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Compared with traditional imaging, the light field contains more comprehensive image information and higher image quality.
However, the available data for light field reconstruction are limited, and the repeated calculation of data seriously affects the
accuracy and the real-time performance of multiperspective light field reconstruction. To solve the problems, this paper proposes a
multiperspective light field reconstruction method based on transfer reinforcement learning. Firstly, the similarity measurement
model is established. According to the similarity threshold of the source domain and the target domain, the reinforcement
learning model or the feature transfer learning model is autonomously selected. Secondly, the reinforcement learning model is
established. The model uses multiagent (i.e., multiperspective) Q-learning to learn the feature set that is most similar to the target
domain and the source domain and feeds it back to the source domain. This model increases the capacity of the source-domain
samples and improves the accuracy of light field reconstruction. Finally, the feature transfer learning model is established. The
model uses PCA to obtain the maximum embedding space of source-domain and target-domain features and maps similar
features to a new space for label data migration. This model solves the problems of multiperspective data redundancy and repeated
calculations and improves the real-time performance of maneuvering target recognition. Extensive experiments on PASCAL VOC

datasets demonstrate the effectiveness of the proposed algorithm against the existing algorithms.

1. Introduction

Light field [1, 2] is the parametric representation of a 4D light
radiation field that contains the position and direction in-
formation in space. In other words, the light field contains all
images of the same object taken at different positions and
different angles.

The light field can be used as a feature library of the target
images. The multiperspective light field is a complete light
field represented by multiple perspectives. The multimodal
fusion of the captured target information is performed
through the cooperation mechanism among different per-
spectives, and finally, the dataset of the multiperspective
light field is obtained. With the rapid development of light
field reconstruction technologies, the target recognition
employing the light field feature library has been widely

studied in the fields of computer vision, pattern recognition,
and image processing. In the military field, the target rec-
ognition is applied to counterterrorism, missile guidance,
search and rescue, and target monitoring in the airspace. In
the industrial field, the target recognition is employed to the
robot navigation, industrial part detection, and assembly
line. In the civil field, the target recognition is applied to
biomedicine, intelligent transportation, and motion track-
ing. Modal perception in the area of the computer is a
channel that uses computer technology to imitate human
beings and make machines connect with the physical world.
Environment segmentation is to use computer technology to
segment the acquired environment according to different
categories. Finally, the formal representation and descrip-
tion of the segmented image are called feature representa-
tion. With the popularization of artificial intelligence
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technology, many learning methods have been widely in-
vestigated, for example, reinforcement learning [3], transfer
learning [4], and antagonistic learning [5]. The successful
application of artificial intelligence technology in the field of
image recognition is no more than deep learning [6]. In
recent years, researchers have trained image samples
through a convolution neural network [7] and other deep
learning models, which improve the accuracy of target
recognition.

However, the complex computing process seriously af-
fects the real-time performance and accuracy of target
recognition. To solve the problem, this paper proposes the
multiperspective light field reconstruction method based on
transfer reinforcement learning, as shown in Figure 1.

The transfer reinforcement learning algorithm is free
from the constraints of large data and large sample training.
The transfer learning and reinforcement learning are se-
lected independently according to similarity thresholds
based on the samples of tags with limited source domains.

The main contributions of this paper are as follows:

(1) This paper introduces reinforcement learning and
transfer learning algorithms into the area of light
field reconstruction. According to the similarity
measure model, the reinforcement learning and
transfer learning are autonomously chosen.

(2) The reconstruction method for the multiperspective
light field via transfer reinforcement learning ef-
fectively reduces the calculation of similar data in the
reconstruction process, shortens the time of light
field reconstruction, and improves the real-time
performance of target recognition.

(3) This paper conducts extensive experiments to eval-
uate the performance of the proposed method in
target recognition. The experimental result shows
that this method is superior to existing methods.

The remainder of this paper is organized as follows:
Section 2 provides an overview of the related literature.
Section 3 describes the multiperspective representation and
source-domain establishment of the light field, the transfer
reinforcement learning algorithm, and the reconstruction
method for the multiperspective light field based on transfer
reinforcement learning. The simulation experiments are
discussed in Section 4. Finally, Section 5 concludes this paper.

