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-e development of artificial intelligence and worldwide epidemic events has promoted the implementation of smart healthcare
while bringing issues of data privacy, malicious attack, and service quality. -eMedical Internet of -ings (MIoT), along with the
technologies of federated learning and blockchain, has become a feasible solution for these issues. In this paper, we present a
blockchain-based federated learning method for smart healthcare in which the edge nodes maintain the blockchain to resist a
single point of failure and MIoT devices implement the federated learning to make full of the distributed clinical data. In
particular, we design an adaptive differential privacy algorithm to protect data privacy and gradient verification-based consensus
protocol to detect poisoning attacks. We compare our method with two similar methods on a real-world diabetes dataset.
Promising experimental results show that our method can achieve high model accuracy in acceptable running time while also
showing good performance in reducing the privacy budget consumption and resisting poisoning attacks.

1. Introduction

With the growth in volume and types of clinical data, there is
an urgent need for efficient mining models to analyze these
data so as to help disease diagnosis, provide medical solu-
tions, and improve the medical care for patients. Machine
learning is an effective tool with powerful computation
capabilities, which has been used in many fields, such as
image recognition, natural language processing, and
healthcare. However, machine learning models can only
reach high accuracy with abundant training data, which is
especially important in healthcare that sometimes decides
whether a patient’s life can be saved. Traditional centralized
training methods usually require collecting a large amount
of data from a powerful cloud machine, which may cause
serious user privacy leakage, especially in the medical do-
main. Many governments have issued laws prohibiting
collecting data relevant to user privacy, such as the European
Union’s General Data Protection Regulation (GDPR). -e

emergence of the Medical Internet of -ings (MIoT) em-
powers traditional fields such as healthcare, medical care,
public health, and community services, where large numbers
of MIoT devices such as wearable sensors are distributed at
the edge of the network to collect patient data. Federated
learning (FL) [1], as a distributed machine learning
framework, can allow multiple devices to train machine
learning models collaboratively without sharing their raw
data, which just contributes to realizing smart healthcare in
the MIoT while reducing the privacy leakage of patients.

A typical FL-based smart healthcare application is shown
in Figure 1, where onboard sensors collect clinical data from
patients, multiple edge devices perform FL algorithm col-
laboratively, and the final machine learning models evaluate
the patient’s physical health and even request the emergency
service in the cloud if necessary. However, one of the
drawbacks of vanilla FL is that it needs a trustworthy central
server to aggregate the model parameters uploaded by de-
vices and distribute the global model to all devices. Once the
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central server is crashed by attackers, the FL training will
stop. As a ledger with properties of tamper-proof, collective
maintenance, and traceability, blockchain can replace the
central server to decentralize the coordination process in FL,
thus resisting single points of failure and illegal tampering
attacks. In this way, the traditional elements in blockchain
can be mapped into the training stages of FL as follows: each
block represents a single training round, where the stored
transactions represent model parameters uploaded by de-
vices in that round. -en all devices can look up the model
parameters from the latest block and update their local
models. In view of these advantages, lots of blockchain-
based FLmethods have been proposed to be applied in many
fields, such as smart home [2], Industrial Internet of -ings
(IoT) [3], and smart healthcare [4]. But with more and more
advanced privacy attacks, there are still several challenges
that need to be addressed while applying blockchain-based
FL to healthcare: (1) the model parameters stored in the
blockchain may still be stolen by attackers to infer the
original private clinical data; (2) clinical data of some edge
devices may be poisoned to mislead the FL process; (3) edge
devices have no incentive to contribute dataset and com-
puting power to FL.

Aimed at the above challenges, this paper integrates FL
with blockchain and advanced cryptography to realize a
smart healthcare model in a secure and privacy-preserving
manner. -e main contributions of the paper are mainly as
follows:

(1) We propose a blockchain-based FL framework for
smart healthcare, which not only builds an accurate
collaborative model based on multiple edge devices
but also provides governance of the whole training
process.

(2) To add an extra layer of security of blockchain-based
FL, we propose adaptive differential privacy (DP)
algorithm that adapts noise according to the training
process, balancing privacy, and model accuracy.

(3) We design an efficient consensus protocol based on
gradient verification, which encourages reliable
MIoTdevices and edge nodes to contribute their data
and computing power to federated learning.

-e rest of the paper is organized as follows. We in-
troduce related works in Section 2 and give our method in
Section 3. Section 4 shows the experimental results of our
method. We draw conclusions and outline future work in
Section 5.

