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Obtaining a valid facial expression recognition (FER) method is still a research hotspot in the artificial intelligence field. In this
paper, we propose a multiparameter fusion feature space and decision voting-based classification for facial expression recognition.
First, the parameter of the fusion feature space is determined according to the cross-validation recognition accuracy of the
Multiscale Block Local Binary Pattern Uniform Histogram (MB-LBPUH) descriptor filtering over the training samples. According
to the parameters, we build various fusion feature spaces by employing multiclass linear discriminant analysis (LDA). In these
spaces, fusion features composed of MB-LBPUH and Histogram of Oriented Gradient (HOG) features are used to represent
different facial expressions. Finally, to resolve the inconvenient classifiable pattern problem caused by similar expression classes, a
nearest neighbor-based decision voting strategy is designed to predict the classification results. In experiments with the JAFFE,

CK+, and TFEID datasets, the proposed model clearly outperformed existing algorithms.

1. Introduction

Facial expressions, as a form of nonverbal communication,
convey social information among humans and are regarded
as an emotional measurement that can be used to under-
stand human actions and behaviors [1]. In the computer
vision field, the recognition of static-based and dynamic-
based facial expressions is widely used in various applica-
tions, such as e-learning [2], driver drowsiness estimation
[3], and pain assessment [4].

Generally, facial expression recognition (FER) has four
crucial steps: face detection, face image preprocessing, facial
feature extraction, and classification [5]. The facial expres-
sion representation depends on facial muscle movements.
For example, static facial expression images intuitively ex-
hibit deformations of facial components and skin appear-
ance texture changes of expressions. Holistic feature
extraction methods are mainly categorized as geometric-
based and subspace learning-based feature extraction. The

well-known Facial Action Coding System (FACS) was first
proposed by Ekman and Friesen [6]. FACS is a facial ex-
pression coding system that postulates six primary emotions
that are composed of a set of facial muscle action units (AUs).
In addition, each expression is represented by a particular
combination of specific AUs. However, the unit modules are
complex and the facial expression features are selected by
manual intervention to some extent. Hence, automatic feature
point location and feature extraction methods have followed.
The Active Shape Model (ASM) with local texture infor-
mation [7] and the Active Appearance Model (AAM) [8] with
global texture information are both geometric-based models.
In general, the initialization of facial landmarks depends on
manual annotation, which may lead to expensive labor costs.
The state-of-the-art AAM and its derived algorithms for FER
focus on how to locate the fiducial points at the appropriate
facial positions [9], which need to accurately extract pa-
rameter features, i.e., appearance parameters, shape param-
eters, and texture parameters [10].
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Many research works focus on combination methods to
achieve a high recognition rate. Holistic feature subspace
methods mainly include principal component analysis
(PCA) [11], Fisher linear discriminant analysis (FLDA) [12],
manifold learning [13], and graph embedding [14], which
are commonly combined with texture feature extraction
methods, i.e., the Gabor wavelet [15], LBP [16], Haar-like
[17], and HOG [18] features, for FER. Piparsaniyan et al. [19]
used PCA to reduce the dimension of Gabor features. Han
and Ming [20] employed a combined strategy of LBP feature
extraction and Supervised Locality Preserving Projection
(SLPP) dimension reduction for facial expression recogni-
tion. In addition, Sun and Yu [21] combined Gabor features
and LBP features to represent facial expression features.

To elaborately extract facial expression features, some
studies have divided facial images into nonoverlapping
blocks [20-22]. Because expression features reflect the
changes of the direction, edge, and intensity of the texture of
an image, extracting features in regions of interest (ROIs) is a
common practice [23-25]. Most ROIs are eye, mouth, and
eyebrow regions, which are fixed in a set of sizes. However,
the features extracted from these ROIs are inaccurate in
general due to image misalignment. Moreover, the ex-
pression representations are variable according to the af-
fections of different cultures; therefore, these features in
fixed sizes of ROIs cannot well represent the intensity of
expression changes. Furthermore, local texture feature ex-
traction from these ROIs would lose some important in-
formation of the expressions.

As a global structural face descriptor, the MB-LBP de-
scriptor was first proposed to describe face changes for face
detection [26]. Hence, MB-LBP feature extraction is widely
used in many face recognition applications [27-29].
Martinez-Diaz et al. [29] proposed MB-LBP features-based
dissimilarity representations for face detection in which MB-
LBP was employed to compare the average grayscale of the
central rectangle with the average grayscale of a 3x3
neighborhood. Girish et al. [30] extracted MB-LBP features
with different operator sizes from several blocks divided by
user-defined sizes, and then, the combined MB-LBP his-
tograms of blocks were used as features. Thus, MB-LBP is
often utilized as a description of a face image to extract
feature information and analyze the effect of the size of a
neighborhood window [31].

