<� upper_bound)
(18) finish�TRUE
(19) until finish is TRUE

ALGORITHM 2: ,e algorithm for training the non-transfer and transfer RL methods.

Computational Intelligence and Neuroscience 5

Table 1: Detailed training results of nontransfer and transfer methods to solve sorting 5 numbers for 30 episodes.

n� 5
NonTrans_Tr_Steps Trans_Tr_Steps Ratio_Tr_Steps NonTrans_Br_Capacity Trans_Br_Capacity Ratio_Br_Capacity

0 167 20 8.35 0.1983 0.1500 1.32
1 215 94 2.29 0.1808 0.2342 0.77
2 964 365 2.64 0.2808 0.2142 1.31
3 207 42 4.93 0.2025 0.1533 1.32
4 94 120 0.78 0.1817 0.1717 1.06
5 189 110 1.72 0.1633 0.1825 0.89
6 361 22 16.41 0.2092 0.1783 1.17
7 146 22 6.64 0.1675 0.1642 1.02
8 94 335 0.28 0.1892 0.2083 0.91
9 382 118 3.24 0.2208 0.1742 1.27
10 230 118 1.95 0.1817 0.1850 0.98
11 78 32 2.44 0.1225 0.1775 0.69
12 276 48 5.75 0.1825 0.1517 1.20
13 130 60 2.17 0.2067 0.1525 1.36
14 320 64 5.00 0.2242 0.1658 1.35
15 241 96 2.51 0.1875 0.1883 1.00
16 286 38 7.53 0.2075 0.1633 1.27
17 246 128 1.92 0.2058 0.2042 1.01
18 140 114 1.23 0.1867 0.1567 1.19
19 249 46 5.41 0.3217 0.1575 2.04
20 130 532 0.24 0.1775 0.2183 0.81
21 154 10 15.40 0.0983 0.1000 0.98
22 10 36 0.28 0.0558 0.1042 0.54
23 456 175 2.61 0.2242 0.1842 1.22
24 101 12 8.42 0.0717 0.1175 0.61
25 400 84 4.76 0.1775 0.1183 1.50
26 117 109 1.07 0.0983 0.1283 0.77
27 241 113 2.13 0.1433 0.1633 0.88
28 184 50 3.68 0.2008 0.1858 1.08
29 102 56 1.82 0.1583 0.1617 0.98

Table 2: Detailed training results of nontransfer and transfer methods to solve sorting 6 numbers for 30 episodes.

n� 6
NonTrans_Tr_Steps Trans_Tr_Steps Ratio_Tr_Steps NonTrans_Br_Capacity Trans_Br_Capacity Ratio_Br_Capacity

0 936 417 2.24 0.0598 0.0603 0.99
1 1020 508 2.01 0.0878 0.0719 1.22
2 1203 684 1.76 0.1020 0.0725 1.41
3 1253 411 3.05 0.0801 0.0647 1.24
4 750 241 3.11 0.0620 0.0456 1.36
5 1446 1344 1.08 0.1035 0.1137 0.91
6 871 142 6.13 0.0612 0.0395 1.55
7 1386 476 2.91 0.0878 0.0650 1.35
8 972 565 1.72 0.0708 0.0717 0.99
9 1272 752 1.69 0.0874 0.0746 1.17
10 857 426 2.01 0.0697 0.0560 1.24
11 1175 3850 0.31 0.1052 0.1300 0.81
12 1199 563 2.13 0.0882 0.0673 1.31
13 945 543 1.74 0.0809 0.0710 1.14
14 1634 915 1.79 0.1110 0.0873 1.27
15 1281 944 1.36 0.0971 0.0956 1.02
16 970 628 1.54 0.0847 0.0780 1.09
17 1070 428 2.50 0.0719 0.0593 1.21
18 3918 4929 0.79 0.1569 0.1664 0.94
19 1578 955 1.65 0.1133 0.0908 1.25
20 857 203 4.22 0.0530 0.0437 1.21

