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Blood pressure (BP) is one of the indispensable elements of physiological health characteristics and a significant indicator for
predicting and diagnosing hypertension and cardiovascular diseases. /is paper proposes a two-domain fusion model to estimate
BP continuously from pulse wave acquired with a pressure sensor.Method. /e optimal external pressure applied on the pressure
sensor is first determined in order to capture pulse wave in the radial artery./e captured pulse wave is then processed in both the
time and frequency domains via filtering and fast Fourier transform. Finally, a set of features are extracted from these two domains
and input into a neural network along with blood pressure values measured by a commercial sphygmomanometer for training.
/e model is then tested on new data for accuracy evaluation. Results. /e proposed two-domain fusion method achieved a high
degree of accuracy in measuring blood pressure.

1. Introduction

According to the American Journal of Medicine, between
1990 and 2015, the rate of blood pressure (BP) greater than
140mmHg rose from 17307/100000 to 20526/100000 and
the associated mortality rate from 97.9/100000 to 106.3/
100000 [1]. Admittedly, abnormal BP can cause a burden on
the heart, which increases the risk of cardiovascular diseases
[2, 3]. /e traditional way of measuring blood pressure is to
place a cuff on the upper arm and then detect changes in the
pressure inside the cuff during inflation and deflation to
obtain systolic blood pressure (SBP) and diastolic blood
pressure (DBP). However, this method can hinder the cir-
culation of blood and is not intended for continuous BP
measurement.

In recent years, great progress has been made in
noninvasive continuous BP measurement. A study found
an inverse correlation between BP and the pulse transit
time (PTT) [4, 5]. But this method requires an additional

electrocardiogram (ECG) module, which brings com-
plexity and inconvenience to portable blood pressure
measurement. Wu et al. only used ECG signal to estimate
BP./ey took 6 features of the ECG and calculated the time
between the relevant features. Two sets of ECG signal
containing 4 time periods were combined and input into a
neural network for training to get the BP. However, this
model cannot simultaneously derive the BP and is sig-
nificantly different compared with the target value [6].
Secondly, PTT has a significant correlation with systolic
blood pressure but little relationship with diastolic blood
pressure [7]. Xu et al. used PTT and photoplethysmogram
(PPG) parameters to estimate blood pressure. /ey defined
PTT as the different time between the R wave of ECG and
the following pulse peak of PPG. /ey took the pulse wave
amplitude, PTT, pulse wave period, and area as the pa-
rameters to send to a feed-forward back propagation neural
network for training. Although the error could be within
5mmHg, calibration was required before getting the output
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[8]. Luo et al. fabricated a low-power (3 nW) piezoresistive
sensor (PS) device and measured BP using a single pa-
rameter PTT but also required clinical calibration of the
initial values [9].

With the advancement of sensor technology, piezoelectric
sensors nowadays become sensitive enough to reveal the pulse
wave morphological features. However, during their use,
piezoelectric sensors require an external force to balance the
pressure between the probe and soft tissue [10]. In order to
find the right amount of force applied to each individual, this
paper proposes a method to use body mass index (BMI) to
quantify the balance and find a suitable pressure for everyone.
/is will be explained in the third part of this paper.

Our goal is to develop a stable, efficient continuous blood
pressure measurement system that requires no user cali-
bration, to be used by patients with hypertension, cardio-
vascular, or other diseases for continuous BP monitoring.
/e paper is organized as follows: in Section 2, the back-
ground on propagation of pulse wave is given. In Section 3, a
two-domain fusion model and its use with artificial neural
networks (ANN) are elaborated. Section 4 shows experi-
mental results, and Section 5 provides a discussion and
conclusion on this proposed method.

2. Background

Figure 1 shows pulse wave and blood propagation.When the
cardiac ejection is completed, the central aorta forms a wave
(#1), which is rebounded and generates a rebound wave (#2)
when it propagates to the first reflection site (the arterial
node between thoracic aorta and renal arteries). /e re-
bound wave will be rebounded again, producing a wave (#3)
when the wave (#1) gets to the second reflection site (the
arterial node between abdominal aorta and iliac arteries).
Finally, both of the rebound waves (#2 and #3) will su-
perimpose on the main wave with a certain time delay and
then propagate along the blood vessel to the radial artery or
fingertip artery [11].