2. Related Works

The complex computing process of big data affects the real-
time performance and accuracy of data processing. Many
researchers have proposed different optimization algo-
rithms. Literature [8] proposes a novel deep learning
framework for attribute prediction in the wild. This
framework not only outperforms the state-of-the-art with a
large margin but also reveals valuable facts on learning face
representation. Literature [9-11] proposes the reinforce-
ment learning model, which matches behavioral data to
explain the observed strategic behavior. The results show
that this method is more effective than similar methods. The
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effect of transfer learning depends to some extent on
common factors between learning materials. Literature
[12-14] eliminates the training needs of similar learning by
learning the transferable structure of scalable image rec-
ognition tasks, which significantly reduces the training
parameters and the error rate and shortens the training time.
In the area of the light field, it is difficult to obtain a complete
light field. The huge amounts of data and complex scenes
have been obstacles to build light fields.

Many researchers have proposed the concept of light
field reconstruction, using the sparsity of the light field to
reconstruct the unknown information of the targets from
locally known information. Cai et al. [15] proposed a target
recognition method based on multiperspective reconstruc-
tion, through which the light field data from multiple
perspectives are fused and the consistency of the average of
all observations is obtained. The experiment shows the
robustness and reliability of solving large-scale complex
problems with the collaboration of multiple agents. The
literature [16-18] uses the features of wavelet transform and
multiresolution analysis to effectively suppress the window
effect on reconstruction results.

The reconstruction efliciency is improved. In [19], light
field imaging is used to solve underwater imaging problems
under low-intensity lighting conditions. By using depth
convolutional neural networks, the problem of scattering in
the light field is effectively solved. By combining light field
imaging with structured illumination to perform multi-
perspective depth measurements, many light field recon-
struction methods are proposed [20-23]. The flexible
calibration strategy is accordingly designed to determine the
mapping coeflicients for each light field ray, enabling effi-
cient 3D reconstruction. The angle superresolution method
[24-26] is used to capture the light field by using a sparse
camera array. It makes use of the compressive sensing re-
construction to collect the dense light field.

Target recognition is an important application in the
field of computer vision. Literature [4] proposes a combi-
nation method for target tracking with deep learning and
preference learning. This method solves the problem of
target position and size change during target tracking. It
effectively finds out the target object in each frame of the
video. Literature [16] introduces light field reconstruction
technology to the field of target recognition. The method
uses sampled images to reconstruct the light field image and
finally tests its validity in the field of target recognition.

To sum up, many researchers have made useful im-
provements in optimizing algorithms for light field recon-
struction. Moreover, they successfully introduced deep
learning into light field reconstruction. However, there are
still problems: (1) duplicate processing of large amounts of
data is constraining real-time performance of target rec-
ognition and (2) it is still a challenge to obtain the required
data for reconstructing the complete light field.

3. Proposed Method

3.1. Multiperspective Representation of the Light Field. The
Lego Bulldozer of the light field library of the Stanford
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FIGURE 1: Overall flow chart of the multiperspective light field reconstruction method via transfer reinforcement learning.

University is represented as a weight graph G = (v,¢), a
given image. The node v is the pixels of the image, the light
field domain ¢ is the choice of the neighborhood structure,
and the weight of the domain ise;; € ¢. Define each view field
threshold as C, then the minimum generalization function
E(C) is

E(C) = JC —AVI(C () +a|C, () + BCre (&) 'de, (1)

where VI is the standard that the threshold value is in the
gray gradient area, « is a random parameter, and f is a
weighting function. Specific parameters are added to the
threshold, i.e, minimizing functional calculation of the
segmentation smooth approximation u of the gamma
function I. Let I: ) — R be the gray value input map in
each light field.