6 Computational Intelligence and Neuroscience

NonTrans_Tr_Steps and Trans_Tr_Steps for the transfer
method. ,ese two variable names are used in Algorithm 2 as
well. Subsequently, we apply similar abbreviations to the brain
capacity and denote them by NonTrans_Br_Capacity and
Trans_Br_Capacity. NonTrans_Br_Capacity is calculated as
the ratio of Q-values which have been updated in the
NRQn[An, Sn] and Trans_Br_Capacity is the percentage of
updated Q-values in the TRQn[Sn, An]. ,e detailed results
are reported in Tables 1–4 for different n. Looking at the
comparison of the total number of training steps, we can see
that the values of NonTrans_Tr_Steps and Trans_Tr_Steps
increase significantly when n increases. It is worth noting that

some of these two values are less than 100 when n is 5.
,erefore, instead of using the latest 100 episodes to check the
success rate mentioned in Section 3. B, we opt for the latest 10
episodes to examine that. Regarding the comparison of the
brain capacity, the values of NonTrans_Br_Capacity and
Trans_Br_Capacity are generally smaller than 0.25 and their
values are almost less than 0.1 while n is greater than 6. ,is
implies that the knowledge requirement only occupies a small
portion of the Q-table in order to solve the sorting task.

For each episode, we also calculate the ratio of the total
number of training steps (Ratio_Tr_Steps) as the division of
NonTrans_Tr_Steps by Trans_Tr_Steps and the ratio of the

Table 2: Continued.

n� 6
NonTrans_Tr_Steps Trans_Tr_Steps Ratio_Tr_Steps NonTrans_Br_Capacity Trans_Br_Capacity Ratio_Br_Capacity

21 1461 1008 1.45 0.1050 0.0975 1.08
22 743 364 2.04 0.0639 0.0534 1.20
23 1299 633 2.05 0.0866 0.0734 1.18
24 1665 686 2.43 0.1037 0.0734 1.41
25 4582 1216 3.77 0.1469 0.1098 1.34
26 945 695 1.36 0.0768 0.0680 1.13
27 4021 1201 3.35 0.1384 0.1086 1.27
28 942 474 1.99 0.0737 0.0597 1.23
29 1453 1276 1.14 0.1109 0.1165 0.95

Table 3: Detailed training results of nontransfer and transfer methods to solve sorting 7 numbers for 30 episodes.

n� 7
NonTrans_Tr_Steps Trans_Tr_Steps Ratio_Tr_Steps NonTrans_Br_Capacity Trans_Br_Capacity Ratio_Br_Capacity

0 7444 3725 2.00 0.0575 0.0476 1.21
1 17430 10013 1.74 0.0895 0.0761 1.18
2 10969 3716 2.95 0.0605 0.0494 1.22
3 11175 2908 3.84 0.0541 0.0420 1.29
4 9032 2744 3.29 0.0514 0.0417 1.23
5 3097 731 4.24 0.0257 0.0233 1.10
6 16747 15702 1.07 0.0830 0.0868 0.96
7 6947 4555 1.53 0.0566 0.0524 1.08
8 5964 3726 1.60 0.0502 0.0488 1.03
9 4137 1214 3.41 0.0290 0.0273 1.06
10 11132 12738 0.87 0.0710 0.0782 0.91
11 6983 9039 0.77 0.0594 0.0660 0.90
12 7727 1751 4.41 0.0408 0.0316 1.29
13 12421 28476 0.44 0.0877 0.1083 0.81
14 14832 25429 0.58 0.0920 0.1187 0.77
15 12450 7392 1.68 0.0769 0.0689 1.12
16 10787 6533 1.65 0.0539 0.0529 1.02
17 8659 22808 0.38 0.1045 0.1001 1.04
18 7670 2634 2.91 0.0428 0.0387 1.10
19 8086 9071 0.89 0.0615 0.0659 0.93
20 9687 6631 1.46 0.0556 0.0553 1.00
21 2474 580 4.27 0.0314 0.0296 1.06
22 10906 15964 0.68 0.0664 0.0851 0.78
23 11889 5882 2.02 0.0587 0.0514 1.14
24 5962 4259 1.40 0.0478 0.0493 0.97
25 19346 13054 1.48 0.0886 0.0767 1.16
26 5705 3114 1.83 0.0468 0.0396 1.18
27 7431 12660 0.59 0.0642 0.0762 0.84
28 3096 927 3.34 0.0249 0.0246 1.01
29 4668 953 4.90 0.0337 0.0257 1.31

