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Genetic predisposition to inflammatory bowel disease (IBD) is an 
intensive area of research, which was demonstrated by a recent 

request for application by the National Institutes of Health of the 
United States (RFA-DK-11-032). However, the emergence of the 
disorders over the past five to six decades with the spread of industrial-
ization around the world (1,2), and the high monozygotic twin dis-
cordance rates (3) in both Crohn disease (CD) and ulcerative colitis 
(UC), argue for nongenetic factors being as or even more important 
for IBD pathogenesis than genetic susceptibility. Epigenetic changes 
are environmentally responsive molecular mechanisms that can mod-
ify gene expression independently of the genetic code. They were 
proposed to play an important role in IBD pathogenesis in 2000 (4). 
Yet, a recent PubMed search with “genetics” and “IBD” as keywords 
yielded 7218 publications, while a search using “epigenetics” and 
“IBD” yielded only 15 articles (>480 fold difference in favour of gen-
etics). Therefore, the present review intends to highlight the potential 
importance of epigenetic mechanisms with regard to IBD and support 
the developmental origins paradigm shift in the basic scientific and 
clinical approaches toward the disease group.

NoNgeNetic factors are importaNt  
iN iBD pathogeNesis

Twin studies (3,5,6) indicate that the relative genetic contribution to 
CD and UC is low when compared with celiac disease (CeD) (7), and 
is comparable with irritable bowel syndrome (IBS) (8,9) in the case of 
UC (Figure 1). These observations raise the importance of nongenetic 
processes in the etiology of IBD. Compared with CeD, in which a single 
human leukocyte antigen (HLA) locus can explain 40% of heritability 
(10), more than 71 loci have been associated with CD (11) and more 
than 47 such genomic regions have been described for UC (12). Most 
IBD susceptibility loci contribute to disease development with low ORs 
(1 to 1.5), revealing the complexity of even the relatively low genetic 
attribution to these disorders. Naturally, the unreliability of the clinical 
subphenotypes of IBD may also add to the difficulties in determining 
phenotype-genotype associations, as has similarly been described for 
investigations into the etiology of IBS (13). 

There is also diverse genetic susceptibility to IBD in different eth-
nic backgrounds in spite of similar disease phenotypes (14-17). This 
genetic diversity suggests that common changes of industrialization 

rEviEw

©2012 Pulsus Group Inc. All rights reserved

r Kellermayer. epigenetics and the developmental origins of 
inflammatory bowel diseases. can J gastroenterol 2012;26(12): 
909-915.

The gut microbiota, the intestinal mucosa and the host immune system 
are among the large biological networks involved in the development 
of inflammatory bowel disease (IBD), which includes Crohn disease 
(CD) and ulcerative colitis (UC). Host genetics and environmental 
factors can significantly modulate the interactive relationships among 
these biological systems and influence predilection toward IBD. 
High monozygotic twin discordance rates and the rapid rise in the 
prevalence of IBD indicate that environmental influences may be as 
important or even more important in their pathogenesis than genetic 
susceptibility. However, the nature and timing of environmental fac-
tors critical for inducing IBD remain largely unknown. The molecular 
mechanisms and the key biological component(s) that may be affected 
by such factors are also in question. Epigenetic changes, such as DNA 
methylation (the methylation of cytosines followed by a guanine in 
CpG dinucleotides) can be modified by environmental influences 
during finite developmental periods and have been implicated in the 
pathogenesis of IBD. Mucosal DNA methylation can also react to 
changes in the commensal microbiota, underscoring the intercalating 
relationships among the large biological systems involved in gastro-
intestinal disorders. Therefore, transient environmental influences 
during specific periods of development may induce critical change(s) 
in an isolated or concomitant fashion within the intestinal biomic 
networks and lead to increased susceptibility to IBD. The present 
review focuses on the emerging paradigm shift considering IBD to 
originate from critical environmental effects during pre- and postnatal 
development.
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L’épigénétique et les origines de l’apparition des 
maladies inflammatoires de l’intestin