1 k k k
n(l)in{i tz:(;perg (Q;Q) + Z JQf, (x)dx } iL:JO Q. (2

t i=0 i

In this paper, the convex representation of image seg-
mentation is introduced into multiperspective light field
reconstruction [27]. The region €; in the above formula is
represented by the labeling function u: Q — {0, ..., k}.
The k binary functions 6(x) = (0, (x),...,0,(x)) are
equivalent to the multilabel function. Finally, the marker
function u is recovered from these sequential functions:

k
u(x) = 6;(x). (3)

i=1

Therefore, the light field model is divided into many
perspectives, as shown in Figure 2.

The multiagent (i.e., multiperspective) method is used to
perceive the environment for establishing the source domain,
which is also called the instinctive database. It sets the basic
action ability for the agent so that the agent is capable of
environment interaction and trial-and-error action without

FIGURE 2: Multiperspective light field 3D representation model. The
method uses red, yellow, and blue visible regions to represent the
visual range of the multiperspective light field, respectively. In the
process of moving the target, the visual range of each perspective
and the collaborative relationship between multiple perspectives
are embodied.

training. The multiagent method integrates the collected en-
vironmental information and finally completes the estab-
lishment of the source domain. According to the content of the
environment, the perceptual environment is modeled to train
the image. After the image dataset training is completed, the
image information is subject to modal analysis. The image is
segmented into different categories based on its threshold
[28-31]. At present, most segmentation methods are based on
pixel-based SoftMax classification. The relationship among
pixel points is described by a binary function. Through the
relationship, the same labels are assigned to similar pixels and
different labels are assigned to pixels with larger gaps so that
the image boundary is effectively segmented.
M
¥p(x ) = ulxix;) D WG (f f)- ()
m=1
u, (x; W) represents the score of the pixel x belonging to
the category gq. The probability of the pixel class contained in
the image is output by the SoftMax function:



exp(uq (x; W))

, 5
Zﬁzlexp(uq (x; W)) )

S(x)=plglx,W) =

where S(x) represents the result of a light field image
segmentation from a single perspective. The light field
images captured from multiple perspectives are normalized,
and the feature information fusion u, from multiple per-
spectives is completed:

u, = [S(x)1,8(x)s, .., S(x)n]" (6)

To add a label to the split body, the label set is called the
source domain, as shown in Figure 3. The segmentation
method proposed in this paper allows for a wider range of
images and lays a good foundation for enhancing the ability
of light field reconstruction.

3.2. Transfer Reinforcement Learning Algorithm. Duplicate
processing of large amounts of data is constraining real-
time performance of target recognition. In this paper, the
transfer reinforcement learning algorithm is proposed to
implement an agent autonomous selection learning model
with the ability of analysis, judgment, decision-making,
and execution. The target samples captured by the multiple
perspectives are traversed in the source domain, and the
corresponding learning strategies are selected according to
the thresholds of the similar metric models. If the similarity
is less than the threshold, reinforcement learning is per-
formed. The decision is adjusted by a small amount of
known information and the environment interaction
teedback, and finally, the unlabeled sample is iterated with
the labeled sample. The new label samples are added to the
source domain, and the sample size of the source domain is
continuously expanded to improve the environmental
cognitive ability and scene-understanding ability. If the
similarity is greater than or equal to the threshold, the
target-domain sample is directly determined by the feature
transfer learning method. This method effectively reduces
the number and time of interactions of target-domain
samples in the source domain and ensures the real-time
performance of target recognition.

3.2.1. Establishment of the Similarity Measurement Model.
The perceptual hash algorithm is a mapping of key data in a
digital image into a short length sequence. According to the
response of machine vision to images in different envi-
ronments, the perceptual hash algorithm relies on the
similarity of the scene to give the corresponding hash value
[32]. In this paper, the similarity measures of the perceptual
hash algorithm are used to autonomously select reinforce-
ment learning and transfer learning. The specific methods
are as follows:

(1) The observation image captured by the above mul-
tiperspective u(x) is preprocessed, and the image
size is adjusted to 256 * 256.