Computational Intelligence and Neuroscience 7

brain capacity (Ratio_Br_Capacity) as the division of
NonTrans_Br_Capacity by Trans_Br_Capacity. For the
value of Ratio_Tr_Steps, there are nine numbers greater than
or equal to 5.00 when n equals 5. But, as n increases, this
phenomenon does not appear and the transfer effects di-
minish. For the value of Ratio_Br_Capacity, the range is
much narrower and is largely concentrated between 0.75 and
1.25. As described in Algorithm 2, both nontransfer and
transfer methods are required to have very close training
levels in order to finish a training episode. Since close
training level means that two methods have similar abilities
and performance for sorting n! lists, this could explain why
the value of Ratio_Br_Capacity is around 1. In general,
transfer method exhibits better performance in terms of
training steps. However, in some cases, Ratio_Tr_Steps is
smaller than 1, which means nontransfer method takes less
steps to complete the training. Since both methods require
similar size of the brain capacity to sort n! lists, there may be
possibilities that the transfer model exploits the transferred
knowledge but does not explore enough to expand its
knowledge.,is will lead to take more training steps to finish
the training process.

To explore the distribution of the Ratio_Tr_Steps and
Ratio_Br_Capacity, boxplots are presented in Figures 2 and
3 to do the statistical analyses. A boxplot represents the
minimum, 25th percentiles, median, 75th percentiles, and

Table 4: Detailed training results of nontransfer and transfer methods to solve sorting 8 numbers for 30 episodes.

n� 8
NonTrans_Tr_Steps Trans_Tr_Steps Ratio_Tr_Steps NonTrans_Br_Capacity Trans_Br_Capacity Ratio_Br_Capacity

0 82101 92246 0.89 0.0624 0.0710 0.88
1 77386 83553 0.93 0.0606 0.0689 0.88
2 32674 17731 1.84 0.0358 0.0452 0.79
3 19818 17490 1.13 0.0340 0.0451 0.75
4 24449 11835 2.07 0.0336 0.0443 0.76
5 34761 27067 1.28 0.0399 0.0487 0.82
6 30299 12635 2.40 0.0348 0.0448 0.78
7 26920 14774 1.82 0.0351 0.0448 0.78
8 53885 44233 1.22 0.0479 0.0546 0.88
9 21150 6778 3.12 0.0293 0.0439 0.67
10 56551 73505 0.77 0.0533 0.0650 0.82
11 47152 43085 1.09 0.0477 0.0544 0.88
12 57590 51508 1.12 0.0505 0.0569 0.89
13 21072 9521 2.21 0.0332 0.0457 0.73
14 57659 36219 1.59 0.0445 0.0500 0.89
15 64347 41492 1.55 0.0523 0.0546 0.96
16 31041 15146 2.05 0.0356 0.0443 0.80
17 72028 72386 1.00 0.0594 0.0678 0.88
18 42305 9869 4.29 0.0393 0.0441 0.89
19 29735 20833 1.43 0.0353 0.0468 0.75
20 50376 46719 1.08 0.0485 0.0559 0.87
21 29481 11004 2.68 0.0452 0.0439 1.03
22 37180 32229 1.15 0.0415 0.0500 0.83
23 42596 25663 1.66 0.0400 0.0473 0.85
24 30466 14245 2.14 0.0337 0.0456 0.74
25 62672 60769 1.03 0.0515 0.0593 0.87
26 57160 55132 1.04 0.0520 0.0538 0.97
27 27488 12747 2.16 0.0466 0.0447 1.04
28 28282 19243 1.47 0.0375 0.0410 0.91
29 34866 26506 1.32 0.0435 0.0477 0.91

n = 5 n = 6 n = 7 n = 8
n

16
14
12
10

8
6
4
2
0

Ra
tio

_T
r_

St
ep

s

Figure 2: ,e boxplots of Ratio_Tr_Steps for different n.

n = 5 n = 6 n = 7 n = 8
n

1.6
1.8
2.0

1.4
1.2
1.0
0.8
0.6

Ra
tio

_B
r_

Ca
pa

ci
ty

Figure 3: ,e boxplots of Ratio_Br_Capacity for different n.