As shown in Figure 2, the features of the pulse wave
mainly include (b)–(g). /e (b)–(e) points correspond to the
pulse wave’s starting point, main peak, trough point, and the
peak produced by the superposition between the first re-
bound wave (#2) and the main wave (#1). Points f and g are
formed by the superposition between the second rebound
wave (#3) and the main wave (#1). Note that in a young
person with good blood vessel elasticity, the rebound wave
can be weak and it can be submerged in the main wave and
not visible in the waveform.

In order to accurately identify the characteristic points of
the pulse wave, the pulse wave needs to be acquired with
high signal-to-noise ratio (SNR) and without distortion. /e
detection of pulse wave feature points is shown below in the
next section.

3. Methods

3.1. Pulse Wave Detection. /ere are two mainstream
methods for pulse wave detection. One is photoplethysmo-
gram (PPG), and the other is to apply a piezoelectric sensor

(PS) in the radial artery. In PPG, light is emitted from a
photodiode through a fingertip, a wrist, or the like, and the
blood inside the artery absorbs the light and causes a change
in the light intensity, so that a change in the amount of blood
can be detected, therefore the pulse wave is obtained. /e
pulse wave signal in PPG is weak, and its SNR acquired by this
method is generally not high. In addition, if a patient has
arterial occlusion, tissue edema and blood clots, arrhythmia,
or weak peripheral circulation, this method will show con-
siderable deviations. While in PS, a pressure sensor is applied
to the skin above the radial artery and records the pulse
directly. /e signal often has better SNR. Because one is an
indirect measure and the other is a direct measure, the
waveform characteristics collected by the two are different,
and we have found that PS offers a lot of more details, thus
more information, in its pulse waveform than in PPGs.

Figures 3(a) and 3(b) are pulse waves from a 25-year-old
with arrhythmia, collected by PPG and PS, respectively. In
Figure 3(a), all the peaks except the main peak are all
submerged due to the irregular heart beating. In compari-
son, there are three peaks in addition to the main peak
clearly visible in Figure 3(b). Figures 3(c) and 3(d) are the
normal PPG and PS waveform from a 26-year-old female. It
can be seen that although the PPG can detect the pulse wave
(note the 2nd peak is submerged), the ratio between the 3rd
peak and the main peak is bigger than expected. /e PS on
the other hand has a better representation for the true pulse
wave. /erefore, we will use PS as the method of pulse wave
measurement for our study.

3.2. Optimal Pressure for Piezoresistive Sensor. As for the
pressure sensor for blood waveform measurement, we
choose Honeywell 1865 Series (Honeywell, Fort Mill, USA).
It is a piezoresistive sensor that employs a solid-state pie-
zopressure transducer mounted in a plastic package and
offers high resolution using its Wheatstone bridge strain
gauge design. It is designed to accurately collect tiny bi-
ological signals with good linearity, high test accuracy, and
fast response. It is used here to accurately detect the pressure
change caused by pulsation.

/e sensor is applied on top of the radial artery with a
certain external pressure to obtain the pulse wave by
detecting the beat of the superficial artery on the surface of
the skin. In actual measurements, the pressure applied to a
same person can be different at different times, resulting in a
difference in waveforms for the same individual and possibly
errors in BP estimation. We thus need to find a constant and
optimal pressure applied onto the sensor for each individual.
Unfortunately, the research on this problem is still relatively
muted. We will thus address this issue first before we move
onto our two-domain fusion model.

Since the external force applied to the sensor is mainly to
counter the pressure from the elasticity of the soft tissue, we
hypothesize that the optimal pressure for an individual is
dependent on the individual’s physical measures such as
height or obesity. We have thus done a lot of experiments to
show this indeed is the case. When a force is applied to the
detection unit and varied from small to large, the soft tissue
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under the sensor probe forms a force field. If the pressure of
the sensor probe and the arterial wall of the radial artery are
in close equilibrium, the shape and features of the pulse wave
are the most conspicuous. Correspondingly, we define the
pressure that produces the most detail of the pulse wave as
the optimal pressure (OP) for capturing pulse wave. Ad-
mittedly, if you want to get different OP for different people,
you need to rely on some indicator to quantify the soft tissue
thickness above the radial artery. For this reason, we select
the body mass index (BMI).