Although the MB-LBP model with some special pa-
rameters can describe face changes, it may lose the details of
local texture changes. An HOG descriptor [32] can be
employed to extract the local texture features of facial
components. It has been demonstrated that the HOG de-
scriptor has a unique superior performance at representing
appearances and shapes of expressions compared to other
descriptors. To extract both the structural and local texture
features of facial expressions to achieve high accuracy and
stable robustness of FER, we propose a novel multiparameter
feature space model in which MB-LBPUH and HOG fea-
tures are fused together to represent facial expression fea-
tures. Specifically, we design a nearest neighbor-based
decision voting strategy for prediction. The new voting
strategy increases the recognition accuracy and resolves the
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inconvenient classifiable pattern problem caused by similar
expression classes.

In this paper, the proposed model is composed of
multiparameter feature spaces. In each space, the various
facial expressions are represented by fused MB-LBPUH and
HOG features. From a decision perspective, our model
provides a nearest neighbor-based decision voting strategy.
The major contributions of this paper are as follows:

(1) MB-LBPUH scale parameters of different expres-
sions are selected based on the cross-validation
recognition accuracies, which enhance the global
feature discrimination of the expression structure.

(2) Multiparameter facial expression feature spaces, in
which a query sample can find its best match in
different spaces, are built using LDA according to the
various selected MB-LBPUH parameters.

(3) A nearest neighbor-based decision voting strategy is
designed to predict the classification results. The
integrated predictive model can not only increase the
recognition accuracy but also resolve the inconve-
nient classifiable pattern problem caused by similar
expression classes.

The remainder of this paper is organized as follows.
Section 2 introduces related work on feature extraction and
identification of FER. Section 3 introduces the multipa-
rameter feature space model and decision voting strategy.
Section 4 analyzes and discusses the experimental results.
Section 5 concludes the paper.

2. Related Work

FER has received wide attention because of the importance
of human emotion in artificial intelligence. Several studies
have been conducted on the topic of facial expression
recognition. According to state-of-the-art FER research,
they are classified as global feature extraction, local ap-
pearance feature extraction, fusion feature extraction, and
classification.

(i) Global Feature Extraction. Global feature extraction
has two major categories, namely, geometric feature
extraction and geometric combined with appear-
ance feature extraction. These types of methods
describe face deformations intuitively and have low
computational complexity. However, in these
methods, it is difficult to mark the points of facial
expression shapes. To address this issue, Sadeghi
etal. [33] used a fixed geometric model to normalize
facial images and extracted LBP features from
mouth and eye patches to obtain local texture
features. Cheon and Kim [34] extracted different
AAM features between an input face image and a
neutral expression face image to effectively repre-
sent the variations of expressions. Ren and Huang
[35] utilized multipose AAM templates to estimate
the poses and locate the feature points of facial
expression images. To further describe the feature
points, they [35] combined AAM with the SIFT
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descriptor to represent a hybrid facial expression
feature.

(ii) Local Appearance Feature Extraction. Local ap-
pearance feature extraction mainly includes histo-
gram-based feature extraction and wavelet-based
feature extraction. The well-known LBP and its
variants are demonstrated to be efficient texture
feature descriptors [16]. In addition, local direc-
tional patterns (LDP) [36] and local transitional
patterns (LTP) [37] are also widely employed in
FER. Polytypic multiblock local binary patterns (P-
MLBPs) are proposed in [38] for automatic 3D FER.
Wang et al. [39] adopted the wavelet coefficients of
the discrete wavelet as facial expression features.
Zhang et al. [40] utilized biorthogonal wavelet
entropy to extract multiscale features and employed
a stratified cross-validation model to obtain a good
classification performance. However, histogram-
based methods lose the structural information and
the relationships of pixels and only reflect the sta-
tistical information of features. In addition, while
wavelet-based methods can process images without
any information loss, the computational complexity
is high.

(iii) Fusion Feature Extraction. A fusion feature includes
more useful information than a single feature. The
fused features are complementary, and the new
fusion feature has better discrimination. Tariq and
Huang [41] implemented different combination
strategies to demonstrate the performance of vari-
ous features, such as LBP, DCT, LPQ, and SIFT,
combined with classifiers. The best classification
result was obtained by all the classifiers with the four
features fused together. To solve the lack of ex-
pression shape and contour information, Wang
et al. [42] fused the weber local descriptor (WLD)
and HOG features to form a new feature repre-
sentation. To obtain a hybrid feature, Luo et al. [43]
proposed a new feature combination of a PCA
feature with an LBP feature, which included not
only global image information but also local feature
information. Sun et al. [44] proposed a hierarchical
classification framework in which a fusion strategy
that consisted of feature-level and decision-level
fusion was applied to extract multimodal features.