Le microbiote intestinal, la muqueuse intestinale et le système immu-
nitaire de l’hôte font partie des grands réseaux biologiques qui partici-
pent à l’apparition des maladies inflammatoires de l’intestin (MII), 
lesquelles incluent la maladie de Crohn (MC) et la colite ulcéreuse 
(CU). La génétique de l’hôte et les facteurs environnementaux peu-
vent moduler de manière significative les relations interactives entre 
ces systèmes biologiques et influer sur la prédilection vers les MII. 
D’après les taux de discordance élevés chez des jumeaux monozygotes 
et l’augmentation rapide de la prévalence des MII, la pathogenèse des 
influences environnementales serait aussi importante, sinon plus, que 
la susceptibilité génétique. Cependant, on ne sait pas grand-chose de 
la nature et du moment d’exposition aux facteurs environnementaux 
nécessaires pour induire une MII. Les mécanismes moléculaires et les 
principaux éléments biologiques susceptibles d’être touchés par ces 
facteurs sont également remis en question. Les changements épigéné-
tiques, tels que la méthylation de l’ADN (méthylation des cytosines 
suivie par une guanine dans les dinucléotides CpG), peuvent être 
modifiés par des influences environnementales pendant des périodes 
précises du développement et contribuer à la pathogenèse des MII. La 
méthylation de l’ADN muqueux peut également réagir aux change-
ments du microbiote commensal, ce qui fait ressortir les relations 
intercalantes entre les grands systèmes biologiques participant aux 
troubles gastro-intestinaux. Ainsi, des influences environnementales 
transitoires pourraient induire des changements capitaux de manière 
isolée ou concomitante dans les réseaux biomiques intestinaux, susci-
tant une plus grande susceptibilité aux MII. La présente analyse porte 
sur le changement de paradigme émergent selon lequel les MII proviend-
raient d’effets capitaux de l’environnement pendant le développement 
prénatal et postnatal.
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inducing nongenetic modification in genetically vulnerable hosts may 
be more important than the genetic predisposition itself toward indu-
cing disease. The increased incidence of IBD in populations migrating 
from low incidence to high incidence areas of the world (18) also sup-
ports this latter conclusion. 

epigeNetics aND iBD
The term ‘epigenetics’ was introduced by Conrad Hal Waddington 
(19) to describe all physiological processes that bridge genetics to 
individual phenotypes. Over time, the field has evolved to study bio-
logical mechanisms, which are mitotically (during the lifetime of one 
individual) heritable and can modulate pretranslational gene expres-
sion independently of the genetic code (20). In spite of the explosive 
expansion of epigenetic research, it remains debatable whether epi-
genetic mechanisms control transcription or if transcriptional velocity 
coordinates the establishment of epigenetic modifications, which then 
can firmly set the level of gene expression at select genomic loci (21).

The most stable epigenetic alteration is the methylation of the 
fifth cytosine carbon (5-mC) at CpG dinucleotides (Figure 2A). This 
molecular modification at gene promoters generally correlates with 
transcriptional downregulation. However, there are multiple excep-
tions to this rule (21,22), and gene body methylation has a variable 
association with transcriptional activity. Intragenic DNA methylation 
most commonly positively correlates with the transcription of inter-
mediately expressed genes (23). DNA methylation, which is critical 
for development and differentiation (24), is catalyzed by DNA 
methyltransferases dependent on dietary substrates and cofactors (25). 
More recently, it has been recognized that methylated cytosines can be 
hydroxymethylated (5-hmC) (26), leading to an added complexity of 
epigenetic regulation through cytosine modifications. Similar to 
methylation, hydroxymethylation of cytosines also appears to play an 
important role in mammalian development and differentiation (27). 

Another well studied epigenetic mechanism is the post-translational 
modification of histones (Figure 2B). Eight histone molecules comprise 
the nucleosomes around which DNA (147 base pairs) is coiled in the 
chromatin of eukaryotes (28). The aminoterminal tails of histones 
extend from the surface of the nucleosomes (29) and contribute to the 
higher organization of chromatin. Histone variants, nucleosome spa-
cing and nuclear spatial positioning also contribute to the functional 
structure of chromatin (30). Post-translational modification of histones 
usually occurs at lysine, arginine, serine and threonine residues of the 
tails. There are currently 67 different types of histone alterations rec-
ognized (31), highlighting the intriguing complexity of this epigenetic 
mechanism. Perhaps the most clearly described positive correlation 
between histone modifications and gene expression is the acetylation 

of lysines in histone 3 and histone 4 tails. In the meantime, the exact 
mechanisms by which this transcriptional regulation is mediated 
remain unclear (32), but it frequently appears to occur in concert with 
decreased DNA methylation in less dense chromatin structures (euchro-
matin) where gene expression is usually more intense (as opposed to the 
case of densely packaged chromatin or heterochromatin).

