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Even today, technetium-99m is a radionuclide choice for diagnostic in nuclear medicine. -e unique chemical and physical
properties of technetium-99m make it suitable as an available radionuclide in many centers. In this study, we examined the
potential of CQD as a reducing agent in the MDP kit. Citric acid-derived CQD was synthesized and confirmed by FT-IR, TEM,
UV-Vis, XPS, and surface analysis. No cytotoxicity was observed by the MTT assay. -ey were reducing properties of the CQD
confirmed by fluorescence microscopy. -e MDP kit is prepared by evaluating different parameters that affect the radiolabeling
yield, including ligand, time, and CQD. -e optimum amount of each parameter is obtained by Box–Behnken software. Finally,
fluorescent spectroscopy, SPECT imaging, and biodistribution study showed that CQD reduces technetium-99m. Accumulation
of radiotracer in the femur showed that CQD could be used in a radiopharmaceutical kit.

1. Introduction

Nowadays, nuclear medicine has attracted much attention due
to a multidisciplinary specialty that uses a radioactive tracer to
study physiological processes and treat diseases noninvasively
[1]. In contrast to anatomical imaging agents (CT, MRI, and
ultrasound), which are dependent on the size of abnormality [2],
nuclear medicine methods (SPECTand PET) show quantitative
functional information [3].-us, abnormality can be detected at
their initial stage. Since early detection of diseases is essential to
the physician to choose a better medical treatment, nuclear
medicine plays a critical role in medical specialties [1, 4].

Although positron emitter radionuclide has been con-
sidered lately, over 70% of radiotracers are still labeled with

single isotope. Among SPECT radioisotopes, technetium-
99m has been used mostly in the nuclear medicine diag-
nostic [5, 6]. Gamma-ray with suitable energy, availability
of 99Mo/99mTc generator, appropriate physical half-life
(6 h), and fast complex formation are the main reasons for
the continuous use of technetium-99m. Gamma-ray
(140 keV), ideal for SPECT camera, can be injected in low
doses [7]; 6-hour half-life provides the appropriate time for
the preparation of radiopharmaceuticals and administra-
tion to and biodistribution in the patient body, and also it is
suitable to accumulate in the targeted organs. New tech-
netium-99m radiopharmaceuticals have been developed,
while technetium chemistry has been advanced. -e
abovementioned leads us to believe that
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radiopharmaceuticals labeled with technetium-99m will
continue to play an essential role in nuclear medicine [8].

In most labeling process, technetium-99m must be re-
duced from the +7 valence state. Stannous chloride is a joint
reducing agent that is used routinely in radiopharmaceutical
kits. Since technetium-99m is usually used for labeling
pharmaceuticals, research on the reducing agent for re-
duction of the technetium-99m is more attractive [9]. Al-
though stannous chloride is a potent reducing agent, it is
oxidized easily by oxygen in the atmosphere or solution.
-us, the efficiency of the labeling process decreases. Also,
for kit preparation, SnCl2 is dissolved in acidic media,
commonly hydrochloric acid. -is feature limits its appli-
cation when the alkaline environment is needed for complex
formation. -erefore, research on the new reducing agent
can be more practical [5].

Nanoparticles have attracted much attention due to their
significant characteristics. So they have been used in many
fields, including biosensors, medical and pharmaceutical
science, catalysis, and engineering [10–12]. Its applications
in medical and pharmaceutical science show significant
perspective [13]. For example, nanoparticles are utilized as a
carrier for drug delivery [14–16]. In this regard, a large
surface area compared to their volume, which is a potential
feature of nanoparticles, causes a reduction in the dose of
nanoparticles [17, 18]. Among these, carbon quantum
nanodots (CQDs) have been introduced as reducing agents
for the synthesis of metal nanoparticles. Gholinejad and
coworkers reported that magnetic Fe3O4 modified with
CQDs was used for the reduction of PdII and the formation
of PdNPs [19]. In 2017, Amjadi and coworkers stated that
glucose-derived CQDs had both reducing and stabilizing
properties. -ey synthesized new CQD/Ag nanocomposites
as a colorimetric agent to detect trace amounts of methi-
mazole in urine [20]. In this framework, Liu and coworkers
prepared CQDs derived from polyethyleneimine (PEI) as
reducing and stabilizing agent. -e synthesized CQDs
presented surprising reducibility [21]. Song et al. developed
CQDs prepared with chitosan as both a reducing and sta-
bilizing agent which was further used to synthesize AuNPs
for the detection of iodine ions [22].