8 Computational Intelligence and Neuroscience

maximum of the given dataset. In Figure 2, we observe that
the medians of the Ratio_Tr_Steps, which are the red lines
inside the box, gradually decrease when n increases. ,is is
in accordance with our previous observation that the
growth of n may lower the transfer effects. In Figure 3, the
medians of the Ratio_Br_Capacity all occur around 1.00
mostly aligning with our previous conjecture. In addition
to the statistics in boxplots, we also compute the averages of
Ratio_Tr_Steps and Ratio_Br_Capacity in Table 5. ,e
average performance shows very similar trends as the
boxplots.

4. Conclusions

It is reported from prior research that the Q-learning-based
approach for the sorting problem requires a large number of
training steps. Since the transfer learning method is able to
share the knowledge learned from the source domains with
the target domain, we devised a transfer scheme to inves-
tigate the time cost and knowledge usage issues between
nontransfer and transfer models. ,e Q-table obtained from
the prior task is served as the knowledge source to be
transferred to the next task. We chose the sorting problem as
our case study to analyse two important performance
metrics, number of training steps and brain capacity. As a
result of the experiment, the brain capacity for two models
will be similar after reaching a similar training level. ,e
difference of the total number of training steps between two
models will be significant when n is smaller. However, as n
increases, the proportion of the transferred knowledge will
be smaller and the difference will become less pronounced,
making the transfer effect insignificant.

As shown in Table 4, the maximum number of total
training steps is close to 100,000 while n equals 8. It would be
necessary to enable faster learning in order to handle larger
n. Future work will therefore be concerned with the re-
duction of the state space. State abstraction [22, 23] with the
ability to leverage the knowledge learned from prior expe-
riences is worth the effort to improve the scalability of the
current approach. Another area of future work is to extend
the current tabular representation approach to the deep
learning-based methods in order to improve the learning
stability and computational efficiency.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,e authors are grateful to Timothy Kitterman for helpful
discussions.

References

[1] R. Li, Z. Zhao, Q. Sun et al., “Deep reinforcement learning for
resource management in network slicing,” IEEE Access, vol. 6,
pp. 74429–74441, 2018.

[2] S. Tschiatschek, K. Arulkumaran, J. Stühmer, and K. Hofmann,
“Variational inference for data-efficient model learning in
pomdps,” 2018, https://arxiv.org/pdf/1805.09281.pdf.

[3] P. Malekzadeh, M. Salimibeni, A. Mohammadi, A. Assa, and
K. N. Plataniotis, “MM-KTD: multiple model kalman tem-
poral differences for reinforcement learning,” IEEE Access,
vol. 8, pp. 128716–128729, 2020.

[4] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[5] G. A. Rummery and M. Niranjan, On-Line Q-Learning Using
Connectionist Systems, Department of Engineering, University of
Cambridge, England, UK, 1994, https://www.researchgate.net/
profile/Mahesan_Niranjan/publication/2500611_On-Line_
Q-Learning_Using_Connectionist_Systems/links/5438d5d
b0cf204cab1d6db0f/On-Line-Q-Learning-Using-Connectionist-
Systems.pdf.

[6] Y. Kim, “Convolutional neural networks for sentence clas-
sification,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pp. 1746–1751, Doha, Qatar, October 2014.

[7] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[8] J. Farebrother, M. C. Machado, and M. Bowling, “General-
ization and regularization in DQN,” 2018, https://arxiv.org/
pdf/1810.00123.pdf.