Another field of epigenetics that has generated significant findings 
is the study of noncoding RNAs (ncRNAs, Figure 2C), which can be 
discriminated by their length (ie, long [lncRNA >200 bases], medium 
[mncRNA 50 to 200 bases] and short/small [sncRNA <50 bases; 
including microRNAs [miRNAs]) (33). These molecules can interfere 
with messenger RNA (mRNA) translation, induce mRNA degrada-
tion (mostly the sncRNAs) (34) or modulate gene expression by 
DNA-ncRNA, or ncRNA-protein (with protein complexes involved 
in gene expression regulation) interactions (33).

A less frequently discussed epigenetic mechanism is autoregula-
tion, in which proteins (such as transcription factors) can bind their 
promoter region thereby leading to an autoregulatory feedback loop of 
their own transcription (Figure 2D) (35). 

Importantly, all of the above epigenetic processes can interact with 
one another in a dynamic fashion, thereby providing an intricate com-
plexity for nongenetically mediated molecular processes to modulate 
transcription (Figure 2, lower panel). One descriptive example for this 
intriguing intercalating epigenetic network is the expression of NF-E2-
related factor 2 (NRF2), a master regulator of oxidative and xenobiotic 
stress responses (36). Both DNA methylation (37) and histone modifi-
cation (38) modulate its transcription, whereas more than 30 different 
transcription factors regulated by NRF2 affect more than 60 miRNAs 
that can inhibit NRF2 expression (39).

figure 1) Estimation of relative genetic contribution to common gastro-
intestinal diseases based on monozygotic (MZ) and dizygotic (DZ) twin 
concordance rates. CeD Celiac disease; CD Crohn disease; IBS Irritable 
bowel syndrome; UC Ulcerative colitis

figure 2) Upper panel Epigenetic mechanisms. a DNA methylation 
(and hydroxymethylation) can occur in cytosine-guanine dinucleotides 
(CmpG). It usually negatively correlates (┬) with transcription when 
present in gene promoter regions, but most commonly positively associates 
(→) with transcription when present within the gene. B Histone modifica-
tion or post-translational modification (PTM) of histones correlates with 
gene transcription in a variable manner. c Noncoding RNAs (ncRNAs) 
can inhibit gene transcription and messenger RNA (mRNA) translation. 
They can also increase mRNA decay, thereby inducing pretranslational 
inhibition of gene expression. D Autoregulation provides a feedback loop for 
proteins to inhibit their own transcription. Lower panel Dynamic inter-
action between epigenetic mechanisms can provide a complex modulation of 
pretranslational gene expression
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 The concept of epigenetic disease associations is erupting in all 
areas of medicine from neurology (40) to cardiology (41), even 
through anesthesiology (42). The potential importance for epigenetics 
in IBD was raised in 2000 (4); however, consecutive reviews in this 
area are just recently appearing (43). This delay in advancement is 
likely related to the inherent difficulties of studying the epigenetics of 
IBD:

•	 IBD	is	specific	to	humans	(because	similar	disorders	are	still	
markedly different even in nonhuman primates [44]) leading to 
significant compromise when examining the diseases in animal 
models.

•	 Multiple	biological	networks,	tissues	and	cell	types	are	involved	in	
IBD pathogenesis including the commensal microbiota, the gut 
mucosa and the host immune system (45,46). Secondary to the 
critical involvement of epigenetic changes in differentiation, a 
large number of these are cell-type specific, making it difficult to 
determine which tissue to study to delineate epigenetic 
associations of IBD. Furthermore, the isolation and manipulation 
of tissues may induce nonspecific epigenetic changes and mask 
those that are vital.

•	 CD,	and	even	UC,	are	likely	not	single	diseases	but	common	
manifestations of distinct subtypes. Even the similar subtypes may 
arise from critical changes in different biological systems (47). 
Nevertheless, phenotypic characterization and appropriate 
separation of disease subtypes should ideally precede epigenetic 
studies in IBD.

•	 Epigenetic	changes	are	influenced	by	race,	age,	sex	and	location	
within tissues (such as within the colon) (48), and are likely to be 
modulated by drugs (48,49), and by the prolonged presence of 
disease and comorbidities. Therefore, the examination of 
treatment-naive patients at diagnosis with stringently selected 
controls is a feasible approach toward epigenetics in IBD.