Since studies on all aspects of 99mTc-radiopharmaceu-
ticals have been impressive all time, in this work, we
researched a reducing agent that has a vital role in the
technetium-99m labeling process. CQD was used as a re-
ducing agent in the MDP kit. -e study aimed to determine
whether CQD has a reducing effect on technetium-99m or
not. -e obtained data supported our hypothesis that CQD
can act as a reducing agent in the radiopharmaceutical kit.

2. Material and Method

Citric acid, ethylenediamine, and urea were purchased from
Merck. Methylene phosphonic acid and MTT powder were
purchased from Sigma-Aldrich. -e typical cell line HEK-
293 was obtained from the Pasteur Institute (Tehran, Iran).
All experiments were based on the animal ethics committee.
-ree mice were used for each experiment. An infrared
spectrum was measured using the Perkin Elmer Spectrum

BX-II spectrometer. Fluorescence and UV-Vis spectra were
measured by a Varian spectrometer. SEM and TEM were
performed by using TESCAN and ZEISS instruments. XPS
was done to study elemental composition and structural
purity of CQDs by JEOL. All studies were repeated three
times. Studies were directed in line with the principles of the
Declaration of Tehran University of Medical Sciences with
the number: IR.TUMS.TIPS.REC.1398.021. Statistical anal-
ysis was performed by Box–Behnken and MATLAB soft-
ware, and P< 0.05 was considered statistically significant.
Briefly, synthesis of the CQD was performed as mentioned
below: (1) CQD was synthesized by a mixture of citric acid
(0.524 g) and urea (0.25 g) in distilled water (10mL). -e
mixture was stirred for 30min at room temperature. After
that, the product was transferred into the autoclave at 180
centigrade degrees for 6 hours. Finally, larger particles
(particles have a size of more than 10 nm) were separated by
centrifugation (11200 g for 15min). -e obtained CQD was
analyzed by FT-IR, fluorescence, and UV-Vis spectroscopy.
Also, TEM and XPS were done to evaluate the synthesized
CQD. (2) For determination, the safety of the final product
cytotoxicity (MTT assay) was examined. -e MTT cell
proliferation assay measures the cell proliferation rate and,
conversely, when metabolic events lead to apoptosis or
necrosis, the reduction in cell viability was observed. -e
MTT assay was done on the HEK-293 cell line according to
the published article [23, 24]. Media from cell cultures were
discarded. -en, 50 μL of serum-free media and 50 μL of
MTT solution were added into each well and the plate was
incubated at 37°C for 3 hours. After incubation, 150 μL of
MTT solvent was added into each well. Finally, the absor-
bance was read at OD� 590 nm. (3) -e radiopharmaceu-
tical kit was produced for more examination. For this
purpose, MDP (10mg), ascorbic acid (1.8mg), and CQD
(100 μL of 2mg/1ml) were dissolved in distilled water and
then lyophilized. Radiolabeling was done by adding a
technetium-99m (370 MBq) and shaken for 15min. (4)
Quality control was performed to evaluate the radiochemical
purities (RCPs) in the labeled kit. Impurities were deter-
mined by thin-layer chromatography (TLC). Methyl ethyl
ketone and sodium acetate were chosen as a mobile phase.
(5) For further investigation, in vivo study was done. -e
anesthetized mice were injected through the tail vein, and
then SPECT/CT imaging was done. Finally, the bio-
distribution of radiotracer was evaluated by sacrificing in-
jected mice and counting each organ.

