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This paper presents a novel fuzzy region-based active contour model for image segmentation. By incorporating local patch-energy
functional along each pixel of the evolving curve into the fuzziness of the energy, we construct a patch-based energy function
without the regurgitation term. Its purpose is not only to make the active contour evolve very stably without the periodical
initialization during the evolution but also to reduce the effect of noise. In particular, in order to reject local minimal of the energy
functional, we utilize a direct method to calculate the energy alterations instead of solving the Euler-Lagrange equation of the
underlying problem. Compared with other fuzzy active contour models, experimental results on synthetic and real images show

the advantages of the proposed method in terms of computational efficiency and accuracy.

1. Introduction

Image segmentation has been one of the most fundamental
and important tasks in image analysis and computer vision.
Its purpose is to divide the given image into several regions
where the inner pixels are homogeneous with respect to
some characteristic. Over the past decades, many approaches
have been developed to improve the performance of the
image segmentation algorithms. Variational formulation [1-
3] has become one of the most effective algorithms for image
segmentation because it can minimize an objective function
containing terms that embedded description of its regions
and boundaries. However, the segmentation procedure is still
considered as an essential and difficult process, especially due
to the variety and complexity of the images.

Active contour models (ACMs) [2-8] have been proved
to be an efficient framework for image segmentation. The
existing ACMs can mainly be categorized into two classes:
edge-based models and region-based models. The edge-based
ACMs [2, 3] utilize image gradient to construct an edge
stopping function to stop the contour evolution on the object
boundaries. These models are highly dependent on the initial

contours and easily suffer from serious boundary leakage
problems in the position of weak boundaries. The region-
based ACMs [4-8] exploit the statistical image intensity
information (e.g., intensity, color, and texture) to ensure that
the energy functional achieves minima when the contours
reach the object boundary. Chan-Vese (CV) model [5], which
is based on Mumford-Shah (M-S) model [4], has become
one of the well-known region-based ACMs. This model uses
the global intensity difference to guide the contour and has
succeeded in detecting the objects of which the boundaries
are not necessarily defined by gradient. However, in these
models, the periodical reinitialization of the level set function
(LSF) causes a lot of computations and some numerical
errors.

In order to improve the segmentation performance of
the region-based ACMs, many multiphase level set methods
[7-10] are proposed to segment images with many objects,
which leads to a complicated expression of energy functional
and greatly increases the computational complexity. Local
region-based ACMs [11-14], which combine the region-based
techniques with the benefits of local information, have been
proposed to segment images with intensity inhomogeneity.



Using the local intensity information, Li et al. [11, 12] pro-
posed an efficient region-based level set method driven by
a local binary fitting (LBF) energy and has achieved promis-
ing results. But the LBF model needs to perform four con-
volution operations at each iteration, which greatly increases
the computational complexity. Brox and Cremers [13] derive
a statistical interpretation of the Mumford-Shah functional
on local region statistics. Thanks to the analytical expression
of the smooth approximation via Gaussian convolution,
the coordinate descent can be replaced by a true gradient
descent. A characteristic function defined by the radius para-
meter [14] is used to extract the local information. Three
specific energies in the model are introduced that can be
inserted as internal energy measures: uniform modeling,
means separation, and histogram separation energy.

Later on, the fuzzy energy-based active contour (FEAC)
model is introduced by Krinidis and Chatzis [15] to reject
local minima. In the model, a fast optimization algorithm
is applied to minimize the fuzzy energy function instead of
traditional methods solving Euler-Lagrange equation. And
Pereira et al. [16] proposed global and local fuzzy energy-
based active contours (GL-FEAC) to deal with intensity
images with inhomogeneity. Besides, the updating of average
prototypes could be easily influenced by noise and outliers.
Wu et al. [17] propose a novel region-based fuzzy active
contour model with kernel metric by the minimization of a
predefined energy function. A fuzzy global and local energy
[18] is proposed and the local energy is constructed by con-
sidering both local spatial and gray level/color information.

