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Human African trypanosomiasis (HAT), commonly known as sleeping sickness, is a neglected tropical vector-borne disease
caused by trypanosome protozoa. It is transmitted by bites of infected tsetse fly. In this paper, we first present the vector-host
model which describes the general transmission dynamics of HAT. In the tsetse fly population, the HAT is modelled by three
compartments, while in the human population, the HATis modelled by four compartments.(e next-generationmatrix approach
is used to derive the basic reproduction number, R0, and it is also proved that if R0 ≤ 1, the disease-free equilibrium is globally
asymptotically stable, which means the disease dies out. (e disease persists in the population if the value of R0 > 1. Furthermore,
the optimal control model is determined by using the Pontryagin’s maximum principle, with control measures such as education,
treatment, and insecticides used to optimize the objective function. (e model simulations confirm that the use of the three
control measures is very efficient and effective to eliminate HAT in Africa.

1. Introduction

Human African trypanosomiasis (HAT), commonly known as
sleeping sickness, is a vector-borne tropical disease which is
caused by Trypanosoma brucei protozoa species. It is one of the
neglected tropical diseases which affect people in sub-Saharan
Africa, specifically those living in rural areas. HAT is caused by
two species of protozoa which are Trypanosoma brucei gam-
biense (TBG), which causes the chronic form of HATin central
and western Africa, and Trypanosoma brucei rhodesiense
(TBR), which causes the acute form of the disease in eastern
and southern Africa [1].(e HATdisease has killed millions of
people since the beginning of 20th century and it is transmitted
from one individual to another by tsetse flies (genus Glossina);
TBG is transmitted by riverine tsetse species, while TBR is
transmitted by savanna tsetse species [1]. Rhodesiense HAT is
an acute disease that can lead to death if not treated within 6
months, while gambiense HAT is a slow chronic progressive
disease which causes death with an average duration of 3 years

[2]. (e signs and symptoms for both forms of HAT are not
specific and their appearances vary from one person to another;
at the first stage of HAT, the disease is not severe and the signs
and symptoms such as intermittent fever, headache, pruritus,
lymphadenopathies, asthenia, anemia, cardiac disorders, en-
docrine disturbances, musculoskeletal pains, and hep-
atosplenomegaly may be observed, while in the second stage of
HAT, sleep disorders and neuropsychiatric disorders are likely
to dominate. (e HAT disease can be treated by using drugs
such as suramin, eflornithine, melarsoprol, and pentamidine.

(edisease is reported to affect about 37 sub-SaharanAfrican
countries; it affects much rural areas where there are suitable
environments for the tsetse flies to live and reproduce, and the
periurban areas can also be affected. (e transmission of HAT
can occur during human activities such as hunting, farming, as
well as fishing [3]. (e transmission of HATneeds the reservoir;
reservoir is a species that can permanentlymaintain the pathogen
and from which the pathogen can be transmitted to the target
population [4]. Rhodesiense HAT is zoonotic which requires
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a nonhuman reservoir (animals) for maintaining its population,
while in gambiense HAT, humans act as key reservoir [4].

Mathematical models have been used to study the trans-
mission and effective control of diseases simply and cheaply with
no need of expensive and complicated experiments [5]. So far,
different models have been developed and formulated by dif-
ferent researchers. One of the important modelling work on
HAT was done by Rogers [6]; the model explained the math-
ematical framework on transmission of HAT in multiple host
populations [6]. Rogers’ model was generalized byHargrove et al
[7], and a new parameter which allows the tsetse flies to feed off
multiple hosts was introduced. (e model compared the ef-
fectiveness of two methods used to control HAT: insecticide-
treated cattle and the use of trypanocide drugs to treat cattle.(ey
found out that treating cattle with insecticides is more effective
and a cheaper approach to control HAT than using trypanocide
drugs. Kajunguri [8] developed a model which was based on
a constant population with a fixed number of domestic animals,
human, and tsetse flies in one of the villages in West Africa. (e
major findings of theirmodel estimated that the cattle population
contributes to about 92% of the total TBR transmission, while the
rest 8% is the contribution of human population in transmission
of the disease.(e study by Kajunguri [8], which also formulated
a multihost model, was used to study the control of tsetse flies
and TBR in southern Uganda. (ey found out that the effective
application of insecticides brings about a cost-effectivemethod of
control and eliminating the disease. (ey realized that using
insecticides for controlling HATis more effective and efficient in
the area where there are few wild hosts.

Due to low mortality rate of the disease and poverty of its
sufferers, the efforts toward the control of HAT has reduced.
Most attention is given to popular diseases such asHIV/AIDS,
tuberculosis, malaria, and ebola, although the disease is still
a threat to the lives of sub-Saharan African people. Moreover,
very few studies have been carried out on applying optimal
control theory to HAT transmission models. In this paper, we
use optimal control theory to study the transmission dy-
namics of HAT diseases by using education, treatment, and
insecticides as the control measures.

(e rest of this paper is outlined as follows: Section 2
represents the vector-host model and the underlying as-
sumptions. In section 3, the model equilibria and stabilities are
determined, whereas in Section 4, the optimal control model is
analyzed by modifying the previous one to control the HAT by
using control measures (education, insecticides, and treatment).
In addition, the numerical simulations for the optimal control
model are done in this section andwe use the results obtained to
compare the efforts of each control measure to control the HAT
in Africa. Finally, we provide the conclusion in Section 5.

2. Model Formulation

In this section, the vector-host model as well as the necessary
differential equations to describe the transmission of HAT from
tsetse fly to human and vice versa are developed. (e trans-
mission of HATin the human population is modelled using four
subclasses: Susceptible SH, Exposed EH, Infectious IH, and Re-
covered RH.(e total human population, NH, is thus defined by

NH � SH + EH + IH + RH. (1)

(e transmission of HAT in the vector (tsetse flies)
population is also divided into Susceptible (SV), Exposed
(EV), and Infectious (IV). (e total population of the tsetse
flies, NV, is also defined by

NV � SV + EV + IV. (2)

We assume a constant population for both host and
vector. It is also assumed that the tsetse fly cannot recover
from the disease and the infected tsetse fly remains infectious
throughout the rest of its life; there is no disease-induced
death rate for tsetse flies and the recruitment rates are as-
sumed to be constant due to birth and immigration.