2. Related Work

With the development of artificial intelligence (AI), it is a
common practice to deploy AI applications to assist medical
diagnosis, which can improve the diagnosis rate of diseases
and reduce the waiting time of patients. Dai et al. [5] turned
the prediction of hospitalization task into a supervised
classification problem, resulting in a considerable amount of
potential saving in medical resources. Son et al. [6] devel-
oped a Support Vector Machine (SVM) model to identify
predictors of medication adherence in heart failure patients.
Tariq et al. [7] developed amultimodal fusion AImodel from
past medical data to predict the severity of COVID-19. In
order to solve the problem of the absence of reliable data,
Sedik et al. [8] presented a data augmentation framework to
expand the limited dataset and used convolutional neural
network and convolutional long short-termmemory models
to detect the COVID-19. However, the above-centralized
training methods [5–8] need to collect sensitive clinical data
in a single database, which is undesirable due to data privacy
concerns. Instead, federated learning emerges as a distrib-
uted framework that performs collaborative learning while
keeping all the sensitive data locally, providing a privacy-
preserving solution for connecting the fragmented health-
care data on the edge devices. Many works that used FL in
smart healthcare have been proposed in recent years.
Qayyum et al. [9] proposed a clustered FL-based method to
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Figure 1: A typical FL-based smart healthcare application.
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process clinical visual data at the edge so as to allow remote
hospitals to benefit from multimodal data in a privacy-
preserving manner. Brisimi et al. [10] predicted hospitali-
zations for patients with heart diseases by solving distributed
sparse Support Vector Machine problems using FL. Xu et al.
[11] gave a review for FL methods and pointed out the
implications and potentials of FL in healthcare particularly.
Zhang et al. [12] employed differential private generative
adversarial network (DPGAN) to generate diverse patient
data in a privacy-preservation way and leveraged FL to train
COVID-19 models in collaboration with multiple hospitals.
But these works [9–12] all need a central server to aggregate
and distribute model parameters during the federated
learning, which is vulnerable to a single point of failure
attack.

To address this vulnerability, blockchain is introduced to
enable full decentralized FL, which is also the idea of this
paper. El Rifai et al. [13] integrated the FL and blockchain for
the first time in a medical setting and proposed a smart
contract to realize transparency and immutability while
sharing knowledge. Passerat-Palmbach et al. [14] presented
an advanced blockchain-orchestrated federated learning
framework in medicine and outlined some challenges. Połap
et al. [4] designed a multiagent medical system based on FL
and blockchain that can separate complicated tasks into
individual objects and process medical data in real time.
While the integration of blockchain and FL can resist a single
point of failure and enable life-cycle governance of the
training process, due to the transparency of blockchain, it
raises concerns with regard to the privacy of the model pa-
rameters. To this end, Liu et al. [15] proposed a blockchain-
based secure FL framework for 5G networks, in which dif-
ferential privacy noise was added on the updates to prevent
inference attacks. Kumar et al. [16] proposed a blockchain-
based FL framework that trained a collaborative deep learning
model for COVID-19 detection using clinical data from
multiple hospitals and added Laplace noise to the local
gradients to ensure privacy. Rahman et al. [17] proposed a
hybrid FL framework for the Internet of Health -ings
(IoHT) that supported lightweight DP to realize the privacy
and anonymization of the IoHT data. However, differential
privacy used by [15–17] will cause some loss of data utility,
which will reduce the availability of smart healthcare. In this
paper, we design an adaptive differential privacy algorithm to
achieve a balance between data privacy and data utility.

On the other hand, poisoning attack [18] launched by
malicious users is also another challenge faced by block-
chain-based FL methods. Although Liu et al. [15] executed
smart contracts to identify malicious participants who ini-
tiated poisoning attacks, they assumed that there was a
public test dataset in advance, which was unrealistic for
smart healthcare with private data of patients. In this paper,
we present a simple gradient verification method that does
not need a public test dataset to detect poisoning attacks.

3. Proposed Model

3.1. -reat Model. In this section, we give the threats faced
by smart healthcare.

-reat 1. Potential data privacy leakage. AI models built
on clinical data may be attacked by adversaries to infer
patient privacy.
-reat 2. Single point of failure. Existing smart
healthcare models rely on a central server to store the
clinical data or exchange the model parameters. Once
the central server is crashed, the model training will end
with failure.
-reat 3. Poisoning attacks. Due to the vulnerability of
the MIoT, adversaries may launch poisoning attacks on
the MIoT device’s data or local model parameters,
which will compromise the correctness of FL.