3. Result and Discussion

3.1. Analysis. FT-IR was used to characterize the surface
functional groups.-e result is shown in Figure 1. Peaks that
appeared at 3200–3500 cm−1 belong to the hydroxyl group.
H-N stretching band presented at about 3000–3300 cm−1.
Peaks that appeared at 1400 and 1600 cm−1 belong to H-C
and carbonyl group, respectively. Bands at 1120 cm−1 and
1342 cm−1 can be assigned as C-N and C-O groups [25]. -e
emission and excitation properties of the obtained carbon
dot were studied by fluorescence spectroscopy at a range of
200–800 nm wavelengths (Figure 2). Carbon quantum dots
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were excited and emitted in the range of 200–400 nm and
400–550 nm, respectively (Figures 2(a) and 2(b)). Also,
during the excitation at 245 and 382 nm, they showed the
maximum emission, which is marked in two separate peaks.
-e emission of these particles is also independent of ex-
citation changes (Figure 2(c)). It is evident that the maxi-
mum intensity of emission is 442 nm related to 380 nm
excitation wavelength. -e CQD CIE chromaticity diagram

shows that this compound shows blue color (Figure 3). UV-
Vis absorption spectrum of CQD is presented in Figure 4.
CQD showed a peak at 260 nm and at about 380 nm related
to π-π∗ and π-n∗ transitions, which are defined as C�C and
C�O transportation. -e size and morphology of CQD were
determined by TEM (Figure 5). -e result showed that CQD
had a spherical shape in 1.2–2.7 nm size range with an
average diameter of 1.87± 0.331 nm. Elemental mapping
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Figure 1: FT-IR of CQD.
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Figure 2: Fluorescence spectroscopy of CQD.
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Figure 3: Chromaticity of CQD.
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Figure 4: UV-Vis spectroscopy of CQD.
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Figure 5: TEM of CQD.
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Figure 6: Surface analysis of CQD.
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Figure 7: XPS analysis of CQD.
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Figure 8: Cytotoxicity assay of CQD on HEK-293 cell line (P value< 0.05).
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Figure 9: Reducing potential of CQD determined by fluorescence spectroscopy.
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Figure 10: Comparison of reducing properties of CQD synthesized with urea and ethylenediamine.
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analysis obtained from scanning electron microscopy has
confirmed nitrogen, carbon, and oxygen (Figure 6). XPS
analysis is shown in Figure 7, which confirmed the presence
of carbon, nitrogen, and oxygen atoms. Carbon 1s region of
XPS analysis showed graphitic or aliphatic carbon and also
carbon-oxygen and carbon-nitrogen by appearing peaks at
283.8, 286.03 eV, and 287.55 eV, respectively (Figure 7(b))).
Nitrogen 1s region showed that two peaks at 399.35 eV and
400.29 eV are related to aromatic nitrogen andNH2. Oxygen
XPS analysis confirmed the presence of C�O and C–O in 530
and 533, respectively.

3.2. Cytotoxicity Analysis. -e MTT assay was done on the
HEK-293 cell line to determine the cytotoxicity of CQD
that is presented in Figure 8. Statistical analysis (P val-
ue < 0.05) showed that no toxicity was observed up to
100 μg compared to the control group. -e assay was done
in the triple set.

3.3. Determination of the Reducing Potential of CQD.
Reducing properties of CQD were determined by fluores-
cence spectroscopy in the presence of technetium-99m, and
methylene phosphonic acid was then compared with intact
CQD (Figure 9). -e decrease in emission intensity of CQD
to 20% of its initial percentage showed the reducing
properties of the nanoparticle. Also, turning the emission to
90% of its initial percentage represented the separation from
the CQD surface and complex formation with methylene
phosphonic acid.
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Figure 11: Emission spectrum of CQD synthesized by citric acid
after mixing with technetium-99m and MDP.
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Figure 12: Emission spectrum of CQD synthesized by citric acid
and ethylenediamine after mixing with technetium-99m andMDP.

Table 1: Different parameters that affect radiolabeling.

Factor Name Units −1 0 1
A MDP mg 5 10 15
B CDQ ng 5 10 15
C Time min 10 20 30

Table 2: Data that shows radiolabeling design.

Number A B C Percentage (%)
1 0 0 0 88
2 1 0 1 96
3 −1 −1 0 82
4 0 −1 −1 76
5 1 0 −1 74
6 0 −1 1 84
7 0 1 −1 81
8 0 0 0 83
9 −1 0 −1 79
10 1 −1 0 80
11 0 0 0 85
12 1 1 0 87
13 0 1 1 98
14 −1 1 0 84
15 −1 0 1 91

Table 3: Variance analysis data.