In ourmodel, the recruitment rate of hosts and vectors are
represented by πH and πV, respectively. (e susceptible host
gets the disease when bitten by infectious tsetse fly, and
susceptible tsetse fly gets the disease when it bites an infectious
human at the rate a. (e natural mortality rate for humans
and vectors are represented by μH and μV, respectively. (e
parameter ω represents the disease-induced death rate for
humans, while ξH and ξV are the force of infection for humans
and vectors, respectively. (e parameter σ represents per
capita rate of a vector becoming infectious, and the rest of the
parameters are explained in Table 1. Assuming that the
transmission per bite from infectious tsetse fly to human is a,
then the rate of infection per susceptible human is given by

ξH �
apHIV

NV
, (3)

and also if we further assume that a is the tsetse-fly biting
rate, that is, the average number of bites per tsetse fly per
unit, then the rate of infection per susceptible tsetse fly can
be represented by

ξV �
apVIH

NH
. (4)

From the model diagram in Figure 1, the following
differential equations are derived:

dSH

dt
� πHNH + ρRH −

apHIV

NV
SH − μHSH,

dEH

dt
�

apHIV

NV
SH − εEH − μHEH,

dIH

dt
� εEH − μHIH −ωIH − τIH,

dRH

dt
� τIH − ρRH − μERH,

dSV

dt
� πVNV − μVSV −

apVIH

NH
SV,

dEV

dt
�

apVIH
NH

SV − μVEV − σEV,

dIV

dt
� σEV − μVIV.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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From system (5), the dimensionless technique is used to
derive another equivalent differential equation; we denote
sh � (SH/NH), eh � (EH/NH), ih � (IH/NH), rh � (RH/NH),
sv � (SV/NV), ev � (EV/NV), and iv � (IV/NV) and sub-
stitute in system (5), to obtain the following new equivalent
equations:

dsh

dt
� πh + ρrh − aphivsh − μhsh,

deh

dt
� aphivsh − εeh − μheh,

dih

dt
� εeh − μhih −ωih − τih,

drh

dt
� τih − ρrh − μhrh,

dsv
dt

� πv − μvsv − apvihsv,

dev

dt
� apvihsv − μvev − σev,

div

dt
� σev − μviv.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Table 1 shows the description of the model parameters
and variables.

2.1. Positivity and Boundedness of the Solutions. In this
subsection, we show that system (6) is epidemiologically and
mathematically well defined in the positive invariant region:

D � sh, eh, ih, rh, sv, ev, iv( 􏼁 ∈ R7
+ : nh ≤

πh

μh
; nv ≤

πv

μv
􏼨 􏼩. (7)

Theorem 1. 2ere exists a domain D in which the solution
(sh, eh, ih, rh, sv, ev, iv) is contained and bounded.

Proof. We provide the proof following the idea by Olaniyi
and Obabiyi [9]. Given the solution set (sh, eh, ih, rh, sv, ev, iv)

with the positive initial conditions (sh0, eh0, ih0, rh0, sv0,

ev0, iv0), we define

nh sh, eh, ih, rh( 􏼁 � sh(t) + eh(t) + ih(t) + rh(t) and

nv sv, ev, iv( 􏼁 � sv(t) + ev(t) + iv(t).
(8)

(e derivatives of nh and nv with respect to time along
the solution of system (6) for human and tsetse flies, re-
spectively, are obtained by

nh′ �
dsh

dt
+

deh

dt
+

dih

dt
+

drh

dt

� πh − sh + eh + ih + rh( 􏼁μh −ωih

� πh − nhμh

nv′ �
dsv

dt
+

dev

dt
+

div

dt

� πv − sv + ev + iv( 􏼁μv

� πv − nvμv.

(9)

From these differential equations, it follows that nh′ ≤
πh − μhnh and nv′ ≤ πv − μvnv. We obtain the solutions as
follows:

nh ≤
πh
μh

1− exp −μht( 􏼁( 􏼁 + nh sh0, eh0, ih0, rh0􏼐 􏼑exp −μht( 􏼁,

nv ≤
πv
μv

1− exp −μvt( 􏼁( 􏼁 + nv sv0, ev0, iv0􏼐 􏼑exp −μvt( 􏼁.

(10)

By taking the limits of both nh and nv above as t⟶∞,
we obtain nh ≤ (πh/μh) and nv ≤ (πv/μv); hence, the solutions
are contained in the region D. (is implies that all solutions
of the human and tsetse fly population are contained in the
region D and are nonnegative; this guarantees that the
positive invariant region for system (6) exists and is given by

D � sh, eh, ih, rh, sv, ev, iv( 􏼁 ∈ R7
+ : nh ≤

πh
μh

; nv ≤
πv

μv
􏼨 􏼩.

(11)

3. Model Equilibria and Stability Analysis

In this section, we give the model equilibria, the basic re-
production number, R0, and the stabilities at both disease-
free and endemic equilibrium.

3.1. Disease-Free Equilibrium (DFE). (e DFE in system (6)
is when there are no HAT infections within the human and
tsetse fly population. (us, the existence of the DFE is given
by E0 � ((πh/μh), 0, 0, 0, (πv/μv), 0, 0).

Table 1: (e description of model variables and parameters.