Figure 4(a) shows the piezoresistive sensor used in this
article. It is equipped with a homemade casing and probe
(the contact point or the tip) and signal processing board.
Figures 4(b)–4(d) are pulse waves at the pressures 2.3N,
3.8N, and 14N, respectively. At 2.3N, the amplitude of the
pulse wave is small, and the features are not clear. On the
contrary, the pulse and its features are obvious at 3.8N./en
at 14N, the pulse wave is distorted with severe baseline shift
and waveform overlapping. In order to get the OP, we
collected pulse waves for each person at different external
pressures. /e steps are as follows:

Step 1. Find the place where the radial artery beats the most.
Place the sensor probe on it.

Step 2. Place a piezoelectric film (Tekscan A201, Boston,
USA) between the probe and the skin, adjust the wrist band
so the average pressure reading is 2N, and store 20 sets of
pressure value in 500ms cycles. /en, withdraw the pie-
zoelectric film and measure the pulse wave at this time.

Step 3. Reinsert the piezoelectric film at the end of each
measurement. Increase the pressure by 0.5N and repeat step
2. Stop when the pressure reaches 14N.

Step 4. Find a set of pulse waves with ideal amplitude and
features and use median filter to fit the baseline of the
corresponding pressure measured by the film.

Step 5. Find the value with the largest difference between
the pressure value and the baseline and record the value of
the baseline at this time.

Step 6. Repeat the above steps for 30 people and then use
the BMI and the baseline values obtained in step 5 to
perform a 3rd order polynomial fit to get the OP curve,
where BMI is determined by the following equation:

BMI �
weight(Kg)

height(m)2
. (1)

In Figure 5(b), when the BMI is less than 24, the OP
curve is basically linear. It exhibits a saturation trend when
the BMI goes beyond 24. Admittedly, the BMI of more than
24 is considered overweight in China [12]. So, we can come
to a conclusion: when the BMI is lower than 24, the OP curve
is linear with BMI. /e OP is then determined by the fol-
lowing equation:

OP � −0.0114∗BMI3 + 0.7302∗BMI2 − 15.0889∗BMI

+ 104.4144.

(2)

3.3. Two-Domain Fusion Model. After the pulse wave is
acquired, we now move to the two-domain model. /e
analysis and decomposition of pulse waves so far in the
literature were essentially in a single domain, that is, either in
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Figure 1: Relationship between pulse and BP.
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Figure 2: Standard pulse wave and characteristic points.
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Figure 3: Pulse waves captured by PS and PPG. (a) PPG with arrhythmia. (b) PS with arrhythmia. (c) Normal PPG. (d) Normal PS.
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Figure 4: Continued.
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the time domain or in the frequency domain. Millasseau
et al. have obtained a generalized transfer function (GTF) by
the fast Fourier transform to analyze PPG and peripheral
pressure pulse. /ey found that GTF is not only suitable for
normotensive and hypertensive subjects, even adding few
nitroglycerin (NTG, 500mg sublingually) to the blood [13].
However, they only studied the peripheral pressure pulse
analysis but nothing for blood pressure estimation. Xing
et al. have decomposed the pulse wave in the frequency
domain and found that the blood pressure has a high
correlation with the amplitude of the fast Fourier transform
and that the phase also has a good correlation in the low
frequency part [14].

In the time domain, each morphological point of the
pulse wave can be related to physiological features that are in
turn related to the elasticity of the arteries and the ability of
the heart to contract. One can derive blood pressure based
on these characteristics. In Figure 6, the wave will be
decomposed into 7 features in the time domain.

In order to prevent confusion in the identification of
periodic features of several pulse waves, we extract features
only in a single pulsation period and then identify other
features in other pulsation period the same way.