In this paper, inspired by the FEAC model [15], we
proposed a novel localized patch-energy active contour. In
the present work, we make two main contributions.

(1) By incorporating local patch-energy functional along
each pixel of the evolving curve into the fuzziness
of the energy, we construct a patch-based energy
functional without regularization term. Its significant
improvement is that objects which have heteroge-
neous statistics can be successfully segmented with
localized fuzzy patch-based energies while corre-
sponding global fuzzy region-based energies fail. In
addition, the model not only avoids the periodical
initialization during the evolution but also reduces the
effect of noise.

(2) To reject the minimal of the energy functional, we uti-
lize a direct method to calculate the energy alterations
instead of solving the Euler-Lagrange equation of the
underlying problem.

2. Previous Work

Let I(x) : Q@ — R be a given gray level image and C be a
close contour. The piecewise constant energy functional in
the Chan-Vese model [5] is defined by

EY (Coang) =Xy J

|I(x)- c1|2 dx
Outside(C)

+AZJ |I(x)—oz|2dx+/4 @
Inside(C)

-length (C),
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where 1,, A,, and y are three positive constants and ¢; and ¢,
are two constants that approximate the image intensity I(x)
inside C and outside C. This energy function E¥(C,¢;,c,)
can be represented by a level set formulation, and the energy
minimization problem can be converted to solving a level set
evolution equation.

To solve this minimization of the energy functional, the
level set method [5] is represented by the unknown curve C
as the zero level set of a Lipschitz function ¢(x), such that

¢(x) >0 if (x) € Inside(C),
¢(x)=0 if (x) € On(C), (2)
¢(x) <0 if (x) € Outside (C).

Thus, the energy functional EV (¢, ¢,, C) can be reformu-
lated in terms of the level set function ¢(x) as follows:

ESV (Cpob ¢) =u- J 8& ((/5) |V¢| dx
Q
[ 0@ H@a o

2y [ (109-) (1-H, (¢) d,

where H, denotes the Heaviside function and J,(-) denotes
the Dirac delta function defined as follows:

H(x):l 1+garctan d ,
€ 2 b £

€ (4)

e — 0.

The Euler-Lagrange equations are used to solve this
minimization problem in (3) and update the level set function
by the gradient descent method. It is clear that the Chan-
Vese model can deal with the detection of objects whose
boundaries are either smooth or not necessarily defined by
gradient. They do not require image smoothing and thus
cannot efficiently process the images with noise. That is to
say, the model is more sensitive to noise and cannot handle
objects with ill-defined boundaries.

The FEAC model [15] combining the fuzzy sets with
the active contour methodology aims to segment regions of
interest into a two-phase image. It is provided to the algo-
rithm with an initial partition of the image such as an initial
contour. This partition defines the curve that will iteratively
evolve by a minimization process. The evolving contour is
implicitly represented as the pseudo zero level set of the
LSF u such that we have the following definitions expressed

by
C={xel:u(x)=0.5},
inside (C) = {x € I : u(x) > 0.5}, (5)

outside (C) = {x € I : u(x) < 0.5}.
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And the fuzzy energy region-based function is expressed
by (5):

F(C,¢,¢,u) = p- Length (C)

o [ w6 (1w - ) dx (6)

£, jﬂ - ()" (I (x) - &) dx,

where the parameters ¢ > 0, A, A, > 0 are fixed parameters.
The fuzzy membership functions u(x) € [0, 1] and (1 — u(x))
represent the membership value that pixel x belongs to ¢, and
G, respectively. m is the weighting exponent on each fuzzy
membership and usually set to 1 or 2. ¢, and ¢, are average
prototypes of the original image inside C and outside C.
Keeping u(x) fixed and minimizing the energy function
F(C, ¢, ¢,, u) with respect to ¢; and ¢, it is easy to get the
equations by updating the following values ¢, and ¢;:

- IQ u(x)"I(x)dx
N jQ u (x)™ dx

q

7)
~ Jo = u ()] I (x)dx

- JQ [1-u(x)]"dx

Furthermore, keeping ¢, and ¢, and fixed and minimizing
the energy F(C, ¢;, ¢,, u) with respect to u, it is easy to express
variable in the following way:

1
1+ (/\1 (I(x) - C1)2 [ A5 (I () ~ 02)2)

u(x) = Um-1"  (8)

Specifically, for a certain pixel x, we compute the fuzzy
membership in this pixel using (8). Then, according to the
change of AF caused by the single change of the fuzzy mem-
bership in pixel x;, we decide whether this new fuzzy mem-
bership replaces the old one in this pixel x; or not. If the
change of AF becomes negative, then the new fuzzy mem-
bership is adopted. If not, the old one is kept. However, by
updating u, pixels in the background could be easily labeled
as pixels belonging to the object region if their intensities are
very close to the average prototype of the object region. Also,
these approaches still need localized information to achieve
reliable performance.

The remainder of this paper is organized as follows.
Section 3 describes the proposed model, including the model
description, numerical approximation, and the description
steps of the proposed model. Experiments and results, includ-
ing experimental results and the scale parameter of the local-
ization radius, are discussed in Section 4. Finally concluding
remarks are given in Section 5.

3. The Proposed Model

3.1. The Model Description. Let the local patch (a circle
region) (), be centered at location x; the spatial variable y €
Q, is a single point and independent of spatial variable x.

The local patch Q, with the radius r is represented as Q. =
{ly = x| <r, y € Q}). We define the mask function W(x;, y)
to describe the local patch Q. as described in Figure 1:

1, yeQ,,

W(x,y) = { ©)

0, otherwise.

It is clear that the mask function W (x, y) will be 1 when
the point y is within the local patch Q, and 0 otherwise. It is
noticed that the value of radius r should be selected properly
so as to capture enough local intensity information. In our
work, we assume that the energies can be constructed of a
family of localized patch-based energies at each point along
the curves instead of global energies in the whole image. In
order to formulate the local patch-based functional, we treat
each point separately and split local neighborhoods into local
interior and local exterior by the evolving curve.

In the model, the evolving contour is implicitly repre-
sented as the pseudo LSF based on the membership function
u in (5) similar to the FEAC model [15]. For a given pixel
x of image domain along the curves, the local patch-based
functional by incorporating the fuzzy set is given as follows:

Fo= [ w)"(»)-a)ax

e[ -u)" 1) -e) dx
(10)

-] W) w0 U -a) s

o4

[ W) a-u)" 1) o) ay

o4

where two constants ¢; and ¢, represent the intensity averages
of u(y) > 0.5 and u(y) < 0.5. The local patch-based energy
function F, is an internal measure functional to express the
local adherence in the proposed model at each point along
the evolving contour. The pseudo LSF u(x) represent the
degree of the pixel I(y) belonging to the interior region. The
overall localized patch-based functional can be formulated as
follows:

dex:J J W (x,y)

X x 'y

P |
Q

u(y)" (1(y) - ) dydx

+JQ JQ W(x,y)

x Y

(1-u()" (U (y) - ) dydx.

To compute the energy functional F, we ignore the con-
tributions from the points far away from the current com-
puted point since computing a big number of the points in
the whole image requires more computation. To decrease the
impact caused by inhomogeneity that may arise far away,
we widen a range of objects because narrow range only

(11)
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FIGURE 1: A circle patch partitioned into two parts is considered at each pixel (black dot in two images) along the evolution contour. (a) The
bottle green region (object region) shows the interior region. (b) The blue region (background region) shows the exterior region.

captures limited objects. Note that we do not consider the
regularization term of the energy functional. For any point
x in the local patch, we use the mask function W(x, y) to
make sure that only on local patch information centered at
y can be computed. Thus, the contribution of the total energy
functional is the sum of all neighborhood points along the
evolving contour. In the following, we will use two steps to
solve functional (11) in the following.