For ease of understanding, the main symbols used in this
paper are listed in Table 1.

3.2. System Architecture. Our smart healthcare system is
mainly composed of the user layer and edge node layer. -e
user layer mainly includes wearable sensors, MIoT devices,
and mobile terminals. -ey are used to monitor patients’
physiological condition, collect clinical data, and train FL
model locally. Edge nodes are mainly composed of base
stations equipped with edge computing servers that have
powerful computation and communication capabilities.
-ey maintain the blockchain as miners, receive and store
the model parameters, and authenticate the parameters by
consensus protocol. -e training process in one round is
shown in Figure 2.

As shown in Figure 2, a complete training process of one
round can be formulated as the following steps:

(1) Hospitals determine and send the training task to the
blockchain, and then the genesis block is created and
distributed to all the MIoTdevices and edge nodes to
perform model initialization. -e genesis block
mainly contains the following information:① initial
model parameters w0 and total training rounds T;②
public keys of all parties that are used to create
signatures; ③ initial reputation value of all edge
nodes and MIoT devices; ④ reputation update
function.

(2) -eMIoTdevice trains the model locally based on its
collected clinical data and adds DP noise to the local
gradient (see details in Section 3.3.1) so as to cope
with -reat 1.

(3) -e MIoT device uploads the noised gradient along
with the signature to its associated edge node in the
form of transactions.

(4) After receiving data from devices within their cov-
erage, the edge nodes first verify the legality of the
signature and then elect a verification committee to
detect whether the local gradients are poisoned
update (see details in Section 3.3.2) so as to cope with
-reat 3.

(5) A leader is randomly selected to generate a new block
containing the necessary model parameters for this
training round. -e verification committee verifies
the new block and broadcasts the valid one to
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synchronize the ledgers of all edge nodes (see details
in Section 3.3.2) so as to cope with -reat 2.

(6) -e MIoTdevice downloads the latest block from its
associated edge node and updates its local model by
the global gradient stored in the block. -e next
training round starts from step 2 until the model
converges or the maximum rounds are reached.

Next, we will introduce the main construction of our
method in detail.

3.3. Construction of Method

3.3.1. Adaptive Differential Privacy Algorithm. -e ad-
vanced privacy attacks such as model inversion [19] and
model extraction attack [20] have shown that the model
parameters stored in the blockchain are not enough to

protect the privacy of raw clinical data. References [18, 21]
used Shamir secret sharing and threshold Paillier encryption
to protect local gradients, respectively, but both consume
large computation overhead. In contrast, differential privacy
technology needs less computation overhead, which is more
suitable for MIoT devices with limited resources.

In principle, DP is a strictly provable mathematical
framework whose basic idea is to add carefully designed
noise to the input or output of a function so that the
modification of any individual sample in the dataset will not
have a significant impact on the output. -e related defi-
nitions are as follows.

Definition 1 (differential privacy [22]). A randomized al-
gorithm A: D⟶ R is (ε, δ)-differentially private if for any
two datasets D and D′ differing in an individual sample and
any output O ∈ R:

Table 1: Main symbols.

Symbols Definitions
T -e total number of training rounds
K -e number of MIoT devices
M -e size of the verification committee
gi,t -e local gradient of i-th device in the t-th training round
gi,t -e noised gradient of i-th device in the t-th training round
Ct -e gradient clipping threshold in the t-th training round
G Prior threshold
ε Privacy budget
δ Violation probability of the “pure” differential privacy
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Figure 2: Training process in one round.
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Pr[A(D) � O]≤ e
ε

× Pr A D′( 􏼁 � O􏼂 􏼃 + δ, (1)

where ε is the privacy budget. A small εmeans a higher level
of privacy preservation but greater accuracy loss for algo-
rithm A and vice versa. δ is the probability that measures the
violation of the “pure” differential privacy, which is usually a
small value.

Definition 2 (sensitivity [22]). For any real-valued function
f: D⟶ Rd with D as the input dataset and Rd as the d-
dimensional vector output, the sensitivity of f is

Δf � max
D,D′

f(D) − f D′( 􏼁
����

����p
, (2)

where D and D′ are two adjacent datasets differing in an
individual sample and ‖•‖p denotes the Lp norm.