In addition, the emergence of a model-based fusion
method, such as Canonical Correlation Analysis
(CCA), improves the correlation between two fea-
tures. Turan and Lam [45] employed the CCA al-
gorithm to fuse the LPQ and PHOG features
extracted from eyes and mouth window regions to
maximize the correlation of the two features. El-
Shazly et al. [46] employed three common trans-
formations (FFT, DCT, and DWT) as feature de-
scriptors and fused them wusing CCA. The
experimental results showed that the performance
of the fusion features is better than that of one kind
of transform domain feature.

(iv) Classification. To identify the category of facial
expressions, various classification approaches have
appeared, such as the Nearest Neighbors (NN) [47],
k-Nearest Neighbors (KNN) [48], Sparse Repre-
sentation-based Classification (SRC) [49], Support
Vector Machine (SVM), and random forest and
decision tree [50]. Decision level fusion integrates
all kinds of measurement information to achieve a
more accurate classification accuracy [51]. Yeom
[52] stated that decision-level fusion is a high-level
data fusion technique that includes max, averaging,
and majority voting fusion rules. In addition, some
decision-level fusion methods, such as Bayesian
estimation and D-S evidential reasoning, are often
implemented for classification [53].

Although the recognition rate of FER has led to great
achievements, the discussion between hand-crafted features
and deep features is still ongoing. The convolutional neural
network (CNN) is widely used in FER tasks due to its au-
tomatic understanding. A significant peculiarity of the CNN
is that it pays more attention to the local features of the target
with a deep network. Yang et al. [54] proposed a double-
channel CNN model to extract expression-related local
features from LBP facial images and grayscale images. Xie
and Hu [55] designed two individual CNN branches. One
branch extracts holistic features from a whole image, and the
other branch extracts local features from overlapped image
patches.

To learn more particular features for facial expression
representation, a deep architecture named the AU-inspired
Deep Network (AUDN) [56], which is based on multiple
facial action units (AUs), is designed to learn better features
specific to expression representation. Kim et al. [57] pro-
posed a hierarchical deep neural network in which two
features are fused together to form a new feature repre-
sentation. The new feature specifically interpreted as one
feature is first extracted from the appearance feature-based
network and then combined with geometric features in the
hierarchical structure. In addition, to achieve a high rec-
ognition accuracy, feature learning [58] and different joint
representations of features [59] are also used in their own
network model. However, deep learning needs a number of
samples for training to avoid overfitting. Although some
deep learning approaches for FER fuse some low-level
features to represent expressions, these features are dis-
tributed in various network channels, which increases the
complexity of the model. It is particularly difficult to de-
termine what the prediction relies on and which features
play important roles. Furthermore, a network model has
many parameters that need to be fine-tuned to achieve a
satisfactory recognition accuracy. Our proposed model has a
simple architecture with a low computation complexity, and
its features are explainable.

3. Methods

3.1. General Framework. Feature level fusion is a feature
recombination according to the properties of the extracted



features for improving recognition accuracy. The framework
of the proposed model is shown in Figure 1. First, an MB-
LBPUH feature and an HOG feature are extracted from
training samples. In the MB-LBPUH feature extraction, the
MB-LBPUH parameters are selected to build the feature
space. Then, in the parameter feature spaces, a new repre-
sentation of a facial expression is composed of MB-LBPUH
and HOG features, namely, a fusion feature. Accordingly, we
use LDA to reduce the dimension of the fusion feature.
Finally, NN-based decision voting is applied to these feature
spaces for prediction.

In the next two sections, we provide details of MB-
LBPUH and the HOG feature extraction algorithm,
respectively.

3.2. Facial Expression Feature Extraction

3.21. MB-LBPUH Feature Extraction. Regardless of
whether LBP or its improved operator is used, the main
problem is that their operating space support is very small,
which makes the binary mode between two pixels more
vulnerable to the interference of subregion noise. In addi-
tion, the traditional LBP compares the eight neighboring
pixels around a center pixel and encodes the binary values
according to the comparison result. The 3 x 3 neighbor
pixels are fixed; therefore, they do not capture the large-scale
structural features of facial expressions. However, MB-LBP
overcomes the shortcoming of the traditional LBP. MB-LBP
utilizes the average of changeable subregion blocks to replace
pixels, which has several advantages: (1) improving the
robustness to noise, (2) encoding the image macrostructure
and reflecting the image texture microstructure, and (3)
operating the whole image and retaining the holistic feature.