Step 1. Keeping u(y) fixed and computing the minimization
of functional (11) with regard to ¢; and ¢,, we can easily get
these constant functions by

Jo, W (e y) - u(y)" 1(y)dy
.[Qy W (x,y)-u(y)" dy

G =

(12)
Jo, W () - [1=u ()" 1 (y)dy

Jo, W Goy)- 1 -u(y)]" dy

%:

Step 2. Keeping the variables ¢; and ¢, fixed and computing
the minimization of energy (11) with regard to u(y), we can
get the following Euler-Lagrange equation:

J, W) w0 1G)-a) dx

x

[ ween-a-up) ) -orax O

=0.

From the above equation, the variable u(y) can be
expressed in the following way:

1
(1+ (@ -arram-o)"")

The variable u(y) is then updated based on the change of
the energy F.

u (y) = (14)

3.2. Numerical Approximation. Since the energy functional
(11) is nonconvex, it is difficult to solve the minimization in

practice. Generally, the gradient descent schema driven by
the Euler-Lagrange equation is usually applied to explicit time
marching and causes local minimal. To solve this problem,
inspired by the scheme developed by Krinidis and Chatzis
[15] and Pereira et al. [16], we apply a fast numerical scheme to
make its time step unconstrained in the explicit time march-
ing. The algorithm can calculate the energy directly and judge
if the degree of membership for any point is changed instead
of solving the partial differential equation.

Lemmal. Let P € I be a given point in the local patch Q.,, the
intensity value of point P be I, and the corresponding degree of
membership for this point P be u,,. Correspondingly, let the new
value of the degree of membership at the same point P be u,; the
values of ¢; and c, will be changed to new two ones: ¢, and ¢,.
The new value of ¢, and ¢, could be calculated as follows:

R u, —uy'

(1=t~ (1~ 1) )
_ -u,) —(l-u
=6 - 0 (Io_f’z)>

S+ ((1 —u,)" = (1- “o)m)
where s, = Zoy W(x, y)- [u(»)])™ and s, = ZQy W, y)-[1-
u(y)1™.

Proof. The two old constants ¢; and ¢,, which approximate the
image intensity in local patch O, corresponding tou(y) > 0.5
and u(y) < 0.5 in (12), respectively, are written in the follow-
ing forms:

Lo Wxy) u(y)" 1(y)dy
L Yo, W(xy)-u(y)"dy

Jo, W (o) - [1=u(]" 1 (y)dy
Jo, W () - [1-u(n)]" dy

>

(16)

czz

Assuming that we change the degree of membership
for only one point P when we compute the new degree
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of membership u, for the point P, the constant ¢, will be
obtained by

S, W(x)- [0 1(y)
S, W) G0N
3o, W) WO 10) + (1 - )
Fo, W) WO+ @ =) )

s16 + Iy (uy — “Sn)

s+ (”21 - ”gl)

=

where s,

= Yo, W6 ) - [u(y)]™.

In a similar way, we obtain the new value ¢, as

_ (L - )" = (1 - )"

e () - (1-uw)")

where s, = Zny W(x,y) - [1-u(y)]™.

Thus, the changed values A¢; = ¢, —¢; and A¢, = ¢, —c, for
the point P can be very easily computed using formulations
(17) and (18), respectively. This completes the proof. O

(Ih-¢), (18)

Lemma 2. Let the old total energy functional be F and the
new total energy functional be F when we change the degree
of membership for the point P into u,. Correspondingly, the
changed energy AF between the new and old total energy
functional is given as follows:

AF = Z<s1—(slf‘”° I -a)’

+u™ —ut)
(1_un)m_

(1 _”o)m 2
(s34 (1=1,)" = (1= 1)") to=e) )

Proof. For the fixed point P in the model, the change of the
degree membership will lead to the change of the new energy

functional. To compute the alteration AF = F — F between
the new and old total energy functional, we firstly calculate

(19)

Ry

the new energy functional F, which is written in the following
form:

Ay

F=) YWy -a()"(I()-)

o, Q,

A
(20)

+ZZW<xy> (1-@ (y)) (I(y)-5)

B

From above, we can see that we should separately com-
puter A and B in order to calculate the alteration. So

A= QZQZW("’)’) a(y)" (1(y)-5)
= ZZW(x, y) (21)

JuO)" W) =) + () - ug) (I -7)’]

We will first compute the following equations (I(y) — ¢, )2
and (I, - ¢,)%

(I(y)-5)
) (I - Cl))

u
=7 e ——n 70
<(y) a 51+(“Z1_”6n
2
=(I(y)-¢)

uwy —ugy

—2(1(y)-a) —7

s+ (U - ugy)

<ﬁ< )

m um

Then we will insert (22) into (20), we have the following
equation A :

m_ 2
Z1 :A1+(&( Cl))

s+ (i —ugt)

(I — )

(22)

TW ) u ) -2 )
W ()1 ()" (1) =)+ (4 )

o

y

(o) (1 () - 510)

n

S+ (”nm - “6”)

S (Io - Cl)

2
+ (W -u)| ———< ) =A
(v v <sl+(um—uo)) !

+ () —up) (I~ )’
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by

[ 51(”21_”6”) + 5% ]
(s + =)' (3 +ur —up)’
m_

Uy,

m
Uy

+s (Io—cl)z.

oy )
(23)
For the image domain Q,, we have
— — U —uy' 2
A= A, = A 4§ —mn 0 (1 _
St o g o)

Q

x

(24)

m_

Aty ty ~ Uy (I, - )
= + _— — R
o . (s, +um—um) ° “

where A, = ZQy W(x,y) - u(y)"(I(y) - ¢)* and A =

Yo, Xa, Wl y) - un)"(1(y) - o).
In the same way, we can get B

N N (25)
L (-w)" - (1-w)
(s1+(1—w,)" = (1-up)")

where B= Y Yo W(x, ) (1-u()"(U(y) - c,)"

Combining (20), (24), and (25), the new total energy
functional is rewritten as

(I - Cz)2> >

F=F+) ty — ty I, - )
=F+) |ss——"—(l,-c
o Ysy +um—um) V0T

(26)

(1-u,)" = (1-u)"

(51 +(1- u,)" = (1- “o)m)

SoAF = F-F = Y (s,((u)! —ug")/ (s, +u) —ug")) (Iy—c;)*

+ 5, ((1=14,)" = (1=14g)™) /(57 + (1=18,)" = (1=149) ™)) ([y=6,)*),
the end of proof. O

+5; (I _Cz)2>

Thus, it is very easy to compute the changes AF = F — F
by updating ¢; and ¢,, when the change at the degree of
membership of a point P is occurred.

Remark 3. It is required that local region statistics must
be calculated for all the points along the evolving curve.
So it increases the complexity of the algorithm and the
computation time. To improve the computational efficiency,
we only update the membership u(y) in a narrow band region
around the pseudo level set function u(y) = 0.5. In this
paper, the computation of local statistics is separated into two
parts. In the first part, the local region-based method begins
by initializing every pixel in the narrow band with the local
interior and exterior statistics. In the other part, the statistical
models of all pixels within the narrow band neighborhoods
are updated when any initialized pixel is crossed by the
contour moving it from the interior to the exterior or vice
versa.

Computational and Mathematical Methods in Medicine

3.3. Description of Algorithm Steps. Here, the segmentation
procedure of the proposed model is summarized as follows.

Step 1. Give an initial partition of the image, set 1, > 0.5 for
one part and u, < 0.5 for the other.

Step 2. Compute the values ¢, ¢,, and u for the whole image
I using (17) and (18).

Step 3. Assume that the intensity value of point P be I, and
the corresponding degree of membership for the point P be
u,. Calculate the new degree of membership u,, using (14) for
current pixel I, and the difference between the new and old
energy AF using (26).

If AF > 0, then change u, with u, value; otherwise, keep
the old value u,,.