Definition 3 (Gaussian mechanism [22]). Assume that L2
norm is used to compute the sensitivity of function f.
(ε, δ)-differentially privacy can be realized via adding
Gaussian noise to the output of function f:

A(D) � f(D) + N 0, (Δfσ)
2
I􏼐 􏼑, (3)

where N(0, (Δfσ)2I) is the Gaussian distribution with
mean 0 and standard deviation Δfσ and I is the identity
matrix.

From the above definitions, we can see that the private
information in a dataset can be hidden by adding noise, but
at the same time, the noise will lower the data utility.
Reference [23] added noise on the raw data by local dif-
ferential privacy, but it reduced the model accuracy severely.
Reference [24] added Gaussian noise on the clipped gradient
but did not explain how to select the clipping threshold. -e
value of the threshold is important to the FLmodel: too large
a value will add excessive noise and too small a value will
over clip the gradient, both of which will cause serious
accuracy loss. Aimed at this issue, we draw on the idea of the
RMSProp optimization algorithm and propose an adaptive
differential privacy algorithm for MIoT devices, which can
flexibly adjust the clipping threshold according to the
training process to reduce the negative impact of noise on
the model accuracy.

RMSProp is a variant of gradient descent algorithm for
machine learning, which speeds up the convergence rate by
adjusting the step size. -e iteration formula is as follows:

E g
2

􏽨 􏽩
t
←(1 − c)E g

2
􏽨 􏽩

t−1 + c gt( 􏼁
2
,

θt←θt−1 − η
gt����������

E g
2

􏽨 􏽩
t

+ ε0
􏽱 ,

(4)

where θt is the model parameter in the t-th iteration, gt is the
gradient, η is the learning rate, E[g2]t−1 is the cumulative
square of the historical gradient, c is an exponent of gradient
accumulation, and ε0 is to ensure that the divisor is not zero,
generally set to 10−8. Due to the continuity and gradualness
of the convergence process [25], the historical gradient can
usually be used to estimate the current gradient. -erefore,

E[g2]t−1 in the RMSProp algorithm can be regarded as the
prior knowledge of the current gradient.

-e existing method [26] lets C ≈ ‖􏽥gt‖2 be the ap-
proximate optimal value of the clipping threshold. But
according to the training process in Figure 2, the MIoT
device cannot obtain the global gradient of the current
training round before uploading the local gradient. So based
on the idea of RMSProp, this paper uses the prior knowledge
E[􏽥g2]t−1 to predict the global gradient 􏽥gt of the current
round and then sets 􏽥gt as the clipping threshold; that is,
Ct � β

�������

E[􏽥g2]t−1

􏽱

, where β denotes the local clipping factor,
and the prior knowledge E[􏽥g2]t−1 is computed as follows:

E 􏽥g
2

􏽨 􏽩0 � 0
→

,

E 􏽥g
2

􏽨 􏽩
t−1←(1 − c)E 􏽥g

2
􏽨 􏽩

t−2 + c 􏽥gt− 1( 􏼁
2
.

(5)

Note that the prior knowledge E[􏽥g2]0 � 0 in the first
training roundwill result inC1 � β

������

E[􏽥g2]0

􏽱

� 0, which cannot
be used for gradient clipping. -erefore, we set another prior
threshold G: when the prior knowledge of the gradient is
insufficient in the initial training stage (i.e., E[􏽥g2]t−1 <G), set
the gradient clipping threshold as a fixed value C; when the
training continues until the prior knowledge satisfies
E[􏽥g2]t−1 >G, set the gradient clipping threshold as
Ct � β

�������

E[􏽥g2]t−1

􏽱

.G usually takes an empirical value according
to the training process of the model, which may vary in dif-
ferent datasets, but a simple way is to set G as the prior
knowledge E[􏽥g2]t−1 in a certain training round. So we have

Ct �
C, whenE 􏽥g

2
􏽨 􏽩

t−1 <G,

β
�������
E 􏽥g

2
􏽨 􏽩

t−1

􏽱
, whenE 􏽥g

2
􏽨 􏽩

t−1 >G.

⎧⎪⎨

⎪⎩
(6)

-en, in the t-th training round, the MIoT device
i(1≤ i≤K) clips the local gradient gi,t and adds DP noise as
follows:

gi,t �
gi,t

max 1, gi,t

����
����2/Ct􏽮 􏽯

+ N 0, C
2
t σ

2
􏼐 􏼑. (7)

Since the value of
�������

E[􏽥g2]t−1

􏽱

in equation (6) decreases as
the model converges, the local clipping threshold Ct will also
decrease, making the DP noise ξ ∼ N(0, (Ctσ)2I) in equa-
tion (7) less, which contributes to the convergence of the
model in the later training stage.