Computational Intelligence and Neuroscience

(2) The feature extraction is performed on the multi-
perspective image u(x) ={ulx=1,2,...,n}, and
the feature vectors R = {R|,R,, ..., R,} are obtained,
where R; represents a feature point vector in the
graph. The compression of the feature matrix is
achieved by summing the multiperspective feature
matrices:

H(@i)=) R, 1<i< 128 7)

x=1

In this paper, the feature clustering analysis is used to
quantify H, and the image information is mapped to 0 or 1
according to the feature clustering threshold ¢. Finally, the
hash value H is obtained.

AT (8)
i) = ’ 8
0, R, <t

We use the Hamming distance to judge the similarity
among images from multiple perspectives according to the
above hash value. Let the multiperspective image be h,,, and
then the Hamming distance between the image and the
feature environment information h; is D = h, — h,. Then,
the similarity model of multiperspective images is

s =D

. (9)
i

Finally, this paper sets the similarity threshold to t.
When the image feature value is less than T, the model
determination features are not similar and the reinforcement
learning algorithm is selected; when the image feature value
is greater than or equal to T, the model determination
features are similar and the transfer learning algorithm is
selected.

3.2.2. Reinforcement Learning Algorithm. Reinforcement
learning should try to make a judgment, adjust the previous
behavior in the process of interacting with the environ-
ment, and then complete the recognition of the target
sample of continuous iteration. It is assumed that each step
of reinforcement learning has corresponding observations,
and the action that can be performed is supported by a
small number of label samples in the source domain. The
implementation of each step requires a combination of
previous actions and observations to take action [33]. Then,
the specific steps of reinforcement learning are given below.
To simplify the description, the following symbols are
defined:

(1) x, € R™" is the corresponding observation image
when the target and environment interact at step
t(t=12,...,T).

(2) a, € A is the action performed by the observation x,,
where A is the set of all behaviors under the rein-
forcement learning rule.

(3) r, is the feedback obtained after performing an action
a, under the observation x,.
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U= ry, (10)

=
I
M=

’

t =t

where R, is the collection of all feedback obtained from step ¢
to the end time and y is the supervisory budget representing
the limitation of computing power and time. In addition, the
state s at a certain time ¢ is s, = (X}, A, ..., X1 A1 Xp)-
Then, the main idea of reinforcement learning is to realize
the optimization learning of action state function based on
the iteration of Q-learning:

Qi (55-a) = Qi (s15a,) + g - Oy,
(11)

S =t ty- m’a/)\( Qi (s141-a") = Qe (s )
a €

where a is the learning rate, s, and a, are the states and
actions corresponding to step ¢, respectively, and &, is the
time difference. a’ is the action that A can perform in s,, .
The state action value function under the optimal control
strategy is obtained as the number of iterations tends to
infinity, and the optimal execution strategy in each state is
summarized. Finally, the strategy for selecting the optimal
executable action in a certain state is to maximize the ex-
pected value:

Q" (s,a) :Es/~5<r+y-mng* (s',a')ls,a), (12)

where £ is the environment, s/ is the state after s performs an
action a, and ar is all possible actions of the state s'. The
above formula uses the expectation to analyze the state
action value function and uses Q(s,a,0) = Q* (s,a) to es-
timate the state action function. In reinforcement learning,
the Q-network implements parameter updation by mini-
mizing the objective function.

L (6) = Eqpopy [ — Q(s,2,6,)]. (13)

Here, p (s, a) is the probability distribution of the state s and
behavior a, and y, is the target output corresponding to the
kth iteration and is given by

ye=Ey ¢ r+y-n}lz;1xQ<sl,al,9k_1)|s,a . (14)

Let all subjects evaluate the results. If the objective
function obtained by the subject under various constraints is
smaller, the subject should receive a larger reward:

w
f Best,

(Ska0) € Vio
R (s> s> ax) = (15)
0, otherwise,

where fp. represents the fitness function of the optimal
state at the kth iteration and W is a positive constant; the
smaller the value of the objective function, the larger the
reward value. In this paper, based on the experience of
previous learning, the prompt for the next target environ-
ment interaction is e,. Assume that the number of steps at
the end of reinforcement learning is N and the set of reviews
for experience is D = [e;, e,, . ..,ey]. We feed D back to the
source domain, increasing the amount of data of known
samples in the source domain. Therefore, the behavior state
action value in the transfer reinforcement learning algo-
rithm is changed to TRL(s,a,0) — TRL(¢(s),a,0). X is
the feature learning in the transfer reinforcement learning
algorithm, so the state of the step ¢ in the transfer rein-
forcement learning is s,,; = (s, a;, x,,1). Finally, the mod-
ified equation for the interaction of the target environment
in reinforcement learning is obtained:

{D—>D=[El,éz,...,EN], 16)

e =(9(s)anrp9(si11))

The red box represents the target information captured
from multiple perspectives. The local information captured
from each perspective is preliminarily judged as a helicopter
or an airliner, and the target information and the envi-
ronment keep interacting to conclude that the target is a
fighter. We will input new label samples into the source
domain after reinforcement learning, continuously update
the source-domain sample data, expand the label sample
size, and improve the environmental cognitive ability and
scene-understanding ability, as shown in Figure 4.
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3.2.3. Transfer Learning Algorithm. The multiperspective
image is taken as the target domain. By comparing with
the label samples in the source domain, the feature
transfer method in the transfer learning is selected to
recognize the environment of the multiperspective
samples [34, 35]. Let the source domain after rein-
forcement learning be D, = {xsi, ysi}. The information
captured by multiple perspectives is the target domain
Dy = {XT,.}- As Y, continues to increase, there will be
more and more Y in Dy similar to Y. In order to avoid
repeated calculation of similar feature data, this paper
adopts PCA based on the transfer learning algorithm. It is
known that ¢ is feature learning; then, ¢ (X,) and ¢ (X;)
represent X, and X, data features, respectively. The
unmarked data x in D} are mapped to the feature space
to obtain a new representation ¢(Xy). In transfer
learning, the optimal learning state is the minimum
expected risk. Therefore, the optimal model for learning
the target domain is proposed:

6 = arg min Z P(Dyp)l(x, y,0), (17)

i=1

where P (D) is the probability of edge distribution in the
target domain and I(x;, y;,6) is the loss function. When
P(Dg) #P(Dy), the above model is optimized to enhance
the generalization ability of the transfer learning target
domain:

0= argmmz P(D T))P(Ds)l(x v,0),

o PT(xTi’ yTi)
i-1 Ps(xs,»)’s[)

(18)

~ arg min l(xsi, Vs» 0).

According to the probability distribution function of the
source domain and the target domain, the maximum em-
bedded space between them can be obtained:

Dist (¢ (Xs), ¢ Z k(xs,xs )
51]1
5 M
Zk(xT,xT>—7 Z k(.xS,xT>
i,j=1 nghr i,j=1

(19)

In order to obtain the optimal eigenvalues in the
maximum embedded space, we use the kernel matrices K|

KS,S KS,T
KT,S KT,T

on the source- and target-domain data. In this section, W of
(ng + ny) x m matrix transformation is used to map the
kernel matrix to the m-dimensional space to obtain the
resultant kernel matrix as follows:

and K to represent the feature matrix K = [

K= (KK*”W)(WTK*”K) - KWWK, (20)

Then, the corresponding kernel matrix value between x;
and x; is

K(x x) K! WW K, (21)

The transfer learning mapping data xg and x; are
obtained by calculating Xs= [Ksg Kgr]W and X7 = tKT,S
KprlW.

The transfer learning for target features is to map the
labeled image samples captured from each perspective in the
target domain and the labeled samples in the source domain
to the common feature subspace at the same time. Through
the feature comparison between the tag samples in the
source domain and those in the target domain, the target is
recognized as a fighter. This method reduces the compu-
tation and recognition time of sample recognition in the
target domain, and the specific process is shown in Figure 5.
To sum up, the specific method of transfer reinforcement
learning is shown in Algorithm 1.
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(8) else

(9) end

(1) Input: multiperspective image u(x) and feature vector R
(2) The feature clustering analysis is used to quantify H, and the hash value A is obtained

(3) Image feature h,, feature environment h, and Hamming distance D = h,, — h,
(4) Let 7 be the similarity threshold

(5) for frame=1, 2, 3, ... do

(6) if S<7 then

(7) Model judgment features are not similar, so select reinforcement learning

Model judgment features are similar, so select transfer learning

ALGORITHM 1: Transfer reinforcement learning.