In the original LBP, the common operator compares the
center pixel with its 3 x 3 neighborhood pixels. However, the
MB-LBP algorithm compares the average grayscale value of
a center block with the average grayscale values of its
neighborhood blocks (illustrated in Figure 2). The whole
compared regions consist of eight neighboring blocks and
one center block. Each subregion is a square block including
(2n+ 1) x (2n+ 1) pixels, where n is an integer. Through
comparison, a set of binary values are encoded by MB-LBP.
Furthermore, if the average value of one neighborhood block
is less than the average of the center block, then the binary
value of the compared neighborhood block is encoded as 0;
otherwise, the binary value is set as 1. Consequently, the
method has a string of binary values of compared blocks in
the clockwise direction. A decimal value corresponding to
the string of binary values that represents the given pixels is
then calculated.

In addition, the scale parameter s = 2n+ 1 of the MB-
LBP descriptor is important for describing texture changes,
especially deformable textures. Once an appropriate scale
parameter is determined, the extracted MB-LBP features can
reflect some unique properties. When using the MB-LBP
descriptor to filter a facial image, the MB-LBP features reflect
not only the macrostructure of a facial texture but also the
microstructure of the deformable texture of the expression.
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Therefore, the MB-LBP descriptor provides a more complete
structural facial expression representation than the original
LBP descriptor.

Briefly, the MB-LBP is defined as follows:

7
MB_LBPg, . = > #(Griockp = Folock-c)» (1)
p=0

where vlock—p = 1/s? Zfil gbloq(_},(i) denotes the average
pixel value of a  neighborhood block and
Tblockee = 1/$* Y5, Gpiockc (i) represents the average pixel
value of a center block. In equation (1), the function ¢ (-) is
defined as

L Golock—p 2 Gblock-
_ _ p ock—c,
t(gblock—p - gblock—c) = ‘{ 0, Fus < T (2)
> ock-p ock—c.

In Figure 3, the influence of the scale parameter s is great,
and the macrostructure and microstructure of the expres-
sion texture are exhibited well. In Figures 3(a)-3(c), as the
size of parameter s increases, the noise in the regions filtered
by MB-LBP decreases, which represents the expression
structure more robustly. Therefore, if parameter s is selected
properly, then it contributes to reducing the extrapersonal
differences, while at the same time, it highlights the rep-
resentation of expression features.

However, the MB-LBP image has the form of a two-
dimensional matrix. When transforming a 2D MB-LBP
matrix into a one-dimension vector, high-dimensional data
will be produced. To address the dimension of the MB-LBP
matrix and retain the all the information of the structure, we
normalize the MB-LBP matrix to a uniform histogram
pattern, which fixes the dimension into a relatively low-
dimension pattern while not losing any information.

The uniform histogram pattern of the MB-LBP is defined
by the following steps. First, according to the grayscale level
of the pixels of an image, an MB-LBP feature image is
partitioned into 256 bins from 0 to 255. Second, the number
of MB-LBP image pixels is counted according to grayscale
level in increasing order. Then, these statistical numbers of
the MB-LBP pixels are put into bins from 0 to 255. Finally,
when given an m x n MB-LBP feature image, the MB-LBP
uniform histogram is described as follows:

{f(x,y)zpi, i=0,1,2,...,255,

his[-] = Zf(x, y), x€R", yeR" 3

where f(x,y) is the pixel value corresponding to each
grayscale level and his[-] is the uniform histogram feature
number. The MB-LBPUH is normalized as follows:

his[:]

mxmn

MBhist = (4)

3.2.2. HOG Feature Extraction. The HOG representation
was first proposed for human detection [18]. This repre-
sentation is based on the statistical distribution of the local
intensity gradients or edge directions that characterize the
appearance and shape of a local object well. The HOG
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FiGure 1: Framework of the proposed method.

descriptor has some accumulation operations. The main
operation is accumulating a local histogram of gradient
directions or edge orientations after dividing an image into a
set of small spatial regions named cells. The other operation
is accumulating a measure of the local histogram over
somewhat larger spatial regions named blocks. A block is
composed of cells, and the accumulated results are used to
normalize all the cells in the block. Figure 4 shows an HOG
facial expression image that exhibits a local texture ap-
pearance and shape.

As previously mentioned in Section 3.2.1, facial ex-
pression peculiarities can be characterized well once the
parameters of MB-LBPUH are appropriately selected. The

selection of the MB-LBPUH scale parameter is based on the
cross-validation recognition accuracy of MB-LBPUH fil-
tering over training samples. In the context of the selected
parameters, we build multiparameter LDA fusion feature
spaces in which an MB-LBPUH feature and an HOG feature
are concatenated to form a fusion feature. Figure 5 con-
structs three LDA fusion feature spaces with the selected
parameter s=5, 7, and 9 according to the three best cross-
validation recognition accuracies of the JAFFE dataset.