3.3.2. Consensus Protocol Based on Gradient Verification.
Since MIoTdevices are widely distributed in the open network
edge, the clinical data they collect may be of low quality and
even be poisoned by adversaries, and then the local gradient
trained on this kind of data will deviate from the global con-
vergence trend. To remedy the adverse effects of thesemalicious
gradients on the blockchain-based FL, we integrate gradient
verification with consensus protocol to carry out a consensus
process among the edge nodes. Each edge node identifies and
removes malicious gradients uploaded by its associated MIoT
devices so as to only aggregate qualified gradients to generate
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the global model and achieve reliable FL. Unlike the proof-of-
work (PoW) protocol which consumes a lot of computing
resources, our protocol is improved on Algorand [27]. In each
round of training, only some miners are selected to verify the
new block by Byzantine agreement protocol, and the com-
munication overhead among miners is further reduced, so the
consensus efficiency is high and the forking probability is ex-
tremely low. -e specific details are as follows:

(1) Initialization. A group of edge nodes with powerful
computation and communication capabilities are chosen as
miners. -ese miners not only generate or verify block but
also execute gradient verification. To ensure the security of
the blockchain, we assume that, at any point, no more than
1/3 of the miners are malicious. In addition, we assign an
initial reputation value to each miner. If a miner is identified
by other miners to return a falsified verification result or a
fake block, then its reputation value will decrease by 1.

(2) Gradient Verification. After receiving the data from its
associated MIoT devices, the miner first verifies the legality of
the sender by checking the digital signature. If the signature is
valid, then the miner puts the local gradient into the transaction
pool. Subsequently, some miners are selected to form a veri-
fication committee, which is responsible for identifying and
filtering malicious gradients. In this paper, we present a rep-
utation-based consistent hashing protocol to designate the
verifier role to some miners. Specifically, given a hash ring
whose space is assigned to miners in proportion to their rep-
utation value, we repeatedly rehash the initial SHA-256 hash of
the last block and map the result to the hash ring. -e miner
corresponding to the space where the hash lies is chosen to be
the member of the verification committee. -is step is repeated
until the size of the committeeM is reached, which is shown in
Figure 3. -e principle of the above process is similar to that of
Algorand [27]: the probability of a party being selected is
proportional to its reputation. Since the adversary cannot obtain
the state of the block until it is generated, they cannot predict the
output of the consistent hashing and launch targeted attacks.

-e verification committee executes the multi-KRUM
algorithm [28] on gradients in the transaction pool and
accepts the top majority of the gradients in each training
round. -e specific process is as follows:

Step 1. Assume that R is the total number of gradients in
the transaction pool and f is the number of Byzantine
gradients.-e verifier adds up the Euclidean distance of
each gradient to its closest R-f-2 gradients and uses the
sum as the quality score of the gradient:

s(i, t) � 􏽘
i⟶j

gi,t − gj,t

�����

�����. (8)

Step 2. -e verifier selects the R-f gradients with the lowest
scores as qualified gradients and signs them using its
public key. To prevent some malicious verifier from ar-
bitrarily accepting the gradients from its colluding MIoT
devices, we require that anMIoTdevice’s gradient must be
signed by most verifiers before it is finally accepted.

(3) Candidate Block Verification. A miner is randomly
chosen from the verification committee as the leader of
the current training round. -e leader collects qualified
gradients in the transaction pool and generates a new
block shown in Figure 4, from which it can be seen that,
except for the hash value used to link the previous block,
the block also contains all the qualified gradients and
corresponding signatures of the verification committee.
-en the new block along with the signature of the leader
is sent to the verification committee to verify the validity
of the block, mainly by checking the signature of the
leader and verifiers. Only when more than 2/3 of the
verifiers agree on the block, the block is determined to be
valid and broadcasted to arrive at a consensus in the
blockchain through the popular gossip protocol [29].
Otherwise, an empty block is created.

(4) Global Model Training. All the MIoT devices download
the latest block from the blockchain, compute the global
gradient by averaging all the qualified gradients stored in the
block, and then update their local models. -e next training
round will begin until the model converges or reaches the
maximum number of rounds. Note that, in each round of
training, the reputation value of the MIoTdevice whose local
gradient is identified as qualified and the verifier who returns
the correct verification result will both increase by 1; oth-
erwise, their reputation value will decrease by 1. When the
reputation value decreases to zero, the entity (e.g., MIoT
device or edge node) is put into the blacklist and prohibited
from participating in the consensus.