[9] H. V. Hasselt, “Double Q-learning,” in Advances in Neural
Information Processing Systems, pp. 2613–2621,Massachusetts
Institute of Technology Press, Cambridge, MA, USA, 2010,
http://papers.nips.cc/paper/3964-double-q-learning.pdf.

[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” in Proceedings of the
7irtieth AAAI Conference on Artificial Intelligence, Phoenix,
AZ, USA, 2016, March, https://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/download/12389/11847.

[11] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li,
“A double deep Q-learning model for energy-efficient edge
scheduling,” IEEE Transactions on Services Computing, vol. 12,
no. 5, pp. 739–749, 2019.

[12] Y. Zhang, P. Sun, Y. Yin, L. Lin, and X. Wang, “Human-like
autonomous vehicle speed control by deep reinforcement
learning with double Q-learning,” in Proceedings of the 2018
IEEE Intelligent Vehicles Symposium (IV), pp. 1251–1256,
Changshu, China, June 2018.

[13] Y. Keneshloo, N. Ramakrishnan, and C. K. Reddy, “Deep
transfer reinforcement learning for text summarization,” in
Proceedings of the 2019 SIAM International Conference on
Data Mining, pp. 675–683, Calgary, Canada, May 2019.

[14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?” in Ad-
vances in Neural Information Processing Systems,
pp. 3320–3328, MIT Press, Cambridge, MA, USA, 2014,
http://papers.nips.cc/paper/5347-how-transferable-are-features-
in-deep-neural-networks.pdf.

Table 5: ,e averages of Ratio_Tr_Steps and Ratio_Br_Capacity
for different n.

Average item n� 5 n� 6 n� 7 n� 8
Ratio_Tr_Steps 4.12 2.26 2.07 1.65
Ratio_Br_Capacity 1.08 1.18 1.06 0.85

Computational Intelligence and Neuroscience 9

[15] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the NAACL-HLT, Minne-
apolis, MN, USA, January 2019.

[16] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks
for few-shot learning,” in Advances in Neural Information
Processing Systems, pp. 4077–4087, MIT Press, Cambridge,
MA, USA, 2017, http://papers.nips.cc/paper/6996-prototypi
cal-networks-for-few-shot-learning.pdf.

[17] K. Fu, T. Zhang, Y. Zhang et al., “Meta-SSD: towards fast
adaptation for few-shot object detection with meta-learning,”
IEEE Access, vol. 7, pp. 77597–77606, 2019.

[18] C. Lin, J. Jwo, C. Lee, and Y. Lo, “Empirical explorations of
strategic reinforcement learning: a case study in the sorting
problem,” Proceedings of the Estonian Academy of Sciences,
vol. 69, no. 3, pp. 186–196, 2020.

[19] H. Van Seijen, H. Van Hasselt, S. Whiteson, and
M. Wiering, “A theoretical and empirical analysis of ex-
pected Sarsa,” in Proceedings of the 2009 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement
Learning, pp. 177–184, Nashville, TN, USA, March 2009.

[20] A. Faust, J. B. Aimone, C. D. James, and L. Tapia, “Resilient
computing with reinforcement learning on a dynamical
system: case study in sorting,” in Proceedings of the 2018 IEEE
Conference on Decision and Control (CDC), pp. 5999–6006,
Miami Beach, FL, USA, December 2018.

[21] E. Rodrigues Gomes and R. Kowalczyk, “Dynamic analysis
of multiagent Q-learning with ε-greedy exploration,” in
Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 369–376, Montreal, Canada, June
2009.

[22] D. Abel, D. Hershkowitz, and M. Littman, “Near optimal
behavior via approximate state abstraction,” in Proceedings of
the International Conference on Machine Learning,
pp. 2915–2923, June 2016, http://proceedings.mlr.press/v48/
abel16.pdf.

[23] D. Abel, D. Arumugam, L. Lehnert, and M. Littman, “State
abstractions for lifelong reinforcement learning,” in Proceedings
of the International Conference on Machine Learning, pp. 10–19,
July 2018, http://proceedings.mlr.press/v80/abel18a/abel18a.pdf.

10 Computational Intelligence and Neuroscience