3.3. Decision Voting Strategy for Prediction. Majority voting
is a simple and effective decision-level data fusion method.
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Majority voting utilizes multiple classifiers to identify the
category of a test sample and then selects the most votes of a
particular class as a prediction output. However, employing
multiple classifiers for decision fusion increases the com-
plexity of the model, especially when conducting classifi-
cation in multiple spaces. In our model, we propose a simple
decision voting strategy in multiple spaces to predict the
categories of facial expressions. As previously mentioned,
decision voting is applied to build spaces according to the
MB-LBPUH parameters. If the votes of a particular class are
the most overall spaces, then the class is identified as a

predicted result. The Nearest Neighbors (NN) classifier is a
particular case of the k-Nearest Neighbors (KNN) classifier.
The essential principle of the NN classifier is calculating the
distances between a new sample and known class samples
and predicting the label based on the nearest distance.

To maintain the robustness of the NN classification and
eliminate the influence of abnormal data, we use the distance
between a new sample and the center point of each class as
the measure. In other words, when a test sample is input, if it
has the nearest distance to the center of a certain class, then it
will belong to the class. Therefore, the NN-based decision
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F1GURE 4: HOG feature image. (a) Facial expression image. (b) HOG feature visualisation.

voting rule of our model is the following: a test sample is first
categorized by the NN classifier in multiparameter LDA
feature spaces, and then voting is conducted in each space. If
more than half of the votes predict that the sample belongs to
the same class, then the sample is identified as the correct
one.

3.4. Computational Complexity. The proposed feature fusion
model mainly includes three algorithms, i.e., the MB-
LBPUH and HOG feature extraction algorithms and the
LDA dimension reduction algorithm. Subsequently, analysis
of the computational costs of these algorithms is performed
as follows.

The main idea of the MB-LBPUH algorithm is to
compare the average grayscale values of neighboring blocks
to the average grayscale values of the center block. Therefore,
when given an m x n image, the computational complexity is
O(mn) +O(1). In HOG feature extraction, the major
computation is calculating the gradient intensity and di-
rection over the pixels of a whole image region with the
computational cost O (mn). If the size of the HOG cell and
block is defined as ¢ x ¢ and b x b, respectively, then the
computational cost of calculating the histogram of cells is
O(c?) and that of the histograms of cells in blocks is O (b?).
The total computational cost of the HOG algorithm is
O (mn) + O(c)* + O(b)? for b < ¢ < min (m, n) in practice. In
addition, the calculation cost of LDA is O (C) with C classes.

4. Experiments and Discussion

4.1. Datasets and Image Reprocessing. In the experiments, we
use three mainstream databases to evaluate the performance
of the proposed model. The Japanese Female Facial Ex-
pression (JAFFE) database contains 10 female subjects in-
cluding 6 basic facial expressions: anger (AN), disgust (DI),
fear (FE), happiness (HA), sadness (SA), and surprise (SU).
There are three or four images in each class, and the total
number of sample images is 183. The extended Cohn-

Kanade (CK+) database [60] includes 539 image sequences
from 123 subjects. These sequences describe the changes of
facial expressions from neutral to peak, and the last frame is
commonly taken as an expression image used as a sample
image. In the CK+ database, seven basic facial expressions
are utilized for training and testing, including anger, con-
tempt (CO), disgust, fear, happiness, sadness, and surprise,
with a total of 327 images. The TFEID dataset [61] is
composed of 7200 stimuli captured from 40 models aged
between 18 and 30 years. This dataset contains seven types of
facial expressions except for neutral expressions. We list the
number of images and facial expression classes in Table 1.
Figure 6 shows some sample images of the three datasets.

It is important to mention that there are 327 samples
in the CK+ dataset. The number of samples in each class is
imbalanced, which leads to frustrating results [62]. Thus,
we resampled the images into smaller classes and
downsampled images into larger classes. Further, in
smaller classes, three or four frames of a sequence (not
only peak frames) were used as samples. Before feature
extraction, we cropped the face images according to the
eye location and resized them to 64 x 64 without any other
image preprocessing.

In image preprocessing, image cropping is a geometric
normalization method employed to normalize the size of
images. The method is as follows:

Step 1. Manually determine the coordinates of the
center points of both eyes.

Step 2. According to the distance of the center points of
both eyes, crop the face image in the horizontal and vertical
directions. The size of the cropping of an image is illus-
trated in detail in Figure 7, which is adjusted to maximize
the retention of the facial expressions of face images.

4.2. MB-LBPUH Parameter Selection. A bright spot of the
paper is the parameter selection of MB-LBPUH, which well
characterizes the structural changes of facial expressions. The
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FIGURE 5: 3D feature plots of the fusion features in multiparameter LDA spaces on the JAFFE dataset. (a), (b), and (c) Fusion features in the

LDA feature space with scale s=5, s=7, and s=9, respectively.