-e security of the above consensus protocol can be
guaranteed from the following aspects: (1) In each round of
training, we use consistent hashing to select different miners to
verify the newblock.-e output of consistent hashing cannot be
predicted by attackers in advance, so attackers cannot launch
targeted attacks on specific verifiers. In addition, as designed by
the consensus protocol, the probability of aminer being selected
as a verifier is proportional to its reputation value, so attackers
cannot increase the probability of being selected through Sybil
attack without increasing its own reputation value, which
further strengthens the security. (2) We require that an MIoT
device’s gradient can be identified as qualified onlywhen it owns
the signatures of most verifiers so as to prevent some malicious
verifiers from colluding with some MIoT devices. (3) -e
consensus protocol follows Algorand [27], requiring that the
newly generated block can only be identified as valid and
broadcasted after it is approved bymore than 2/3 of the verifiers,
so its security is equivalent to that of Algorand.

3.4. SecurityAnalysis. Our scheme uses a differential privacy
mechanism to protect data privacy, so how to track the
accumulated privacy loss during training under a given
privacy budget is very important. In this paper, we use the
privacy accountant proposed by Abadi et al. [24] to compute
the privacy loss, which is used by many related works
[15, 17]. Related definitions are as follows.
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Definition 4 (privacy loss). Assume that A: D⟶ R is a
randomized algorithm, D and D′ are adjacent datasets
differing in an individual sample, and then the privacy loss of
output O ∈ R is

c o, A, D, D′( 􏼁≜ log
Pr[A(D) � o]

Pr A D′( 􏼁 � o􏼂 􏼃
. (9)

Definition 5 (moment accountant). -e moment accoun-
tant of algorithm A at the λth moment is defined as

α(λ)≜ max
D,D′

log EO∼A(D) exp λc O, A, D, D′( 􏼁( 􏼁􏼂 􏼃. (10)

Theorem 1 (composability). Assume that algorithm A is
composed of a sequence of subalgorithms A1, A2, . . ., Ak. For
any moment λ, the moment accountant of A is bounded by the
sum of moment accountant of A1, A2, . . ., Ak:

αA(λ)≤ 􏽘
k

i�1
αAi

(λ). (11)

Theorem 2 (tail bound). For any ε> 0, the algorithm A is
(ε, δ)-differentially private for

δ � min
λ

exp αA(λ) − λε( 􏼁. (12)

According to -eorem 1, the privacy loss of our method
is proportional to the number of MIoT devices and training
rounds. Assume that the number of MIoT devices is K and
training rounds is T. Let the overall moment accountant be
α(λ) and themoment accountant of device i(1≤ i≤K) in the
t-th round be αi,t(λ). Based on -eorem 1, we have

α(λ)≤ 􏽘
T

t�1
􏽘

K

i�1
αi,t(λ), (13)

where αi,t(λ) mainly keeps track of the DP noise
ξ ∼ N(0, (Ctσ)2I) added on the clipped gradient of devices,
shown as equation (7). -e computation of αi,t(λ) is as
follows.

Let μ0 and μ1 be the probability density function of
Gaussian distribution N(0, (Ctσ)2) and N(1, (Ctσ)2), re-
spectively. μ denotes the mixed Gaussian distribution μ �

(1 − q)μ0 + qμ1 of μ0 and μ1, where q is the sampling
probability of local training. -en we need to compute
αi,t(λ) � log max(E1, E2), where

E1 � Ex∼μ0
μ0(x)

μ(x)
􏼠 􏼡

λ
⎡⎣ ⎤⎦, (14)

E2 � Ex∼μ
μ(x)

μ0(x)
􏼠 􏼡

λ
⎡⎣ ⎤⎦. (15)

Since the noise distribution ξ ∼ N(0, (Ctσ)2I) added on
the local gradient is the same for all MIoT devices, the com-
putation of αi,t(λ), 1≤ i≤K, 1≤ t≤T is the same for all de-
vices. By equation 13, it suffices to compute or bound the
overall moments α(λ) of our method.-en we can use the tail
bound in -eorem 2 to convert the moment bounds to
(ε, δ � minλ exp(α(λ) − λε))- differential privacy guarantee.
Note that, in the execution of DP-based deep learning methods
[24], the value range of integer λ is usually 0≤ λ≤ 100.