At each systole, the amount of cardiac ejection is dif-
ferent. /e blood is transmitted through the arterial wave
and ultimately reflected in the amplitude of the systolic peak
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Figure 5: /e pressure baseline and OP vs. BMI curve. (a) Baseline of pressure fitted with median filter. (b) /ird-order polynomial fitting
for optimal pressure of capturing pulse wave.
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Figure 4: Pulse wave with different pressure. (a) Piezoresistive sensor. (b) Pulse wave at 2.3N. (c) Pulse wave at 3.8N. (d) Pulse wave at 14N.
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[15]. Peripheral resistance will change with the diameter of
the artery and the viscosity of the blood, affecting the pulse
wave [16]. If the elasticity of the distal end of the blood vessel
is higher, the peak of the rebounding wave will be relatively
lower, and the position superimposed on the main peak will
change the ratio of the area between the systolic and diastolic
points, which in turn affects the blood pressure [17, 18].
Furthermore, vascular elasticity has an influence on the PTT.
/e ratio of time between the main peak and other peaks can
be different if arteriosclerosis, tissue edema, and clots are
found out in the body [19]. /e time domain focuses on
features from a single beat, such as the ratio of each peak
within one pulse wave, while the beat-to-beat variations will
be taken into consideration in the frequency domain. Fig-
ure 7 and Table 1 show the area of S1 (cardiac systole) and S2
(cardiac diastole) and other relevant parameters in the time
domain.

In the frequency domain, as shown in Figure 8, there are
substantial amplitude components at 0.3Hz, 1.2Hz, 2.4Hz,
4.8Hz, etc., after the fast Fourier transform (FFT) of the
pulse wave, but the amplitude decays rapidly even almost
submerge after 10Hz. In this case, 0.3Hz should be the
frequency of breathing, 1.2Hz is the heart rate, and the
others are the multiple of the heart rate. It can be concluded
that the main components of the pulse wave in the frequency
domain are superimposed by the multiples or harmonics of
the frequency of the heart rate and the frequency near the
heart rate. /e amplitude component corresponding to the
frequency in the frequency domain of the pulse wave cor-
responds to the energy scale of each frequency. In order to
improve accuracy and stability, this paper performs the FFT
on five complete pulsation cycles for better frequency
sampling. /e features in the frequency domain are the
amplitudes and corresponding phases of the first three
characteristic peaks and are listed in Table 2. As for the other
points, their amplitudes are smaller and may be interfered
with the pulse wave noise.

/e features from both domains are concatenated to-
gether and processed, combining the high precision of time
domain and the stability of frequency domain into a better

dual-domain fusion model. Experimental details are given
below.

3.4. Implementation. After fitting and obtaining OP for each
people according to their BMI, a group of subjects un-
derwent measurement of pulse wave in the morning, af-
ternoon, and evening for 3 days. In addition, each
measurement is accompanied by BP obtained by a com-
mercial medical upper-arm sphygmomanometer (Yuwell
670B, Jiangsu, China). Both the features of pulse wave and
BP are fed into a neural network for supervised learning./e
process flow is shown in Figure 9 and is described below.

Step 1. Collect real-time pulse wave data and then shape
and filter to pulse wave.

Step 2. Decompose the pulse wave in the time and fre-
quency domains.

Step 3. Reconstruct and fuse features in the time and
frequency domains.

Step 4. Perform the mean shift and normalization with the
recombined features.

Step 5. Send the processed features to the neural network to
obtain SBP and DBP.
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Table 1: Features extracted in time domain.

Parameter Definition
FC /e ratio between h and H
Sss /e ratio between S1 and S1 plus S2
Sds /e ratio between S2 and S1 plus S2
Tft /e ratio between Tf and T
Tst /e ratio between T1 and T
SL /e max slope between b and c
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Figure 6: Feature points in the pulse wave in the time domain.
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Note in the two-domain fusion model, the fusion is done
in the input level of the neural network. We first exact
features from the time and the frequency domains separately
to form two vectors and then combine them into one data
matrix to feed into the neural network for training. An
additional label matrix records the true blood pressure
measured by the commercial sphygmomanometer to serve
as the training target. /e neural network then iterates
through the combined feature data, from which the weight
corresponding to each feature is generated. /e final trained
model will contain coefficients for all time and frequency
features, thus achieving the two-domain fusion.