TaBLE 1: Number of images and facial expression classes of different datasets.

Dataset AN CO DI FE HA SA SU
JAFFE 30 — 29 32 31 31 30
CK+ 77 71 73 74 69 76 75
TFEID 33 40 40 40 40 39 36

standard for assessing MB-LBPUH parameter selection is the
cross-validation recognition accuracy. Further, we set the
parameter s at 3x 3,5%x5,..., (2n+1) x (2n+ 1) and then

used MB-LBPUH with these parameters to filter the expression
images. The whole parameter selection experiment was
implemented by using nested cross-validation with seven MB-
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(c)

FIGURE 6: Facial expression images of JAFFE, CK+, and TFEID datasets. (a) JAFFE. (b) CK+. (c) TFEID.

LBPUH parameters (3, 5, 7, 9, 11, 13, and 15) in the training
samples. In the nested cross-validation, the outer is 5-fold
cross-validation and the inner is 10-fold cross-validation. The
average result of the cross-validation is used as the final result.

Figure 8 illustrates the selection results of the MB-
LBPUH parameter on three datasets. We experimentally
observe that the optimal parameters of different expressions
are distributed in these scales, which have the three best
cross-validation accuracies of MB-LBPUH. That is, in the
CK+ dataset, as observed in Figure 8(c), the excellent per-
formances of the MB-LBPUH features of different expres-
sions are distributed in the three best cross-validation
accuracies with scales s =5x5,7x7, and9 x 9. However,

to further observe the results of the experiments
(Figure 8(d)), the performances of the CO, FE, and SU
expression features extracted by MB-LBPUH corresponding
tos=9x9,7x7, and5 x 5, respectively, are superior to the
cases of others.

A similar case also was also found in the JAFFE and
TFEID datasets. That is, the excellent structural performance
of the expressions can be characterized discriminatively by
the MB-LBPUH operator with the selected parameters.
Therefore, according to the experimental demonstration, the
optimal parameters of the three datasets were obtained with
s=5x%x57%x7,and9x9 on the JAFFE dataset;
s=5x%x5,7x7,and9 x9 on the CK+ dataset; and s =5 x
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FIGURE 7: Face geometric normalization model.

5,9%x9,and11 x 11 on the TFEID, respectively. Accord-
ingly, to better reflect the feature representation, we then
built multiparameter feature spaces for classification.

4.3. Experimental Setting and Discussion. The experiments
were designed based on the MATLAB R2017b environment.
Comparative experiments were conducted by employing the
10-fold cross-validation strategy to evaluate the perfor-
mances of various feature models.

In the first part of the comparative experiments, we
employed an SVM classifier with a linear kernel to predict
the testing samples. Several traditional feature extraction
algorithms were also performed with 10-fold cross-valida-
tion, namely, the Gabor wavelet, LBP, and HOG algorithms.
The uniform pattern of LBP was utilized for feature ex-
traction, and the dimension was 59. Gabor was used to
extract features from five scales and eight directions, which
resulted in a high dimension of 163,840. In addition, the
dimension of the extracted HOG was 1,764. To address these
high-dimension data, we employed PCA to reduce the
dimensions.

Tables 2—4 list the comparison results between the tra-
ditional feature extraction methods and the proposed
method on the JAFFE, CK+, and TFEID datasets. As a single
feature extraction method, HOG performed better than
other traditional methods. It is through the statistical
computation of the distribution of local intensity gradients
or edge directions that HOG characterizes the local object
appearance and shape rather well. However, it is worth
noting that the single feature extraction method is not
applied effectively on each class. For example, as shown in
Tables 2-4, the expression recognition (ER) accuracies of the
Gabor features in the FE and SA classes are far less than
those in other expression classes. Notably, in Table 3, the
highest recognition accuracy of the Gabor feature of the CO
class is 95.64%, and the lowest one in the SA class is 57.42%.
The difference between the highest and lowest recognition
accuracies is more than 30%.

Other traditional methods have the same case: the ER
accuracy of LBP is 77.67% on the SU class, but it drops to

Computational Intelligence and Neuroscience

54.17% and 57.50% on the FE and SA classes, respectively.
Although the HOG descriptor exhibits good performance, it
is also invalid in some expression classes. That is, as shown in
Table 3, the ER accuracy of HA reaches up to 100%, but the
ER accuracy of AN drops by 17.78%. Similar cases are listed
in Table 4. The differences of the ER accuracies among
different classes are obvious; even the difference between the
highest ER accuracy and the lowest ER accuracy is more than
35%.