4. Experiments

Wewant to demonstrate the following points when designing
the evaluation of our method: (1) Our method can make a
tradeoff between the model accuracy and privacy preserva-
tion. (2) Given a reasonable privacy budget, the running time
of our method is less than similar blockchain-based FL
methods. (3) Our method is robust to poisoning attack.

(1) Models and datasets: the experiments are conducted
under Ubuntu 18.04 system with Intel i7-8700K
CPU, GTX 1080T GPU, and 16GB RAM. We im-
plement a small blockchain prototype based on
Ethereum in Go language and train the deep learning
model in Python. go-python v1.0 [30] library is used
to interface between Python and Go. We use a
convolutional neural network (CNN) composed of
two 5× 5 convolution layers, a full-connected layer
and a softmax output layer (1,663,370 parameters), as
the deep learning model, in which the model weights
are initialized by normal distribution N(0,0.022) and
the biases are initialized as 0. As for the experimental
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dataset, a diabetes dataset from the American Na-
tional Institute of Diabetes and Digestive and Kidney
Diseases available online [31] is employed, which is
composed of eight medical predictor variables and a
target variable shown in Table 2, aiming to predict
whether the patient has diabetes. We split the dataset
into training and testing datasets in the ratio of 70 :
30. In order to simulate 20 distributed MIoTdevices
in smart healthcare, we randomly shuffle and divide
the dataset into 20 parts evenly, and each part is
regarded as the local clinical data of an MIoTdevice.

(2) Hyperparameters and baselines: each MIoT device
trains the model locally with the batch size of 64 and
local iterations of 20, and the gradient parameters are
transformed into byte streams for transmission by
pickle module. -e hyperparameters in the adaptive
DP algorithm are set as follows:
G � 10− 6, β � 1.2, σ � 4, δ � 10− 4, c � 0.1, C � 3.
Unless stated otherwise, we set the privacy budget
ε � 3 as default. In order to provide a comparison for
our method, we choose two methods as the baseline:
(1) BlockFL [32]: a blockchain-based FL method
running on a device; (2) original FL [1]: the original
federated learning method without any additional
privacy-preserving strategies.

4.1. Model Accuracy. Given two different privacy budgets,
we compare the model accuracy of our method with BlockFL
and original FL, as shown in Figure 5.

We can find the following:

(1) Our method exhausts the privacy budget ε � 2 and
ε � 3 in the 36th and 53rd rounds and achieves
model accuracy of 78.5% and 82.7%, respectively. It
can be seen that the larger the privacy budget, the
higher the model accuracy but the lower the level of
privacy preservation simultaneously. In order to
balance the model accuracy and data privacy, we set
the privacy budget ε � 3 in the rest of the experi-
ments unless stated otherwise.

(2) Original FL and BlockFL achieve higher model ac-
curacy than our method; this is because our method
adds DP noise on the gradient while the other two
methods preserve the raw gradient. But given an
appropriate privacy budget, our method protects the
data privacy with only a slight accuracy loss. For
example, when the privacy budget ε � 3, our method
achieves 82.7% accuracy, which is only slightly lower
than 84.5% of original FL and 84% of BlockFL.

4.2. Running Time. In order to evaluate the introduction of
blockchain on the training efficiency of federated learning,
we compare the running time of the three methods, as
shown in Figure 6, from which we can see that the running
time of BlockFL and our method is greater than that of
original FL. For example, when the training reaches 50
rounds, the running time of original FL, BlockFL, and our

method is 1047 s, 1702 s, and 1624 s, respectively. -is is
because the consensus protocol in the blockchain involves
time-consuming operations such as block generation,

Table 2: Experimental dataset.

November Field name Data type
1 Pregnanci Integer
2 Glucose Integer
3 BloodPressure Integer
4 Skin-ickness Integer
5 Insulin Integer
6 BMI Integer
7 DiabetesPedigreeFunction Integer
8 Age Integer
9 Outcome Integer
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Figure 6: Running time of the three methods.
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verification, and broadcast. -erefore, blockchain-based FL
methods (i.e., BlockFL and our method) achieve a series of
security attributes such as auditability, reliability, and re-
sistance to a single point of failure at the cost of some
computation overhead, so they are more suitable for fields
with high-security requirements, such as the medical field.