Variable Description
sh Susceptible human population
sv Susceptible tsetse fly population
eh and ev Exposed human and tsetse fly population, respectively
ih and iv Infectious human and tsetse population, respectively
rh Recovered human population
Parameter Description
πh Recruitment rate for human population
πv Recruitment rate for tsetse fly population

ph
Proportion of bites by the infectious vector on

susceptible human population

pv
Proportion of bites by susceptible vector on an

infectious human population
a (e biting rate of the tsetse flies
σ Per capita rate of a vector becoming infectious
ε Per capita rate of human becoming infectious
ω Disease induced death rate

ρ (e rate at which the recovered human can become
susceptible again

τ Recovery rate
μ Natural death rate
ξh Force of infection for human population
ξv Force of infection for tsetse flies
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3.2. Endemic Equilibrium (EE). �e EE is the nontrivial
equilibrium point at which the HATdisease persists in both
human and tsetse �y population. �us, the EE is obtained as
follows: E∗ � (s∗h , e∗h , i∗h , r∗h , s∗v , e∗v , i∗v ), where

s∗h �
πh ρ + μh( ) + ρτi∗h[ ] μv σ + μv( ) apvi∗h + μv( )[ ]

a2σphpvπvi
∗
h + μvμh σ + μv( ) apvi∗h + μv( )[ ] μh + ρ( )

,

e∗h �
ω + τ + μh( )i∗h

ε
,

r∗h �
τi∗h

μh + ρ
,

s∗v �
πv

apvi
∗
h + μv

,

e∗v �
apvπvi

∗
h

σ + μv( ) apvi∗h + μv( )
,

i∗v �
aσpvπvi∗h

σ + μv( ) apvi∗h + μv( )μv
,

i∗h �
ρ + μh( ) a2εphpvπhπvσ − μ2vμh ε + μh( ) σ + μv( ) μh + τ + ω( )[ ]

B
,




(12)

and the term

B � ( apv( aσphπv( ερω + μh( ρ(τ + ω) + ε(ρ + τ + ω)
+ μh ε + ρ + τ + ω + μh( ))) + μh ε + μh( ) ρ + μh( )
· τ + ω + μh( )μv σ + μv( ))).

(13)

3.3. Basic ReproductionNumber,R0. �e basic reproduction
number, R0, is de�ned as the number of secondary in-
fections caused by one infected host or vector in a com-
pletely susceptible population [10]. �e next-generation
matrix approach as done by Van den Driessche and
Watmough in [5, 11] is applied to derive

F �
aphivsh

0

apvihsv


,

V �

μheh + εeh
−εeh + μhih + ωih + τih

μvev + δev
−δev + μviv




.

(14)

By denoting matrix F � (zF/zxi) and V � (zV/zxi),
where xi � eh, ih, ev, iv, the spectral radius of the next-
generation matrix FV−1 gives the value of R0:

F �

0 0 0 aphsh

0 0 0 0

0 apvsv 0 0

0 0 0 0





,

V �

ε + μh 0 0 0

−ε μh + ω + τ 0 0

0 0 μv + δ 0

0 0 −δ μv





,

FV−1 �

0 0
aδph

μv −δ + μv( )
−aph
μv

0
apv

μh + τ + ω
0 0

0 0 0 0

0 0 0 0





.

(15)

лH

лV

SH

SV

μHSH μHEH

ξHSH

ξVSV

EH

EV

εEH

ρRH

ωIH

IH
τIH

μHIH

μVIVμVEVμVSV

μHRH

RH

IV
σEV

Figure 1: Compartmental model for the transmission of human African trypanosomiasis.
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(e spectral radius σ(FV−1) gives

R0 � σ FV
−1

􏼐 􏼑 �

���������������������������
a2εphpvπhπvσ

μ2vμh ε + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁

􏽳

.

(16)

One infected human in a population of susceptible vectors
will cause Rv infected vectors; likewise, one infected vector in
a population will cause Rh infected humans [5].(erefore, the
basic reproduction number can be rewritten as R0 �

�����
RhRv

􏽰
,

where Rh � (aεphπh/μh(μh + ε)(μh + τ + ω)) and Rv �

(σapvπv/μ2v(σ + μv)). (us, R0 can also be defined as the
square root of the product of the number of infected humans
in the susceptible population caused by one infected tsetse
fly in its infectious lifetime and the number of infected tsetse

flies caused by one infected human during the infectious
period [12].

3.4. Local Stability of Disease-Free Equilibrium (DFE)

Theorem 2. If R0 ≤ 1, the DFE given by E0 is locally as-
ymptotically stable in the region defined by (7), and it is
unstable when R0 > 1.

Proof. (e DFE is locally stable if all eigenvalues of Jacobian
matrix JE0

are negative. (e matrix has all eigenvalues neg-
ative only if the trace of JE0

< 0 and determinant of JE0
> 0. By

linearizing system (6) around E0, we obtain the following
Jacobian matrix:

JE0
�

−μh 0 0 ρ 0 0 −aphsh

0 − ε + μh( 􏼁 0 0 0 0 aphsh

0 ε − ω + τ + μh( 􏼁 0 0 0 0
0 0 τ − ρ + μh( 􏼁 0 0 0
0 0 −apvsv 0 −μv 0 0
0 0 apvsv 0 0 − σ + μv( 􏼁 0
0 0 0 0 0 σ −μv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

(e trace of matrix JE0
is such that

tr JE0
􏼐 􏼑 � −( μh + ε + μh + μh + ω + τ + ρ + μh

+ μv + σ + μv + μv􏼁

� − 4μh + 3μv + ε + ω + τ + ρ + σ( 􏼁< 0.