Therefore, a single traditional method cannot accurately
recognize all the expression classes. One of the reasons is that
some expressions are difficult to distinguish, such as AN, FE,
and sadness. Furthermore, finding the right feature ex-
traction approach is extremely important for facial ex-
pression recognition. In the proposed model, MB-LBPUH
with appropriate parameters excellently describes the
structural peculiarity of different emotion expressions. The
fusion feature of MB-LBPUH combined with HOG leads the
ER accuracy of each expression to be more stable, and the
maximum difference between two similar classes, such as the
AN and FE classes, listed in Table 4 is no more than 11%. The
ER accuracies of the proposed method in Tables 2—4 are the
best: 94.58%, 98.21%, and 93.50%, respectively. In addition,
Tables 5-9 list the comparison results of the various methods
including hand-crafted and deep learning applied to the
JAFFE, CK+, and TFEID datasets, respectively. Especially, as
shown in Tables 6 and 8, the proposed model outperforms
some state-of-the-art deep learning approaches. The es-
sential reason for the better performance of the proposed
model is that the proposed fusion feature characterizes the
structural and textural features of expressions in detail.
Combining them can represent facial expression excellently.
The quantitative comparison also indicates that our model
has superior results compared with the other models.

In the second comparative experiment, to further
demonstrate the performance of the proposed model in
different spaces, we constructed multiparameter PCA fea-
ture spaces in which the feature fusion and decision voting
strategy were similar to our proposed model. To illustrate the
advantage of the proposed method, we compared NN-based
decision voting with various classifiers (KNN, SVM, and
Sparse Representation-based Classification (SRC) [76]) for
prediction. To conduct a fair comparison, the parameters of
the classifiers were set as follows: k =3 for the KNN, and the
kernel function of the SVM was the linear kernel function.

Figure 9 illustrates the performance comparison of
various decision voting-based classification strategies in
multiparameter PCA feature spaces and multiparameter
LDA feature spaces. In most cases, the prediction results in
the LDA space are better than those in the PCA space. Except
for the NN-based decision, the prediction performance of
the SVM-based decision is better than that of other KNN-
based and SRC-based decision strategies. This is because the
SVM uses a nonlinear kernel function to handle the data
attribution. However, the SVM algorithm is more compli-
cated than the NN algorithm. Furthermore, the LDA pays
attention to the differences of known categories, which
provides convenience for pattern classification. Hence, all
kinds of samples are projected into the LDA space by
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TaBLE 2: Comparison of the ER accuracy (%) of various features on the JAFFE dataset.

Method AN DI FE HA SA SU ER accuracy (%)

LBP+SVM 60.00 73.33 54.17 63.33 57.50 77.67 64.33

HOG +SVM 93.33 87.67 87.86 94.52 86.67 93.33 90.56

Gabor + SVM 93.33 80.67 77.33 91.17 66.67 86.00 82.53

The proposed method 93.33 91.67 95.00 100.00 94.17 93.33 94.58

TaBLE 3: Comparison of the ER accuracy (%) of various features on the CK + dataset.

Method AN CcO DI FE HA SA SU ER accuracy (%)
LBP+SVM 83.22 100.00 95.12 93.80 100.00 94.18 92.03 94.05
HOG +SVM 82.22 95.00 91.36 92.00 100.00 100.00 90.00 92.94
Gabor + SVM 83.38 95.64 83.03 60.00 89.78 57.42 95.22 85.76
The proposed method 93.39 100.00 94.29 100.00 95.71 98.75 98.75 98.21

TaBLE 4: Comparison of the ER accuracy (%) of various features on the TFEID dataset.

Method AN CO DI FE HA SA SU ER accuracy (%)
LBP+SVM 60.00 96.17 99.41 71.97 98.42 68.90 100.00 84.98
HOG +SVM 88.97 96.67 96.14 82.43 97.89 87.17 97.42 92.38
Gabor + SVM 82.38 94.64 82.97 83.08 93.14 64.12 100.00 85.76
The proposed method 90.33 100.00 93.50 89.99 95.00 90.67 95.00 93.50

TaBLE 5: Comparisons with various feature extraction approaches on the JAFFE dataset.

Ref. Feature Evaluation Classification ER accuracy (%)
2010 [63] Normalized image Leave-one-out GP classifier 93.00
2012 [64] DKLLE 10-fold SVM 84.17
2016 [65] 2DPCA Person-dependent RF 93.83
2017 [66] Pyramid + CS 10-fold SBDT SVM 91.43
2017 [67] LBP + HOG 10-fold SVM 90.00
The proposed method Fusion feature 10-fold Decision voting 94.58

TaBLE 6: Comparisons with the state-of-the-art deep learning
approaches on the JAFFE dataset.