Since blockchain-based FL methods usually include
local training phase and consensus phase, Figure 7 com-
pares the average running time per round of each phase for
BlockFL and our method under different number of local
devices. It can be seen that, due to the designed adaptive DP
algorithm, the local training phase of our method consumes
slightly more time than that of BlockFL, which does not
have any additional privacy-preserving mechanism, but
their local training time does not increase with the number
of devices. On the contrary, their consensus time is pro-
portional to the number of devices, and the consensus time
of our method is less than that of BlockFL. -is is because
the PoS consensus protocol used by BlockFL needs to
continuously compute nonce until reaching the target
condition, which is time-consuming, while our method
uses a more efficient consistent hashing protocol and
gradient verification method.

4.3. Privacy Budget Consumption. In the designed adaptive
differential privacy algorithm, we adjust the clipping
threshold Ct according to the training process. Figure 8
shows the change of Ct during the training.We can find that,
in the first 10 rounds, Ct keeps unchanged, which is because
we fix it as 3 in the initial training stage according to
equation (6). As the training goes on, the value of Ct

gradually decreases.
In order to further measure the effect of the designed

adaptive differential privacy algorithm in reducing privacy
budget consumption, we compare our method with the
conventional DP-based method, which fixes the clipping
threshold as C� 3. We record the privacy budget consumed
by the two methods when reaching the specified model
accuracy, as shown in Table 3, where εD and εA denotes the
privacy budget consumed by the conventional method and
our method, respectively.

From Table 3, we can see that our method consumes
much less privacy budget than the conventional method to
reach the same model accuracy. For example, when the
model accuracy is 80%, 82%, and 84%, our method reduces
the privacy budget by 57%, 96%, and 81%, respectively,
compared with the conventional method.

Figure 9 further shows how the privacy budget of the
two methods consumes during the training process. It can
be seen that the curves of the two methods almost overlap
at the beginning, but the increase of the privacy budget of
our method gradually decreases in the later stage of
training, while the privacy budget of the conventional
method still increases linearly. -is proves that our
method uses the same fixed clipping threshold as the
conventional method due to insufficient prior knowledge
at the beginning but adopts the adaptive DP algorithm in
the latter to reduce the consumption of the privacy budget.

4.4. Resistance to Poisoning Attack. Since MIoT devices are
usually located at the edge of an open network, they may face
poisoning attacks from adversaries. In order to evaluate the
ability of our method to resist poisoning attacks, we use a
label flipping attack to generate poisoned samples by
changing the labels of training samples and keeping the
sample features unchanged. -en, we assign the poisoned
samples to the designatedMIoTdevices and define the attack
success rate as the proportion of incorrectly predicted
samples on the test dataset. We set the proportion of poi-
soned MIoT devices as 30% and took an average of 20 ex-
periments as the final results.

Figure 10 shows the training loss of the three methods,
from which we can see that, due to the limit of privacy
budget ε � 3, our method converges in 53 rounds, but the
other two methods cannot converge even within 70 rounds.
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Figure 11 further shows the attack success rate of the
label flipping attack on the three methods. Since the original
FL and BlockFL lack a mechanism to detect the poisoned

gradient, their attack success rate is almost always greater
than 50%. However, our method limits the attack success
rate to less than 20% in the later stage of training, and
experimental data shows that four MIoT devices have been
put into the blacklist at the end of the training, indicating
that the consensus protocol based on gradient verification
we design can effectively resist a certain proportion of
poisoning attack.

5. Conclusions

In order to make full use of clinical data to improve the
accuracy of disease diagnosis and medical service, smart
healthcare based on MIoT has been widely exploited in
recent years. However, it still faces challenges such as patient
privacy leakage and various attacks from adversaries. To this
end, we propose a blockchain-based federated learning
method for smart healthcare. In particular, we design an
adaptive differential privacy algorithm to carefully adjust the
amount of noise added on the gradient to strike a balance
between the privacy budget and accuracy degradation. -e
FL process is managed by a verification-based consensus
protocol to prevent poisoning attacks and single point of
failure. -e experimental results on a real-world diabetes
dataset show that our method can achieve similar accuracy
to the original FL in acceptable running time. We also il-
lustrate its ability to reduce the privacy budget consumption
and withstand poisoning attacks. In the future, we will
continue to explore and advance our method with public
partners to make more improvements in smart healthcare.

Data Availability

-e diabetes dataset is publicly available at https://www.
kaggle.com/uciml/pima-indians-diabetes-database. Other
data in this paper come from the data statistics of the test
process. All the data are real and can be used.

Table 3: Privacy budget consumed by our method and conven-
tional method.

Accuracy δ εD εA
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0.84 7.64 4.21
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Figure 9: Privacy budget consumption of our method and con-
ventional method.
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