Term Coef SE coef T value P value
Constant 77 1.11 69.33 0
A 0 0.68 0 1
B 3.5 0.68 5.15 0.004
C 6.25 0.68 9.19 0
A∗A −2.25 1 −2.25 0.074
B∗B 0.25 1 0.25 0.813
C∗C −0.25 1 −0.25 0.813
A∗B 1 0.962 1.04 0.346
A∗C 2.5 0.962 2.6 0.048
B∗C 2.5 0.962 2.6 0.048

Contrast Media & Molecular Imaging 7



3.4. Effect of Functional Group. -e effect of a functional
group on reducing properties in the presence of urea and
ethylenediamine was evaluated. It is evident that emission at
different wavelengths was changed and that the presented
functional group had a useful role in electron transition.
Wavelength was shifted to shorter wavelengths in the absence
of a functional group while it shifted to higher wavelengths in
the presence of ethylenediamine and urea. Also, ethylenedi-
amine had more effect on wavelengths compared to urea.
Furthermore, data showed that CQD synthesized with citric
acid had a lower reducing effect in contrast to CQD synthesized
by citric acid and ethylenediamine (Figures 10–12).

3.5. Radiolabeling. Different parameters that affect radio-
labeling were considered including time, amount of ligand,

and amount of CQD (Tables 1 and 2). Statistical analysis was
performed by Box–Behnken software. Variance analysis data
are presented in Table 3. P value <0.05 indicated the im-
portance of each term. Data showed that the amount of
CQD, time, ligand-time, and CQD-time interaction had a
potential effect. Plus and minus represented the direct and
indirect relation. 2D and 3D images show the effect of two-
term interactions in the average mean of the third term as
shown in Figures 13–15. A variation in response is indicated
by variation in color. Blue shows the lowest, and red shows
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Figure 13: 2D and 3D images of CQD and MDP interaction.
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Figure 14: 2D and 3D images of time and MDP interaction.
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Figure 15: 2D and 3D images of CQD and time interaction.

Table 4: Optimal amount of variables that affect radiolabeling.

MDP (mg) CDQ (ng) Time (min) Max response
10.5 15 30 92 (%)
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the highest variation. -us, the optimal amount of variables
was calculated and is indicated in Table 4. MDP (10.5mg),
CQD (15 ng), and time (30min) are the optimal amount of
parameters. Finally, for reducing the effect of oxygen on
technetium-99m, the prepared labeling kit was lyophilized.

3.6. SPECT Imaging andBiodistribution. SPECTimaging was
carried out for further study. In this regard, 3.7 MBq of ra-
diotracer was injected into anesthetized mice (n� 3). Injected
mice have lied down under the SPECT instrument. -e result
is shown in Figure 16. A biodistribution study was performed

Figure 16: SPECT images of 99mTc-MDP injected in mouse in which technetium-99m was reduced with CQD.
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Figure 17: Biodistribution study of 99mTc-MDP injected in mouse in which technetium-99m was reduced with CQD.
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after scarifying mice. Each organ was harvested, and activity
was counted with gamma well counter (Figure 17). As it is
clear, high activity was observed in the femur and kidney.
Accumulation of radiotracer in kidney indicted the extraction
route. Acceptable radiotracer was accumulated in the femur,
which indicated that technetium-99m was reduced and par-
ticipated in complex formation very well. Also, radiotracer was
accumulated in the liver to some extent. It means that the
second extraction pathway is through the liver. For com-
parison of two kits (with Sn and CQD as reducing agents),
images were divided into sublayers with MATLAB software,
and the final vector of each layer was obtained (Figure 18).
Finally, the result showed that the two images are very similar
(about 90%), and the angle between vectors is 18°.

-e two images are approximately the same. -us, based
on the collected result, it can be deduced that two prepared
kits (with Sn as reducing agent and with CQD as reducing
agent) are the same, and CQD can be used as a reducing
agent in the technetium-99m kit.

4. Conclusion

Due to the application of nanomaterials in many fields, in this
study, we evaluated the reducing properties of CQD as a re-
ducing agent in the radiopharmaceutical kit. CQD was suc-
cessfully synthesized and confirmed. No cytotoxicity was
observed by the MTT assay. -e reducing effect of the CQD
was examined and validated. All in all, fluorescent spectros-
copy, SPECT imaging, and biodistribution study confirmed
our hypothesis that CQD could reduce technetium-99m. Al-
though further study must be done to determine the reducing
properties of CQD on technetium-99m, our result showed that
it could be used in radiopharmaceutical kit in the future.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.
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