•	 Epigenetic	changes	can	associate	with	genetic	modification.	
Therefore, the most ideal population to study epigenetic disease 
associations is monozygotic (MZ) twins discordant for the 
disorder. However, healthy twin observations (50) predicted that 
a twin with a disease in discordant MZ pairs may be epigenetically 
less different from the healthy twin sibling at critical pathogenic 
loci, compared with unrelated healthy individuals. Therefore, 
pathogenic epigenetic changes may be more difficult to detect 
(depending on the sensitivity of the detection method) in MZ 
twins than in the general population.

•	 Even	if	epigenetic	differences	between	patients	and	controls	are	
identified, cause or effect relationships must be determined, which 
is extremely difficult to perform in humans (see below).

One can imagine that it is exceedingly difficult to incorporate all of 
the above considerations into studies on IBD and epigenetics. In spite of 
such hurdles, increasing attempts have been made to delineate epigen-
etic associations with the disease group. Both targeted gene methylation 
(51) and DNA methylation microarray (52) assessments have detected 
numerous colonic mucosal associates of inflammation in IBD. As for 
peripheral blood, a recent study indicated epigenetic derrangement in 
peripheral blood leukocyte (PBL) DNA at genes linked to the T-helper 
(Th) cell 17 pathway in association with adult ileal CD (53). However, 
a large number of the putative associations coincided with T cell subset-
specific DNA methylation variation, indicating that the results may 
have been confounded by disease-specific white blood cell composition 
variation (Kellermayer R, Inflamm Bowel Dis, In press). Isolation of 
specific cell subsets of PBLs may lead to further advancement in the 
future because interferon-gamma methylation in isolated peripheral T 
cells correlated with IBD subgroups, for example (54). It is likely second-
ary to the lack of select PBL subset isolation that we have not been able 
to determine DNA methylation correlates of IBD, either from PBLs, or 
from peripheral blood mononuclear cell DNA, when studying treat-
ment-naive pediatric cases and adults (55). 

There are some indications that histone modifications (43,56) and 
miRNAs (57-59) may contribute to the development, progression 
and/or maintenance of IBD. However, only DNA methylation has 
been shown to be stably transmitted through repetitive cell divisions 
(30,60), thereby having the capacity to permanently convey epigen-
etic information during the lifetime of an individual. Additionally, 
only DNA methylation has been described to directly communicate 
environmental exposures to phenotypic outcome in mammals (61). 
Therefore, we will further focus on DNA methylation with regard to 
the epigenetic aspects of the developmental origins of IBD.

eNviroNmeNtaL origiNs of iBD
The developmental origins of disease hypothesis postulates that transi-
ent environmental exposures can induce critical changes in biological 
structures during finite periods of development, thereby modifying 
susceptibility to disorders later in life. The hypothesis has different 
implications for disease origins in the developing (62) versus the 
developed world (63).  

Multiple characteristics of the tremendously changing industrial-
ized environment have been targeted as potential causes for the rising 
incidence of IBD over the past five to six decades. Among these are 
pollution (64), refrigeration (65), increased hygiene (66), decreased 
infection with pathogenic organisms (67) and increased consumption 
of total fats, omega-6 fatty acids and meat, with a decreased intake of 
fruits, vegetables and fibre (68). The single prospective nutritional 
study linked omega-6 fatty acid consumption to the development of 
UC (69). In the meantime, clear results from human epidemiological 
studies (even if prospective and well controlled) are very difficult to 
obtain for obvious ethical and technical reasons (70). Therefore, the 
timing and the nature of environmental factors critical to IBD 
development have remained largely unknown, as have the molecular 

figure 3) Developmental plasticity, epigenetics and inflammatory bowel 
diseases (IBDs). Upper panel Developmental plasticity is higher during 
fetal development secondary to the massive molecular processes (intense cell 
division and differentiation) in flux. Therefore, environmental influences 
can significantly impact the fetus (thicker arrow) through the involvement of 
epigenetic mechanisms. Developmental plasticity progressively decreases 
postnatally (indicated by thinner arrows for environmental influences affect-
ing pediatric development and adult aging). IBD presents in children (25%) 
and in young adults. Nevertheless, environmentally induced fetal changes 
are likely to contribute more to the onset of the disorders than postnatal 
modifications secondary to this decline in developmental (including epigen-
etic) plasticity. Lower panel Nongenetic mechanisms, which can be 
environmentally more labile than the genetic code, contribute more to com-
mon gastrointestinal disorders such as IBD and irritable bowel syndrome 
(IBS) than celiac disease or monogenic gastrointestinal diseases
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mechanisms that may communicate the environmental effects toward 
disease induction. 