Ref. Method Average (%)
2015 [68] Sobel-CNN 92.60
2017 [69] CNN 84.48
2018 [54] WMDNN 92.21
2019 [57] Hierarchical network 91.27
The proposed method Fusion feature 94.58

maximizing the interclass differences and minimizing the
intraclass differences. In context of LDA, the distance
measure of the NN classifier between an unknown sample
and the center point of each class is stable and effective. Even
more critically, it has low computational complexity.

4.4. Further Discussion. In our current research, the pro-
posed multiple feature fusion model can both enhance
feature discrimination and resolve the inconvenient

classifiable pattern problem. The proposed multiple feature
fusion model achieves superior performance compared to
some state-of-the-art approaches. However, the proposed
method has some possible limitations that need to be
addressed.

First, in the LDA space, the fusion feature is composed of
MB-LBPUH and HOG features, which contain a consid-
erable amount of redundant information. To obtain a dis-
criminative feature, a feature selection method needs to be
explored to obtain an excellent feature representation.
Second, although the fusion feature reflects the structural
information and local textural information, it lacks con-
sideration of the evaluation measure of the two selected
features. In future work, we will design an evaluation
measure of how to select two or more features for feature
fusion. Finally, multiple feature fusion should be considered
in a video sequence, which will make the research work more
practical. For example, the emotion of a speaker can be
recognized through a fusion feature composed of gesture
features, dynamic texture features, and dynamic geometric
deformation features.
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TaBLE 7: Comparisons with various feature extraction approaches on the CK+ dataset.

Ref. Feature Class Evaluation Classification ER accuracy (%)
2012 [70] Common + specific patch 6 10-fold SVM 88.25

2013 [71] LBP + geometric feature 6 5-fold SVM 89.56

2014 [45] LPQ + PHOG 7 7-fold SVM 93.21

2017 [72] Data-driven 7 Leave-one-out SVM 94.81

The proposed method Fusion feature 7 10-fold Decision voting 98.21

TaBLE 8: Comparisons with the state-of-the-art deep learning methods on the CK+ dataset.
Ref. Method Average (%)
2015 [59] DTAGN (joint) 97.25
2016 [73] RBM 95.66
2018 [54] WMDNN 97.02
2019 [55] DCMA-CNNS 93.46
2019 [57] Hierarchical network 96.46
The proposed method Fusion feature 98.21
TaBLE 9: Comparisons with various approaches on the TFEID dataset.

Ref. Feature Class Evaluation Classification ER accuracy (%)
2014 [74] MPC-based 7 10-fold SVM 92.54
2017 [75] Haar wavelet 7 10-fold LR 89.58

2017 [66] Pyramid + CS 7 10-fold SBDT SVM 93.38

The proposed method Fusion feature 7 10-fold Decision voting 93.50

Recognition accuracy

Decision voting for prediction on JAFFE dataset

SRC-based KNN-based SVM-based NN-based
Classifier

@ Multi-parameter PCA space
= Multi-parameter LDA space

(a)

Recognition accuracy

Decision voting for prediction on CK+ dataset
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Classifier

@ Multi-parameter PCA space
== Multi-parameter LDA space

FiGgure 9: Continued.
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FIGURE 9: Prediction result comparison of the multiparameter PCA and LDA feature spaces on the (a) JAFFE, (b) CK+, and (c) TFEID

datasets, respectively.

5. Conclusions

In the past decade, most research work on FER aimed at
achieving perfect ER accuracy. Many improved pattern
recognition models have been developed, i.e., a single feature
extraction that combines various classification strategies and
two or more kinds of features fused together to characterize
the essential object features better. In our work, before
feature extraction, the images were only preprocessed by
cropping and resizing, without conducting any other image
preprocessing. The highlight of the paper is the MB-LBPUH
parameter selection. Once the appropriate parameters are
defined, the extracted MB-LBPUH features vividly charac-
terize the structural changes of expressions. MB-LBPUH
parameter selection is based on the cross-validation accuracy
of MB-LBPUH. Experiments demonstrate that various facial
expressions have the best representation using the selected
parameters.

Based on the textural particularity of expressions, the
gradients and directions are described preferably to charac-
terize expression features. Accordingly, the HOG descriptor
performs this work well. MB-LBPUH and HOG features are
fused together for feature extraction. These features not only
contain holistic structural information but also contain local
textural information. It is worth noting that we built the
multiparameter LDA feature space. An unknown sample
could be projected into LDA spaces to find its best match, and
then, decision voting could be used to predict the category of
the sample. In general, the proposed FER model exhibited
superior performance compared to existing approaches on
the JAFFE, CK+, and TFEID datasets; the ER recognition
accuracies were as high as 94.58%, 98.21%, and 93.50%, re-
spectively. As a future research direction, we will focus on
feature selection, the feature fusion model, and deep neural
networks in facial expression recognition.
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