3.2.4. Multiperspective Light Field Reconstruction Method
Based on Transfer Reinforcement Learning. According to the
establishment of the multiperspective representation model,
the multiperspective light field is reconstructed using the
transfer reinforcement learning algorithm. The original light
field image is a (x, y) ray imaging grid. Each image rep-
resents that the light reaches a microlens on the imaging
surface, which is from different (u, v) positions of the main
lens, and it is shown in Figure 6.

The original image is composed of a series of pixels, each
of which is microlens imaged. Because the aperture is
limited, each microlens has a certain field of view, and there
is a certain parallax among the different microlenses.

Ep(x,y) = (22)

! ”LF(x y,u, v)cos” O du dv,
where L (x, y,u, v) is the light field parameter from the target
plane F and cos 6 is the attenuation factor due to the optical
halo effect. The multiperspective feature information fusion
u(r) and the feature learning ¢ in transfer reinforcement
learning are introduced into the light field reconstruction
process. Then, the point imaging function can be obtained in
any plane letting (x, y,u,v) — ¢ (x', ', u(r),v').

ooy 1 1 x' 1 y'
E(a,F)(x ') T 2R ”LF<H(1 a)+ a,V(l a)+ a,u,v dudv.

(23)

According to the similarity threshold of different scenes,
the algorithm in this paper autonomously chooses different
models of transfer reinforcement learning (i.e., transfer
learning or reinforcement learning) to reconstruct the
multiperspective light field. Based on the algorithm, the
frequency-domain information of images can be obtained by
4D Fourier transform of the multiperspective light field. And
then the center slice and the inverse wavelet transform are
used to obtain the reconstructed light field image of each
perspective, as shown in Figure 7.

4. Experimental Results and Analyses

PASCAL VOC provides a standard set of excellent datasets
for image recognition and classification. Among them, the
VOC2007 dataset contains 9963 labeled images, consisting
of trains, fuel consumption, and tests, with a total of 24640
labeled objects. The VOC2012 dataset is an upgraded version
of the VOC2007 dataset, with a total of 11,530 images. The
VOC2012 dataset is divided into 20 categories, such as
people, birds, dogs, airplanes, and cars. In order to ensure
the objectivity and persuasiveness of the experiment, the
training set samples used for animal detection, vehicle de-
tection, and human detection are 6800 images with a pixel
size of 500 * 332. The test set samples are 1200 images with a
pixel size of 500 % 375. In this paper, the detection rate is
selected as a performance measure for statistical significance
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FiGure 7: Multiperspective light field reconstruction based on transfer reinforcement learning.

test analysis. The detection rate refers to the recognition ratio
between the target and the background in the recognition
window. We use TensorFlow on the Windows 10 system for
experimental simulation. The simulation calculation runs on
a small server with an E5-2630 v4 CPU, the main frequency
of 2.2 GHz, and a memory of 32 GB. The multiperspective
light field reconstruction method training model network
structure is shown in Figure 8.

This section selects several representative data to de-
scribe and analyze the target recognition. The experimental
data of target recognition are divided into three categories:
animals, vehicles, and humans. The test data are sorted
according to the number of targets and the complexity of
scenarios. The algorithm in this paper identifies targets si-
multaneously with existing RPN [36], Fast R-CNN [37],
YOLO 9000 [38], SSD [39], and R-CNN [40] algorithms.

Figure 9 shows the animal samples for the test dataset,
which include sheep, bird, horse, and dog. In the sheep
recognition results, we can see that the algorithm has good
results in the second, third, and fifth tests. It includes target
occlusion and small targets at a distance. In the bird rec-
ognition results, we can see from the fifth test data that the
algorithm in this paper has accurately identified each target

in the graph. This shows that the algorithm is suitable for
multitarget recognition. In the horse recognition results, we
can conclude from the third test data that the algorithm can
effectively avoid the impact of the light problem on target
recognition. In the dog recognition results, we can see the
effectiveness of the algorithm in multitarget recognition
from the results of the fourth and fifth test data. From
Table 1, it can be seen that the average recognition accuracy
of the algorithm in the detection of the animal dataset is 78%,
which is higher than that of other algorithms.