(18)

Using the basic properties of matrix algebra as in [13], it
is clear that the eigenvalues λ1 � −μh and λ2 � −μv of the
matrix JE0

have negative real parts. (e reduced matrix is

JE1
�

− ε + μh( 􏼁 0 0 0 aphsh

ε − ω + τ + μh( 􏼁 0 0 0

0 τ − ρ + μh( 􏼁 0 0

0 apvsv 0 − σ + μv( 􏼁 0

0 0 0 σ −μv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

From matrix JE1
, the eigenvalue λ3 � −(ρ + μh) has

negative real part. (e remaining matrix is further reduced
by using the reduction techniques, and we obtain

JE2
�

− ε + μh( 􏼁 0 0 aphsh

0 − ω + τ + μh( 􏼁 0
aphshε
ε + μh

0 apvsv − σ + μv( 􏼁 0

0 0 σ −μv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

Using the properties of matrix algebra, the matrix JE2
has

eigenvalue −(ε + μh) which has negative real part. We
further reduce to a 2 × 2 matrix by using the same reduction
techniques. (e matrix is

JE3
�

− ω + τ + μh( 􏼁
aphshε
ε + μh

apvsvσ
σ + μv

−μv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

From the reduced 2 × 2 matrix, the trace is negative and
the determinant is

Det JE3
􏼐 􏼑 � ω + τ + μh( 􏼁μv −

aphshε
ε + μh

×
apvsvσ
σ + μv

� ω + τ + μh( 􏼁μv 1−
a2εphpvπhπvσ

μ2vμh ε + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁
􏼢 􏼣.

(22)

Since

R0 �

���������������������������
a2εphpvπhπvσ

μ2vμh ε + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁

􏽳

, (23)

then, by letting RT � (a2εphpvπhπvσ/μ2vμh(ε + μh)(σ + μv)
(μh + τ + ω)), we find our determinant as

Det JE3
􏼐 􏼑 � ω + τ + μh( 􏼁μv 1−RT􏼂 􏼃. (24)

(e value of RT can be seen to be positive because all the
parameters are positive. As a result, the determinant in (24)
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is positive if and only if RT < 1. (erefore, the DFE is locally
stable if RT ≤ 1.

3.5. Global Stability of Disease-Free Equilibrium (DFE).
To show that the DFE is globally stable, we apply Lyapunov’s
theorem in [5].

Theorem 3. 2eDFE defined by E0 is globally asymptotically
stable in the region defined by (7) if R0 ≤ 1. Otherwise unstable
if R0 > 1.

Proof. We define Lyapunov’s function as

V � k1 sh − sh0 − sh0 ln
sh

sh0
􏼠 􏼡 + k2eh + k3ih

+ k4 sv − sv0 − sv0 ln
sv

sv0
􏼠 􏼡 + k5ev + k6iv,

(25)

satisfying system (6), where k1, k2, k3, k4, k5, k6 > 0 are to be
determined and sh0 � (πh/μh) and sv0 � (πv/μv). We first
show that V> 0 for all E≠ ((πh/μh), 0, 0, 0, (πv/μv), 0, 0). It is
enough to check that

k1sh0
sh

sh0
− 1− ln

sh

sh0
􏼠 􏼡> 0,

k4sv0
sv
sv0
− 1− ln

sv
sv0

􏼠 􏼡> 0.

(26)

(e function g(m) � m− 1− lnm such that
m � (sh/sh0) � (sv/sv0) has minimum value equal to zero
when m � 1; hence, g(m)> 0 for all m> 0. (us, Lyapunov’s
function V> 0. (e function V is radially unbounded be-
cause as |m|⟶∞, the function g(m)⟶∞. We now
take the derivative of V with respect to time and use system
(6) to replace the derivatives in the right hand side such that

V′ � k1 1−
sh0
sh

􏼠 􏼡
dsh

dt
+ k2

deh

dt
+ k3

dih

dt
+ k4 1−

sv0
sv

􏼠 􏼡
dsv

dt

+ k5
dev

dt
+ k6

div

dt
,

� k1 1−
sh0
sh

􏼠 􏼡 πh + ρrh − aphivsh − μhsh􏼂 􏼃

+ k2 aphivsh − εeh − μheh􏼂 􏼃

+ k3 εeh − μhih −ωih − τih􏼂 􏼃

+ k4 1−
sv0
sv

􏼠 􏼡 πv − μvsv − apvihsv􏼂 􏼃

+ k5 apvihsv − μvev − σev􏼂 􏼃 + k6 σev − μviv􏼂 􏼃,

� 2k1πh − aphshk1iv + ρrhk1 − k1μhsh

− k1
π2
h

μhsh
+

aphπhiv

μh
k1 −

πhρrh

μhsh
k1 + k2aphshiv

− k2 ε + μh( 􏼁eh + k3εeh − k3 τ + μh + ω( 􏼁ih

+ 2k4πv − k4apvsvih − μvsvk4 −
π2
v

μvsv
k4

+
apvihπv

μv
k4 − k5 μv + σ( 􏼁ev

+ k5apvsvih + k6σev − k6μviv.
(27)

(e terms with rh are ignored because if sh, eh, ih are
globally stable, then rh⟶ 0 at any time t and the DFE for
system (6) is globally stable. Taking k1 � k2 � (1/μh + ε),
k4 � k5 � (1/μv + σ), k3 � (1/ε), and k6 � (1/σ), the de-
rivative of V with respect to time becomes

V′ � −
πh

μh + ε
πh
μhsh

+
μhsh

πh
− 2􏼠 􏼡−

τ + μh + ω( 􏼁

ε
ih

+
aphπh
μh + ε( 􏼁μh

iv −
πv

μv + σ
πv

μvsv
+
μvsv
πv
− 2􏼠 􏼡

−
μv
σ

iv +
apvπv

μv μv + σ( 􏼁
ih

� −
πh

μh + ε
πh

μhsh
+
μhsh

πh
− 2􏼠 􏼡 +

πv

μv + σ
πv

μvsv
+
μvsv
πv
− 2􏼠 􏼡􏼢 􏼣

+
τ + μh + ω( 􏼁

ε
εapvπv

μv σ + μv( 􏼁 μh + τ + ω( 􏼁
− 1􏼠 􏼡ih

+
μv
σ

aσphπh
μvμh μh + ε( 􏼁

− 1􏼠 􏼡iv

� −
πh

μh + ε
πh

μhsh
+
μhsh

πh
− 2􏼠 􏼡 +

πv

μv + σ
πv

μvsv
+
μvsv
πv
− 2􏼠 􏼡􏼢 􏼣

+
τ + μh + ω( 􏼁

ε
Rv − 1( 􏼁ih +

μv

σ
Rh − 1( 􏼁iv.