Step 4. Repeat Step 3 to compute the total energy F within
the narrow band neighborhood using Jacobi iterations. When
all pixels within the neighborhood image have been swept
one time, one iteration is finished. The updated values of the
current iteration are used for the next iteration.

Step 5. Repeat Steps 2-4 till the total energy F remains
unchanged.

4. Experiments and Results

In the section, we will validate that localized patch-based
model can improve the performance of a given global energy
instead of specially comparing with the fuzzy region-based
global energies. To demonstrate the performance of the pro-
posed model, we also test the segmentation results using the
proposed model, the FEAC model [15], and the GL-FEAC
model [16] on different synthetic images and real images.
The experiment results will demonstrate that only the loca-
lized model can obtain a correct segmentation in these
cases. All experiments are performed on a 1.86-GHz Intel
dual-core notebook computer with Memory 3 GB using the
MATLAB programming language. In these experiments, the
parameter m is 2. The code will be uploaded to the website:
http://fangjx2005.com/.

4.1. Experiment Results. Figure 2 shows that the proposed
model segments a synthetic image with three different
objects. In the experiment, the parameter of the localization
radius is set to 20. For each image region, the image includes
different intensities and holes in the interior of the objects.
Figure 2(a) shows the original image, the original curve
image, and the initial contour, respectively. To better describe
the curve evolution, three intermediate results with object
regions are shown in Figures 2(b)-2(d). Figure 2(e) depicts
the final segmentation results using the proposed model.
Four pseudo level set functions corresponding to three inter-
mediate evolution contours and final contours are shown in
Figure 3. It can be seen from these results that the proposed
model is able to extract all object regions though the desired
objects include different intensities.
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FIGURE 2: Segmentation results on a synthetic image with three object regions using the proposed model. The curve evolution processes from
the initial contour to the final contours are shown. (a) The original image, the original curve image, and the initial contour. (b, ¢, d, e) Three

intermediate results and final contours with the object regions.

In Figure 4, we applied the global FEAC model to seg-
ment the synthetic image with the same initial curve. The
intermediate curve image, the segmentation result, and the
evolution of the contours are shown in Figure 4(a). Fig-
ure 4(b) shows the final curve position, the segmentation
image, and the evolution of the contour after 200 iterations.
The segmentation results show only one of three objects is
segmented even if the synthetic image appears simple. It is
obvious that the global energy functional in the FEAC model
cannot extract the exact boundaries since it only finds the
most distinct parts of the image. These examples demonstrate
that the FEAC model causes significant problems for seg-
menting the image with slight intensity inhomogeneity.

The next experiment is to test the robustness to noise of
the proposed model and the results are shown in Figure 5.
It is carried out on synthetic images mixed with different
Gaussian noises using the FEAC model and the proposed
model. The objects in the image include two kinds of shapes

(circle and rectangle). From left to right, Figure 5 shows initial
contour, the segmentation results using the FEAC model, the
segmentation results using the proposed model, and the final
object regions using the proposed model, respectively. From
Figures 5(b)-5(d), it shows the segmentation results on con-
ditions that the images are mixed with Gaussian noise with
variances 0.01, 0.10, and 0.20, respectively. The results show
that more noise causes too more small segmentation regions
using the FEAC model. From these segmentation results, the
proposed model can accurately extract the boundary while
the FEAC model cannot get satisfactory result even if the
image is populated by severe noise. Thus, we can see that our
method shows the better robustness to noise.

In Figure 6, we further compare the proposed model with
these global fuzzy active contour models, such as the FEAC
model and the GL-FEAC model, on BIRD, MONKEY, and
medical images. In the GL-FEAC model, the parameters are
set as follows: § = 0.5, A; = A, = 1. The images in Figure 6
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FIGURE 3: The evolution of the contours (the pseudo level set function) corresponding to the three intermediate contours and final contour
in Figure 2, respectively.