Observations of human migration would indicate that the peri-
conceptual, prenatal and early postnatal developmental periods may 
be more important with regard to the developmental origins of IBD. 
This conclusion is based on studies showing that it is the second gen-
eration of immigrants from low-incidence countries to high-incidence 
countries of IBD who develop a similar (71) – or even augmented 
(72,73) –  disease distribution compared with the endemic population. 
However, it has also been observed that transient exposures to higher 
levels of industrialization even in young adulthood (after 18 years of 
age) may increase one’s chances of developing IBD or, at least, UC 
(74). 

According to our current knowledge, biological (including epigen-
etic) plasticity is higher during periconceptual and prenatal develop-
ment than postnatally secondary to the increased number of molecular 
processes in flux (25). Therefore, it is likely that prenatal environ-
mental exposures are more important in the etiology of common dis-
eases, such as IBD, although these present later in life (Figure 3A). 
However, environmental influences can hypothetically trigger critical 
pathogenic changes at any time within an individual before the onset 
of disease, which can occur during a broad age range from young child-
hood to adulthood in the case of IBD. To further complicate the ques-
tion of ‘nature (ie, genetic origins) versus nurture (ie, nongenetic 
origins)’ in the disease group, very-early onset IBD appears to present 
a subgroup in which genetic changes may play a more important role 
than in adults (75). Nevertheless, the epidemiology of IBD (discussed 
above) strongly supports the importance of ‘nurture’ in the etiology of 

most cases. It should also be noted that nongenetic factors can be 
important modulators even in clearly monogenic gastrointestinal dis-
orders (such as Alagille syndrome [76,77]), the importance of which 
increase through genetically less clearly defined diseases (such as CeD 
[10]) to common multietiological illnesses (such as IBD and IBS) 
(Figure 3B).

DNa methyLatioN aND the eNviroNmeNtaL 
origiNs of iBD

As detailed earlier, DNA methylation is the only molecular process 
that has been clearly shown to communicate transient nutritional 
influences to definite phenotype modification in mammals. The first 
example of this nutritional imprinting to occur was described in the 
viable yellow Agouti (Avy) mouse (78). The effect of supplementing a 
dam diet with methyl-donor micronutrients on offspring Agouti gene 
methylation was studied. Methyl-donor micronutrients (MDs) feed 
into the mammalian one-carbon pool, thereby increasing methyl-
group abundance for DNA methyl-transferases to catalyze DNA 
methylation. Maternal MD supplementation increased offspring 
methylation at Agouti, which correlated with decreased gene expres-
sion and, consequently, more brown-coloured offspring than yellow. A 
handful of similarly behaving mammalian genomic loci have been 
identified (61), and some observations indicate that such nutritionally 
sensitive epigenetic modifications are also present in humans (79,80). 
Other examples of human and nonhuman mammalian epigenomic 
plasticity have been clearly demonstrated (61,63); however, the mech-
anism for the establishment remains unknown. 

Clear conclusions with regard to epigenetic disease etiology must 
be made prospectively with the use of transient environmental expos-
ures, and the critical tissues must be examined in the exposed subjects. 
The execution of such experiments in humans to unravel the environ-
mental epigenetic origins of IBD is exceedingly difficult. Not surpris-
ingly, only limited animal model examples currently exist to support 
this paradigm. 

The difficulty of determining the critically affected tissue by 
environmental exposures presents a challenge even in animal models 
of IBD because the diseases are believed to arise from an uncontrolled 
immune response against intestinal microbes or microbial components 
that is transmitted by the intestinal mucosa (45,46). Therefore, a sys-
tems biological approach to disease pathogenesis is feasible. Indeed, 
concomitant and potentially interactive epigenetic and microbiota 
changes can occur in the background of genetic predisposition to col-
itis in mammals, thereby modulating predilection toward intestinal 
inflammation (81). Consistent with the systems biological approach, 
one must consider environmental influences to induce epigenetic 
changes relevant for IBD differently during various stages of mammal-
ian development. Transuteral, transplacental and/or amniotic trans-
mission communicates maternal exposures toward the fetus in lack of 
a commensal microbiota during prenatal development (Figure 4A). 
There is a dramatic change during delivery with respect to these inter-
actions because direct environmental communication is established 
and progressive generation of the gut microbiota ensues (Figure 4B). 
Therefore, the interactive communication among the environment, 
the intestinal microbiota and the epigenome of the various host sys-
tems involved in IBD must be considered postnatally.