(28)

(e terms ((πh/μhsh) + (μhsh/πh)− 2) and ((πv/μvsv) +

(μvsv/πv)− 2) are positive because if we suppose m �

(πh/μhsh) � (πv/μvsv), we have m + (1/m)− 2 � (m2 − 2m +

1/m) � ((m− 1)2/m)> 0 for all m> 1 and since Rv ≤ 1 and
Rh ≤ 1, then V′ is negative. (us, we have V′ < 0 for all
E0 ≠ ((πh/μh), 0, 0, 0, (πv/μv), 0, 0).

(us, the largest compact invariant set in D is the sin-
gleton set E0. Hence, system (6) is globally asymptotically
stable.
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3.6. Local Stability of Endemic Equilibrium (EE)

Theorem 4. 2e unique endemic equilibrium defined by E∗

is locally asymptotically stable in the region defined by (7) if
R0 > 1, but is unstable if R0 ≤ 1.

Proof. We give the proof of this theorem based on the ap-
proach used by Olaniyi and Obabiyi [9, 14]. From the EE

points defined in (12), since all values are positive, we express
the value of i∗h in terms of R0 to obtain

i
∗
h �

μ2vμh ε + μh( 􏼁 ρ + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁

B

·
a2εphpvπhπvσ

μ2vμh ε + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁
− 1􏼢 􏼣

�
μ2vμh ε + μh( 􏼁 ρ + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁

B
R
2
0 − 1􏽨 􏽩,

(29)

where

B � ( apv( aσphπv( ερω + μh( ρ(τ + ω) + ε(ρ + τ + ω)

+ μh ε + ρ + τ + ω + μh( 􏼁􏼁􏼁 + μh ε + μh( 􏼁 ρ + μh( 􏼁

· τ + ω + μh( 􏼁μv σ + μv( 􏼁􏼁􏼁.

(30)

Since the basic reproduction number R0 ������������������������������������������
(a2εphpvπhπvσ/μ2vμh(ε + μh)(σ + μv)(μh + τ + ω))

􏽰
, if we

let

RT �
a2εphpvπhπvσ

μ2vμh ε + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁
, (31)

then we can find i∗h as

i
∗
h �

μ2vμh ε + μh( 􏼁 ρ + μh( 􏼁 σ + μv( 􏼁 μh + τ + ω( 􏼁

B
RT − 1􏼂 􏼃.

(32)

(e value of B is clearly positive because all parameters
are positive. Hence, i∗h > 0 if and only if RT > 1, implying that
the EE is locally asymptotically stable if RT > 1.

3.7. Global Stability of Endemic Equilibrium (EE). To show
the global stability of the EE, we use Lyapunov’s theorem
together with the following lemma.

Lemma 1. Suppose that y1, y2, · · · , yn are n positive num-
bers. 2en, their arithmetic mean is greater than or equal to
the geometric mean, that is (y1 + y2 + · · · + yn/n)≥
(y1y2 · · · yn)1/n.

Theorem 5. 2e EE defined by E∗ is globally asymptotically
stable if R0 > 1, otherwise unstable.

Proof. (e proof is based on the idea as explained by
Martcheva [5]. We define Lyapunov’s function as

V � k1 sh − s
∗
h − s
∗
h ln

sh
s∗h

􏼠 􏼡 + k2 eh − e
∗
h − e
∗
h ln

eh
e∗h

􏼠 􏼡

+ k3 ih − i
∗
h − i
∗
h ln

ih

i∗h
􏼠 􏼡 + k4 sv − s

∗
v − s
∗
v ln

sv

s∗v
􏼠 􏼡

+ k5 ev − e
∗
v − e
∗
v ln

ev

e∗v
􏼠 􏼡 + k6 iv − i

∗
v − i
∗
v ln

iv

i∗v
􏼠 􏼡,

(33)

satisfying system (6) with k1, k2, k3, k4, k5, k6 > 0 to be
determined. (e function V is nonnegative for all
(sh, eh, ih, rh, sv, ev, iv)≠ (s∗h , e∗h , i∗h , r∗h , s∗v , e∗v , i∗v ) and radially
unbounded.

We need to prove that V′ < 0 for all
(sh, eh, ih, rh, sv, ev, iv)≠ (s∗h , e∗h , i∗h , r∗h , s∗v , e∗v , i∗v ). We find the
derivative of V with respect to time and replace the de-
rivatives sh

′, eh
′, ih′, rh
′, sv
′, ev
′, iv′ with system (6). We also ignore

the rh terms because if sh, eh, ih are globally stable, then
rh⟶ 0 at any time t and EE is globally stable:

V′ � k1 1−
s∗h
sh

􏼠 􏼡 πh − aphivsh − μhsh􏼂 􏼃 + k2 1−
e∗h
eh

􏼠 􏼡

· aphivsh − μh + ε( 􏼁eh􏼂 􏼃 + k3 1−
i∗h
ih

􏼠 􏼡

· εeh − ω + τ + uh( 􏼁ih􏼂 􏼃 + k4 1−
s∗v
sv

􏼠 􏼡

· πv − apvihsv − μvsv􏼂 􏼃 + k5 1−
e∗v
ev

􏼠 􏼡

· apvihsv − μv + σ( 􏼁ev􏼂 􏼃 + k6 1−
i∗v
iv

􏼠 􏼡 σev − uviv􏼂 􏼃.