In this paper, the quasi-Newton method is adopted for
better convergence speed of the training./e neural network
is a feed-forward back propagation ANN with 12 input
points, 30 nodes in single hidden layer, and 2 output nodes.
All 12 inputs of the network are the features extracted from
the time domain and the frequency domain. /e major
superiorities of this type of network are as follows: (1) it is
robust. Error in one input does little damage to the other
inputs. (2) It can be provedmathematically that a three-layer
network can approximate any continuous nonlinear re-
lationship with arbitrary precision. (3) It has a strong self-
adaptive learning ability and outputs adaptive learning
contents to the weights of networks [8, 20]. In order to verify
the training results, the data are randomly divided into 70%,
15%, and 15%, used for training, verification, and testing of
the neural network, respectively. /e structure of ANN is

shown in Figure 10, where x1 to xn are the spatial and
frequency features listed in Tables 1 and 2.

In addition, the number of hidden layer nodes of the
neural network is quantitatively analyzed to study the ef-
fectiveness after the number of hidden layer neurons has
been increased. /e results show that there is very little
increase in accuracy when there are more than 30 hidden
layer nodes. Furthermore, for the accuracy to increase by
0.01mmHg, the training time goes up an order of magnitude
by a network with a hidden layer of 50 neurons. /us, we
have chosen to use the aforementioned parameters for the
ANN.

4. Experiment Results

A total of 30 volunteers have participated in the experiment,
and a total of 1231 pulse wave data were measured. In order
to improve the accuracy and stability of blood pressure
estimation, we collected the pulse waves in a single cycle.
Besides, we built a threshold matrix to prevent any pa-
rameters, such as period and amplitude, exceeding the
threshold range, upon which the data are considered ab-
normal and discarded. /e training and fitting results of BP
are shown in Figure 11.

/e training automatically stopped after the about 200
iterations when the verification error became minimal. /e
total errors were within ±2mmHg according to the error
histogram (Figure 11(d)). In order to verify the performance
of the model, we used the 15% data previously put aside and
tested it. It is found that the output and target values show a
highly linear correlation.

In addition, we also compared our model results with
that of the traditional single-domain model. /e perfor-
mance of the single-domain model is inferior to that of our
two-domain model. As shown in Figure 12, the error is
±3mmHg and ±9mmHg in the time domain and the fre-
quency domain, respectively.
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Figure 8: Illustration of frequency features. (a) FFT amplitude of pulse wave. (b) FFT phase of pulse wave.

Table 2: Features extracted in frequency domain.

Parameter Definition
A1 /e amplitude of first peak
A2 /e amplitude of second peak
A3 /e amplitude of third peak
P1 /e phase of first peak
P2 /e phase of second peak
P3 /e phase of third peak
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Figure 11: Continued.
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5. Discussion and Conclusion

Experiments show that piezoresistive sensors can very well
detect the features of the pulse wave under complex factors
such as arrhythmia and are superior to PPG. /ere exists an
optimal restraint pressure for the piezoresistive sensor, and
it can be related back to the BMI for different people.

Considering the fact that the time domain model is
unstable when measuring pulse wave data but has a high-
accuracy contribution to BP and that the frequency domain
model is stable in decomposing pulse waves, the two-domain

model proposed in this paper not only retains the high
accuracy of the time domain model but also integrates the
stability of the frequency domain model. Experiments on the
time and frequency domains and two domains combined
were done and compared. /e results show that the con-
tinuous blood pressure estimation based on the two-domain
model can give BP with higher accuracy and stability than a
single-domain model does.

/ere are limitations to this study, however. For ex-
ample, the training and testing sample size is still small and
not diverse enough. Subjects were not divided into training
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Figure 12: Errors of single-domain model. (a) Error of time domain. (b) Error of frequency.
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and testing groups, i.e., data from all subjects were mixed
together and then divided for training and testing, which
could introduce internal correlation. In addition, the fea-
tures we choose to extract and use may not be the best to
represent the underlyingmechanisms of BP, and the number
of features may not be the best. In the future, we will
continue to optimize the feature selection in both the time
and frequency domains and plan to enlarge the sample space
and amend the method of data splitting for a more rigid
evaluation study.
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