Figure 10 shows samples of vehicles for the test set,
which include daily vehicles such as airplanes, ships, and
cars. In the fourth test data of airplanes, it is reflected that all
algorithms are less robust to target local information rec-
ognition under cluttered background. However, the algo-
rithm identifies the greatest number of targets compared to
other algorithms. In the second test data of the airplanes, the
algorithm effectively solves the problem of insufficient light.
However, in the identification result of the ship, the fifth test
data are large due to the fog at sea, and all algorithms are not
recognized for distant targets. It can be seen from the
recognition results of motorcycles and cars that when the
targets are seriously overlapped, other algorithms
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FIGure 8: Multiperspective light field reconstruction method training model network.
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FIGURE 9: Recognition results of animal samples.

mentioned in this paper cannot accurately identify them.
From Table 2, it can be seen that the average recognition
accuracy of the algorithm in the detection of the vehicle
dataset is 76.9%, which is higher than that of other
algorithms.

This paper assumes H: Uomers = Hourss Which proves that
there is no difference between the two methods for the same
target recognition. H 4 fomers # Hours» Which proves that there
is a difference between the two methods when identifying the
same target. In these relations, Others represent the existing
algorithms and Ours represents the algorithm in this paper. In
order to verify the effectiveness of the algorithm in this paper,
we set the significance level to the international universal level
a = 0.05. That is, the confidence interval is 95%. The sample is
n,and df = 2 (n — 1). Therefore, the standard deviation of the

mean is Sgi— 5 = \/(S3ters /1) + (Sdus/1)> and the sta-
tistic ¢ = (|Others| — Ours)/ (Somers—oue)-

We set the confidence interval to 95% and the sample
category to n = 4. Therefore, the benchmark for the statis-
tical significance test is 2.447. As can be seen from
Figure 11(a) and 11(b), the statistical significance test in-
dicators of other algorithms and the algorithm in this paper
are higher than 2.447. Then, we can judge the hypothesis.
There are statistically significant differences between our
algorithm and other algorithms in animal and vehicle
datasets.

Figure 12 shows a test dataset of human samples that
include men, women, and baby. In the male identification
results, both the second and fifth test data showed inter-
ference items that were not physical. Therefore, our
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TaBLE 1: Detection rate evaluation report form for different algorithms in the animal dataset.
Sheep, average  Bird, average = Horse, average  Dog, average  Animal dataset, average = Standard deviation
RPN 71.7 75.2 74.5 77.4 74.7 2.35
Fast R-CNN 71.6 73.6 73 76.4 73.7 2.02
YOLO 9000 71.7 72.4 73.3 73.1 72.6 0.73
SSD 69.3 71.3 71.6 73.6 71.5 1.76
R-CNN 71.6 71.7 72.3 76.4 73 2.29
Ours 77.2 78.2 78.7 77.8 78 0.63

VOC2012 animal dataset detected accuracy (%). Average: average recognition rate of five samples in each dataset.

Training set

Test set

—— Ours —— YOLO 9000

—— RPN SSD

—— Fast R-CNN —— R-CNN

FIGURE 10: Recognition results of vehicle samples.
TaBLE 2: Detection rate evaluation report form for different algorithms in the vehicle dataset.