(34)

We now substitute πh � aphi∗v s∗h + μhs∗h and πv �

apvi∗hs∗v + μvs∗v at the endemic equilibrium and then simplify
and put similar terms together to obtain

V′ � −k1
sh − s∗h( 􏼁

2μh
sh

+ k1aphi
∗
v s
∗
h − k1aphivsh − k1aph

s∗2h i∗v
sh

+ k1aphivs
∗
h + k2aphshiv − k2 ε + μh( 􏼁eh − k2aphshiv

e∗h
eh

+ k2 ε + μh( 􏼁e
∗
h + k3εeh − k3 ω + τ + μh( 􏼁i

∗
h − k3εeh

i∗h
ih

+ k3 ω + τ + μh( 􏼁i
∗
h − k4

sv − s∗v( 􏼁
2μv

sv
+ k4apvi

∗
hs
∗
v

− k4apvihsv − k4apv
s∗2v i∗h

sv
+ k4apvihs

∗
v + k5apvsvih

− k5 σ + μv( 􏼁ev − k5apvsvih
e∗v
ev

+ k5 σ + μv( 􏼁e
∗
v + k6σev

− k6μvi
∗
v − k6σev

i∗v
iv

+ k6μvi
∗
v .

(35)
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We suppose k1 � k2 and k4 � k5 and multiply and divide
the same equilibrium value to some of the fractions to obtain

V′ � −k1
sh − s∗h( 􏼁

2μh
sh

+ k1aphi
∗
v s
∗
h − k1aph

s∗2h i∗v
sh

+ k1aphivs
∗
h

− k2 ε + μh( 􏼁eh − k2aphshiv
e∗hs∗h i∗v
s∗h i∗v eh

+ k2 ε + μh( 􏼁e
∗
h

+ k3εeh − k3 ω + τ + μh( 􏼁ih − k3εeh
i∗he∗h
ihe∗h

+ k3 ω + τ + μh( 􏼁i
∗
h − k4

sv − s∗v( 􏼁
2μv

sv
+ k4apvi

∗
hs
∗
v

− k4apv
s∗2v i∗h

sv
+ k4apvihs

∗
v − k5 σ + μv( 􏼁ev

− k5apvsvih
e∗v s∗v i∗h
s∗v i∗hev

+ k5 σ + μv( 􏼁e
∗
v + k6σev − k6μvi

∗
v

− k6σev
e∗v i∗v
ive
∗
v

+ k6μvi
∗
v .

(36)

We choose k3 � k2(μh + ε/ε) such that k3(ω + τ+ μh)i∗h �

k2(ε + μh)e∗h and choose k6 � k5(μh + σ/σ) such that
k6μvi∗v � k5(σ + μv)e∗v . Now, aphs∗h i∗v � (μh + ε)e∗h and
apvs
∗
v i∗v � (μv + σ)e∗v because k1 � k2 and k4 � k5, re-

spectively. We now obtain

V′ � −k1
sh − s∗h( 􏼁

2μh
sh

+ k1aphi
∗
v s
∗
h 3−

s∗h
sh
−

e∗h ivsh

s∗hehi∗v
−

ehi∗h
ihe∗h

􏼢 􏼣

+ k1aphivs
∗
h − k3 ω + τ + μh( 􏼁ih + k3ε− k2 ε + μh( 􏼁􏼂 􏼃eh

− k4
sv − s∗v( 􏼁

2μv
sv

+ k4apvi
∗
hs
∗
v 3−

s∗v
sv
−

e∗v ihsv

s∗v evi
∗
h
−

evi
∗
v

ive
∗
v

􏼢 􏼣

+ k4apvihs
∗
v − k6μviv + k6σ − k5 σ + μv( 􏼁􏼂 􏼃ev.

(37)

Suppose k6 � (k1aphs∗h/μv) and k3 � (k4apvs
∗
v /ω + τ+

μh). We then substitute and simplify to get

V′ � −k1
sh − s∗h( 􏼁

2μh
sh

+ k1aphi
∗
v s
∗
h 3−

s∗h
sh
−

e∗h ivsh

s∗hehi∗v
−

ehi∗h
ihe∗h

􏼢 􏼣

− k4
sv − s∗v( 􏼁

2μv
sv

+ k4apvi
∗
hs
∗
v 3−

s∗v
sv
−

e∗v ihsv
s∗v evi
∗
h
−

evi
∗
v

ive
∗
v

􏼢 􏼣.

(38)

From Lemma 1, the terms

k1aphi
∗
v s
∗
h 3−

s∗h
sh
−

e∗h ivsh

s∗hehi∗v
−

ehi∗h
ihe∗h

􏼢 􏼣,

k4apvi
∗
hs
∗
v 3−

s∗v
sv
−

e∗v ihsv

s∗v evi
∗
h
−

evi
∗
v

ive
∗
v

􏼢 􏼣≤ 0.

(39)

(erefore, V′ < 0 for all (sh, eh, ih, rh, sv, ev, iv)≠ (s∗h ,

e∗h , i∗h , r∗h , s∗v , e∗v , i∗v ), implying that the endemic equilibrium is
globally asymptotically stable if R0 > 1.

4. Analysis of Optimal Control Model

In this section, we formulate the optimal control model by
modifying system (6) to an optimal control problem. We
thus define some linear functions ci(t) � 1, for i � 1, 2, 3. It is
important to note that controls are fully effective when
ci(t) � 1 and not effective when ci(t) � 0. (e forces of
infection ξh and xiv, which correspond to the human and
vector population, respectively, are reduced by the factor
(1− c1), where c1 measures the level of success obtained due
to the effort of educating people on the dangers of exposing
their skin, and encouraging them to wear long sleeves and
long pants during the day to minimize tsetse fly-human
contacts. (e factor c2 represents the effort of treatment to
control the disease, and the factor c3 also represents the
effort of using insecticides to ensure that the breeding sites of
the tsetse fly are minimized. Hence, taking into account the
assumptions and extensions made, we try to find the most
effective strategy that reduces the HAT infection in the
population at a veryminimum cost.With the use of bounded
Lebesgue measurable control, we define the objective
function to be minimized as

J c1, c2, c3( 􏼁 � 􏽚
tF

0
( M1eh + M2ih + M3ev + M4iv

+
1
2
k1c

2
1 +

1
2
k2c

2
2 +

1
2
k3c

2
3􏼁 dt.