Epigenetic plasticity extends beyond infancy in the colonic mucosa 
of mice and it may be relevant for modulating the propensity toward 
colitis (82). Metabolite profiling and drug exposures have certainly 
indicated the role of DNA methylation in mucosal inflammation (83). 
Nevertheless, only prenatal and infantile exposure to the same methyl-
donor supplementation – as used in the Avy mouse – augmented mur-
ine colitis susceptibility, but pediatric supplementation did not (84). 
This maternally transmitted dietary exposure induced colonic mucosal 
DNA methylation and microbiota changes supporting the dynamic 
interaction between developmental nutritional epigenetics, microbes, 
and mammalian colitis. The micronutrient exposure-induced micro-
biota variation appeared to be independent of the maternally inherited 

figure 4) Prenatal (a) and postnatal (B) environmental influences can 
impact the interactive biological networks (genome and epigenome of the 
intestines and the associated immune system) involved in inflammatory 
bowel disease. The uterus, placenta, and/or amniotic fluid communicate 
maternal exposures toward the fetus in lack of a commensal microbiota dur-
ing prenatal development. However, postnatally, environmental exposures 
directly affect the interactive communication between the intestinal micro-
biota and the epigenome of the various host systems involved in inflamma-
tory bowel disease



Epigenetics and the developmental origins of IBDs

Can J Gastroenterol Vol 26 No 12 December 2012 913

microbiota. This observation suggests that prenatal developmental 
programming of colonic mucosal and immunological maturation 
imprints/programs postnatal microbiota shifts in the intestinal mucosa 
(85). Observations in sheep sustain the importance of maternally 
transmitted nutritional exposures (maternal obesity) modulating 
colitis susceptibility in lambs (86) and in young adult rats (maternal 
diet with varied fatty acid composition) (87); however, the epigenetic 
aspects of these interventions were not examined.

While the above-mentioned findings highlight the potential 
importance of prenatal biological/epigenetic plasticity in the etiol-
ogy of human IBD, other results suggest that early postnatal expos-
ures are similarly important. Neonatal stress has been observed to 
increase susceptibility toward colitis in adult mice in association 
with hypothalamic gene expression changes; however, epigenetic 
modifications were not studied (88). The importance of microbial 
composition changes during infancy has been observed in mammal-
ian models with respect to mucosal immune responses (89) and colitis 
susceptibility (90). The oral and gut mucosa can react to microbial 
changes by epigenetic modification at select genes relevant for intes-
tinal immunomodulation such as TLR4 (91), hBD2 (the gene of the 
antimicrobial peptide human β-defensin 2), CC chemokine ligand 
20, and others (92).  Such epigenetic modification may be dynamic 
and dependent on the presence of specific microbes (93). However, 
very recently, infantile exposure to specific pathogen-free microbiota 
in germ-free mice has been shown to decrease the methylation, 
hydroxymethylation and gene expression of Cxcl16 (the ligand of 

chemokine receptor Cxcr6) in the colon and lung, whereas later 
(at five weeks of age [ie, late pediatric development in mice]) 
exposure to the microbiota did not (94). Cxcl16 was critical for the 
accumulation of invariant natural killer cells in the tissues and for 
sensitization to oxazolone-induced colitis. Infantile pharmacological 
interventions with inhibitors and activators of DNA methylation 
successfully modulated the methylation and expression of Cxcl16. 
Unfortunately, the mechanism by which DNA methylation was 
communicated between the microbiota and Cxcl16 could not be 
determined. Nevertheless, this work provides the first evidence for 
microbial influences to induce epigenetic changes relevant for mam-
malian colitis during a specific period of postnatal development.

coNcLUsioNs
The epidemiology of IBD and increasing number of animal model 
observations support the relevance of the environmental origins 
hypothesis in the pathogenesis of the disorders. Epigenetic mechan-
isms, such as DNA methylation, are likely to be key molecular 
processes for communicating environmental exposures toward IBD 
susceptibility in humans. A paradigm shift that includes these per-
spectives could aid the establishment of novel preventative (ie, 
elimination of critical epigenetically active environmental expos-
ures), diagnostic (ie, IBD subset specific epigenetic changes) and 
therapeutic (ie, locus specific inhibition or activation of epigenetic 
changes) measures for IBD.
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