Method Airplane, average Boat, average Motorcycle, average Car, average Vehicle dataset, average Standard deviation
RPN 72.4 72.5 74.3 72.3 72.9 0.95
Fast R-CNN 74.4 74.7 74.8 71.7 73.9 1.48
YOLO 9000 72.8 71.3 70.4 70 71.1 1.24
SSD 74.9 71.1 72.3 71.7 72.5 1.67
R-CNN 70.9 72.7 70.4 71 71.3 1
Ours 78.1 76.8 77.8 75 76.9 14

VOC2012 vehicle dataset detected accuracy (%). Average: average recognition rate of five samples in each dataset.

algorithm, RPN algorithm, and SSD algorithm all identify
errors in the second test data. However, in the fourth test
data, the motion occlusion problem was effectively solved
and all targets were correctly identified. In the female rec-
ognition results, our algorithm successfully distinguishes the
males in the fourth test data. Because the fifth test data have

many tasks, the features of individual characters are not
obvious. Therefore, the algorithms mentioned in this paper
have different errors in the target recognition process. In the
baby’s recognition results, all algorithms are accurately
identified in both the first and second test data. In the third
and fourth test data, the SSD algorithm and the R-CNN
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F1GURE 11: Analysis chart of the statistical significance test of each target algorithm in the animal dataset (a) and vehicle dataset (b).
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FIGURE 12: Recognition results of human samples.

algorithm identify objects outside the target. However, in the
fifth test data, all algorithms cannot be accurately identified
because the scene is too complicated and the target is small. As
can be seen from Table 3, when detecting the baby dataset, the
recognition rate of the RPN algorithm and the algorithm in
this paper reached 71.4% at the same time. In the male dataset
and female dataset, the recognition accuracy of the algorithm
in this paper is 72.5%, which is higher than that of other
algorithms.

Since the sample category of the human dataset is n = 3,
the benchmark for the statistical significance test is 2.776. As
can be seen from Figure 13 and Table 3, the accuracy of the
proposed target recognition algorithm on the human dataset
is 72.5%, which is higher than that of RPN and Fast R-CNN.
However, the statistical significance test indicators are lower

than the baseline. This shows that the hypothesis test is valid,
and the recognition results of the algorithm in this paper are
not significantly different from those of the PRN and Fast
R-CNN algorithms. Compared with those of YOLO 9000,
SSD, and R-CNN algorithms, the statistical significance test
indicators of the algorithm in this paper are higher. This
shows that there are obvious differences between the al-
gorithm in this paper and them.

Based on the experimental results of target recognition
and statistical significance test analysis, the algorithm in this
paper fully reflects the advantages of multiple perspectives in
target recognition. In target recognition, the larger the
boundary box, the less accurate the target recognition result.
When detecting any feature of the target, the algorithm uses
several small red boxes to label it. Therefore, the above target
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TaBLE 3: Detection rate evaluation report form for different algorithms in the human dataset.
Method Male, average Female, average Baby, average Human dataset, average Standard deviation
RPN 71.8 72.3 71.4 71.8 0.45
Fast R-CNN 71.3 71.3 71.1 71.2 0.12
YOLO 9000 70 71.1 69.9 70.3 0.67
SSD 70 69.8 70.3 70 0.25
R-CNN 69.8 70.7 70.1 70.2 0.46
Ours 73.6 72.5 71.4 72.5 1.1

VOC2012 human dataset detected accuracy (%). Average: average recognition rate of five samples in each dataset.

35F

2.776

t=1.02

0 RPN/ours
ours

——— Baseline-£0.05 (4)
—sa— tvalue between algorithms

Fast R-CNN/

L L
YOLO 9000/ SSD/ours R-CNN/
ours ours

FIGURE 13: Analysis chart of the statistical significance test of each target algorithm in the human dataset.

recognition results verify the effectiveness of the proposed
algorithm.

5. Conclusions

Duplicate processing of target data and lack of required data
affect the accuracy and real-time performance of reconstruction
of the complete light field. In view of the problems, this paper
proposes the transfer reinforcement learning method for
multiperspective light field reconstruction. According to the
similarity threshold, reinforcement learning or transfer learning
can be selected independently. Our algorithm effectively solves
the repeated calculation of the same data and shortens the time
of multiperspective light field reconstruction. The experimental
result shows that the transfer reinforcement learning algorithm
is better than other algorithms in target recognition. In the
experiment, the recognition efficiency of the algorithm in this
paper makes it not ideal for recognition in the foggy envi-
ronment. In the future work, we will introduce the GAN to
transfer learning. We will use the characteristics of the GAN to
generate data and enhance data to process foggy images and
increase their target recognition accuracy.
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