(40)

(us, the dynamics of the controls that minimizes the
objective function is given by

dsh
dt

� πh + ρrh − 1− c1( 􏼁aphivsh − μhsh,

deh

dt
� 1− c1( 􏼁aphivsh − εeh − μheh,

dih

dt
� εeh − μhih −ωih − c2τih,

drh

dt
� c2τih − ρrh − μhrh,

dsv

dt
� πv − c3μvsv − 1− c1( 􏼁apvihsv,

dev

dt
� 1− c1( 􏼁apvihsv − c3μvev − σev,

div

dt
� σev − c3μviv,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

subject to the initial conditions sh ≥ 0, eh ≥ 0, ih ≥ 0, rh ≥ 0,

sv ≥ 0, ev ≥ 0, and iv ≥ 0. (e associated effective reproduc-
tion number for (41) denoted by RE is obtained as

RE �

��������������������������������

a2ε 1− c1( 􏼁
2
phπhπvσ

c3μh ε + μh( 􏼁μ2v σ + c3μv( 􏼁 μh + c2τ + ω( 􏼁

􏽳

�
��
Rc

􏽰
.

(42)
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(e goal is to minimize the exposed and infectious human
populations (eh, ih), the exposed and infectious vector pop-
ulations (ev, iv), and the cost of implementing the control by
the use of possible ci, i � 1, 2, 3. (e functional objective
includes the social cost which relates to the resources that are
needed for educating people on personal protection (1/2)k1c

2
1,

the application of treatment (1/2)k2c
2
2, and spraying of tsetse

fly operations (1/2)k3c
2
3. (e quantities M1 and M2, re-

spectively, represent the associated cost with minimizing the
exposed and infected human population, while M3 and M4
also represent the cost associated withminimizing the exposed
and infected vectors, respectively. (e quantity tF is the time
period of intervention. As explained in [15], the costs cor-
responding to M1eh, M2ih, M3ev, and M4iv are linear, while
the cost control functions (1/2)k1c

2
1, (1/2)k2c

2
2, and (1/2)k3c

2
3

should be nonlinear and take a quadratic form. (erefore, we
seek to minimize the objective function over the given time
interval [0, tF]. Pontryagin’s maximum principle is used to
solve this optimal control problem and the derivation of the
necessary conditions. (e Lagrangian of the optimal control
problem is given by

L � M1eh + M2ih + M3ev + M4iv +
1
2
k1c

2
1 +

1
2
k2c

2
2 +

1
2
k3c

2
3􏼒 􏼓.

(43)

To determine the Lagrangian minimum value, we define
the Hamiltonian, H, for the control problem as

H � M1eh + M2ih + M3ev + M4iv +
1
2
k1c

2
1 +

1
2
k2c

2
2

+
1
2
k3c

2
3 + λsh

dsh

dt
+ λeh

deh

dt
+ λih

dih

dt
+ λrh

drh

dt

+ λsv

dsv

dt
+ λev

dev

dt
+ λiv

div

dt
,

(44)

where λsh
, λeh

, λih
, λrh

, λsv
, λev

, and λiv
are adjoint variables or

costate variables. (e differential equations of adjoint var-
iables are obtained by taking the partial derivatives of the
Hamiltonian equation with respect to the state variables,
which gives

dλsh

dt
� λsh

μh + λsh
− λeh

􏼐 􏼑 1− c1( 􏼁aphiv,

dλeh

dt
� −M1 + λeh

− λih
􏼐 􏼑ε + λeh

μh,

dλih

dt
� −M2 + λih

− λrh
􏼐 􏼑c2τ + λih

ω + μh( 􏼁 + λsv
− λev

􏼐 􏼑 1− c1( 􏼁apvsv,

dλrh

dt
� λrh
− λsh

􏼐 􏼑ρ + λrh
μh,

dλsv

dt
� λsv
− λev

􏼐 􏼑 1− c1( 􏼁apvih + λsv
μvc3,

dλev

dt
� −M3 + λev

− λiv
􏼐 􏼑σ + λev

μvc3,

dλiv

dt
� −M4 + λsh

− λeh
􏼐 􏼑 1− c1( 􏼁aphsh + λiv

μvc3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

Theorem 6. Given the optimal controls c∗1 , c∗2 , c∗3 and the
solutions sh, eh, ih, rh, sv, ev, iv of the corresponding state
equations (41) and (40) which minimize J(c1, c2, c3) over the
region Ω, then there exist adjoint variables
λsh

, λeh
, λih

, λrh
, λsv

, λev
, λiv

satisfying

−
dλi

dt
�

zH

zi
, i ∈ sh, eh, ih, rh, sv, ev, iv􏼈 􏼉, (46)

and the optimal solution c∗1 , c∗2 , c∗3 is given by

c
∗
1 � min 1, max 0, 􏽢c1( 􏼁􏼈 􏼉,

c
∗
2 � min 1, max 0, 􏽢c2( 􏼁􏼈 􏼉,

c
∗
3 � min 1, max 0, 􏽢c3( 􏼁􏼈 􏼉.