045\.-"""

0 |
400

()

(®)

FIGURE 4: Segmentation results on the same synthetic image using the global FEAC model. (a) The intermediate curve position, the
segmentation image, and the evolution of the contours. (b) The final curve position, the segmentation image, and the evolution of the contour.
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FIGURE 5: Segmentation results on synthetic image mixed with different Gaussian noises using the FEAC model and the proposed model. (a)
The clean image. (b) Gaussian noise with variance 0.01. (c) Gaussian noise with variance 0.10. (d) Gaussian noise with variance 0.2. From left
to right: initial contour, the segmentation results using the FEAC model, the segmentation results using the proposed model, and the final

object regions using the proposed model.

show objects and backgrounds which are multimodal but that
have intensities that change smoothly and quickly. Figure 6(a)
shows the initial curve image. In Figures 6(b), 6(c), and 6(d),
the boundary is obtained using the FEAC model, the GL-
FEAC model, and the proposed model, respectively. From the
segmentation results, we can see that the global energy finds
only the brightest parts of the image while the localization
stops on object boundaries.

In this paper, we use the popular error metric, the Dice
coeflicient [19], to quantitatively evaluate the performance of
the competing methods. The Dice coefficient between two
regions A and B is calculated as D(A, B) = 2 x [An B|/(|A| +

|B]), where |A N BJ, |A|, and |B| denote the pixel number
of their union areas A and B and A and B, respectively.
Obviously, the closer the Dice coefficient value is to 1, the
better the segmentation results we will get. Table 1 depicts
the Dice coefficient which gives the quantitative comparison
scores in Figure 6.

We next illustrate the advantage of the proposed contour
model on the PELVIS image in order to extract two object
regions (the left obturator foramen and right obturator fora-
men) and the results are shown in Figure 7. The localization
radius is 20. The PELVIS image with intensity inhomo-
geneity has blur boundary in some parts. The segmentation
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FIGURE 6: Segmentation results for the BIRD, MONKEY, and medical images using different methods. (a) shows the initialization; (b), (c),
and (d) show the segmentation results using the FEAC model, GL-FEAC model, and the proposed model, respectively.

(c)

(d)

FIGURE 7: Segmentation results on PELVIS image using different models. (a) shows the initialization; (b), (c), and (d) show the segmentation
results using the proposed model, the FEAC model, and the GL-FEAC model, respectively.

renders a challenging task for extracting the desired object
boundaries. Figure 7(a) shows the initial contour image with
two contours (two rectangles). The segmentation results in
Figures 7(b)-7(d) are obtained using the proposed model,
the FEAC model, and the GL-FEAC model, respectively.
From these results, the global energies in the FEAC and GL-
FEAC models can only segment the brightest regions of the

whole image, whereas our localization model can extract two
desired objects and get the accurate results.

We performed an additional experiment to show the
effect of the proposed model on a lumbar spine image.
Compared with the PELVIS image shown in Figure 7, the
image has more seriously blurred boundary and is much
more complicated. Figure 8 shows the segmentation results
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(d)

FIGURE 8: Segmentation results on lumbar spine image with two object regions using different models. (a) shows the initialization; (b), (c),
and (d) show the segmentation results using the proposed model, the FEAC model, and the GL-FEAC model, respectively.

TABLE 1: Average Dice coefficients values for different schemes on
three different images.

The name of

; Size (pixel) FEAC GL-FEAC Our
images

Bird 400 x 320 0.184274 0.276782 0.947548
Monkey 320 x 240 0.421280 0.491875 0.894213
Medical 180 x 107 0.2547548 0.283295 0.878747
image

using the FEAC model, the GL-FEAC model, and the pro-
posed model with the same local radii. Figure 8(a) shows the
initial contour image with two contours (two rectangles). In
Figures 8(b) and 8(c), these global models can only extract
the brightest regions and cannot extract the exact boundaries.
With the proposed model and the same initial position,
the boundaries of two lumbar spine regions are successfully
recovered as depicted in Figure 8(d). It is clear that only the
proposed model could only extract the object boundaries.
The evolution of the contours corresponding to the FEAC
model, the GL-FEAC model, and the proposed model is
shown in Figure 9. Table 2 reports the Dice measure for
segmentation results by the FEAC model, GL-FEAC model,
and the proposed model in Figures 7 and 8.