(47)

Proof. (e Pontryagin’s maximum principle described in
[16, 17] is applied. Corollary 4.1 in [17] shows the existence
of an optimal control due to the convexity of the integrand J
with respect to c1, c2, c3, and Lipschitz property of the state
system with respect to the state variables. By using the
optimal conditions

zH

zc1
� 0,

zH

zc2
� 0,

zH

zc3
� 0,

(48)

we obtain,

zH

zc1
� k1c1 + λsh

− λeh
􏼐 􏼑aphivsh + λsv

− λev
􏼐 􏼑apvihsv � 0,

zH

zc2
� k2c2 + λrh

− λih
􏼐 􏼑τih � 0,

zH

zc3
� k3c3 − λsv

μvsv + λev
μvev + λiv

μviv􏼐 􏼑 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

Table 2: Parameters values used for simulations.

Parameter Value Reference
πh 0.000215/day [14]
πv 0.07/day [14]
ph 0.62 [6]
pv 0.065 [6, 15]
a Varying Assumed
σ 0.001 Assumed
ε 0.083 [18]
ω 0.004 [3]
ρ 0.02 [6]
τ 0.125 [3]
μh 0.00044 Assumed
μv 0.034 [15]
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Solving (49), we have

ĉ1 �
λeh − λsh( )aphivsh + λev − λsv( )apvihsv

k1
,

ĉ2 �
λih − λrh( )τih

k2
,

ĉ3 �
λsvμvsv + λevμvev + λivμviv

k3
.

(50)

As stated earlier, the lower and upper boundaries for the
control parameters are 0 and 1, respectively. If ĉ1, ĉ2, ĉ3 < 1,
then c1 � c2 � c3 � 0 and if ĉ1, ĉ2, ĉ3 > 1, then c1 � c2 �
c3 � 1, otherwise c1 � ĉ1, c2 � ĉ2, c3 � ĉ3. �erefore, for the
control parameters c∗1 , c

∗
2 , c
∗
3 , we obtain the optimum value of

the function J(c1, c2, c3).

4.1. Optimal Control Simulations. �e Octave programming
language is used to simulate the optimal control model using
the set of parameters obtained from previously reported
studies and datasets, which have been cited. Some of these
parameters are assumed for the sake of illustrations. Table 2
represents the values of the model parameters used for
simulations.�e following initial conditions were considered:

sh(0) � 30,

eh(0) � 7,

ih(0) � 2,

rh(0) � 0,

sv(0) � 40,

ev(0) � 10,

iv(0) � 3,

(51)

and the weight constants were assumed to be

M1 � 1,

M2 � 2,

M3 � 2,

M4 � 2,

k1 � 2,

k2 � 10,

k3 � 5.

(52)

Figures 2 and 3 represent the control pro�les at di�erent
values of c1, c2, and c3, while the rest of the plots are the
graphs of infectious human and vector population plotted
against time in days and they represent the e�ect of optimal
controls c1, c2, and c3 in reducing the number of individuals
infected. From Figure 4, we observe that the use of treatment
and insecticides only has a signi�cant impact in reducing the
number of infectious individuals and they show that this
strategy is e�ective to control tsetse �ies and infected human
populations. In Figure 5, we observe that the use of edu-
cation and insecticides reduce the number of infectious
individuals but the results depicted in Figure 5(a) shows that
this strategy is not e�ective and e�cient to control the
infectious human population. From Figure 6, we observe
that the use of education and treatment reduces the number
of infectious individuals but the results from Figure 6(b)
shows that this strategy is not e�ective and e�cient to
control the population of infectious tsetse �ies. Lastly, the
results depicted from Figure 7 shows that the strategy of
using education, treatment, and insecticides is very e�cient
and e�ective to reduce the number of infected individuals.
�erefore, the use of education, treatment, and insecticides
simultaneously is very e�cient and e�ective to eliminate
HAT in Africa.

In epidemiology, a reproduction number less than unity
implies that the disease can be eradicated in the long run.
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Figure 2: (a) Control pro�le when c1 � 0, c2 ≠ 0, and c3 ≠ 0 at Rc � 0.0075. (b) Control pro�le when c1 ≠ 0, c2 � 0, and c3 ≠ 0 at Rc � 0.00013.
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Hence, choosing suitable parameters for the controls c1, c2,
and c3, it was observed that the e�ective reproduction
numbers obtained for Figures 2–7were 0.0075, 0.00013, 0.044,
0.000075, 0.0075, 0.00013, 0.044, and 0.000075, respectively.
�is shows that incorporating all the control measures, that is,
educating individuals, giving treatment, and applying in-
secticides, is an e�ective method to help reduce the number
secondary infections in the population which corresponds
with eradicating the disease in the long run.

5. Conclusion

In this paper, we studied and analyzed the model for
transmission of HAT, and determined the basic reproduction

number. �e local and global stabilities of disease-free
equilibrium and endemic equilibrium were also proved.
For the optimal control model, education, treatment, and
insecticides as control measures were used to optimize the
objective function de�ned by Equation (40). �e numerical
simulations of the optimal control model show that the best
strategy to reduce the number of infected individuals is
through the use of education, treatment, and insecticides.
�is is the e�ective and e�cient method to eliminate the
disease. Furthermore, the national authorities, non-
governmental organizations (NGOs), and stakeholders
must not lose their interest in controlling the disease be-
cause neglecting this disease may cause rapid reoccurrence
and much e�ect to the people who are at risk.
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Figure 4: Simulations of the model showing the e�orts of treatment and insecticides only on infectious individuals at Rc � 0.0075.
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Figure 3: (a) Control pro�le when c1 ≠ 0, c2 ≠ 0, and c3 � 0 at Rc � 0.044. (b) Control pro�le when c1 ≠ 0, c2 ≠ 0, and c3 ≠ 0 at Rc � 0.000075.
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Figure 7: Simulations of the model showing the e�orts of education, treatment, and insecticides on infectious individuals at Rc � 0.000075.
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Figure 6: Simulations of the model showing the e�orts of education and treatment only on infectious individuals at Rc � 0.044.
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Figure 5: Simulations of the model showing the e�orts of education and insecticides only on infectious individuals at Rc � 0.00013.
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