In the following experiment, Figure 10 shows different
segmentation results for cervical spine images with noise. The
typical schemes include the fuzzy active contour model with
kernel metric (FAC-Ker) [17] and the global and local fuzzy
active contour with the information (GLFAC) [18]. These
models have the same initial positions. The initial contour
image, the segmentation result, and the object image using
the proposed model are shown in Figure 10(a). The results
indicate that only the proposed model can extract two objects.

In Figures 10(b) and 10(c), it shows the segmentation results
using the FAC-Ker and GLFAC models, respectively. From the
segmentation results, we can see that the FAC-Ker model can
lead to poor separation of different regions because the model
is based on global image information. The GLFAC model can
reduce the noise, but it cannot extract the objects.

4.2. The Scale Parameter: Localization Radius. The important
parameter in our model is localization radius which plays a
key role in how local object region(s) the proposed model
will extract. As such, it should be selected based on the scale
of the extracted object of interest and approximation of the
surrounding region of clutter. A small localization radius is
selected when we attempt to extract small objects with nearby
clutter and vice versa.

The example of lumbar spine image segmentation in
Figure 11 illustrates the effect of different localization radii. In
all these experiments, the number of the iterations is 200. The
segmentation results are shown in Figures 11(b)-11(f) using
the proposed model with localization radius 10, 15, 20, 25, and
30, respectively. With the same initialization, Figure 11 shows
different results using five different local radii. From the
segmentation results in Figures 11(b) and 11(c), the smallest
radius size results in an incorrect segmentation that is too
local, whereas the largest radius in Figures 11(e) and 1I(f)
leads to an incorrect energy value that is too global for the
task at hand. Thus, the localization radius should be correctly
chosen in terms of the nature of the objects so that the
neighborhood is large enough to detect the desired boundary
from the initialization. Table 3 describes the Dice measure for
segmentation results with different localization radius.
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FIGURE 9: The evolution of the contours corresponding to the proposed model, the FEAC model, and the GL-FEAC model in Figure 8,
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FIGURE 10: Comparison of different methods for cervical spine image segmentation. In (a), the segmentation result and the object image using
the proposed model are shown. (b, c) show the segmentation results using the FAC-Ker and GLFAC models, respectively.
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FIGURE 1I: Segmentation results using the proposed method with different localization radii. (a) shows the initialization on lumbar spine
image; (b)-(f) show the resulting segmentation with means separation energy using localizing radius 10, 15, 20, 25, and 30, respectively.

TABLE 2: Average Dice coefficients values for different schemes.

The name of image Size FEAC GL-FEAC Our
Pelvis image in Figure 7 216 x 151 0.164674 0.196280 0.916548
Lumbar spine image in Figure 8 199 x 171 0.128035 0.184621 0.854213

TABLE 3: Average Dice coefficients values for localizing radius.

The localizing radius Size: 10 Size: 15 Size: 20 Size: 25 Size: 30
Average Dice coefficients 0.586413 0.676421 0.854213 0.764125 0.685462
5. Conclusion Acknowledgments

In this paper, we propose a localized patch-energy fuzzy
active contour model by incorporating local image statistics
for each pixel into the fuzziness of the energy, which can avoid
local minima of the energy functional. In addition, we use a
fast numerical method directly computing the changed value
of the energy functional to update the curve evolution. Exper-
iments show that the evolution of contour in our model is
more stable which results in not only faster computation effi-
ciency but also better performance of segmentation. More-
over, the alterations of the energy in the energy functional
are calculated directly instead of solving the Euler-Lagrange
equation. Thus, the active contour converges quickly to the
object boundaries. Experimental results on synthetic and
real images have validated the effectiveness of the proposed
model.
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