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The current emergence of coronavirus (SARS-CoV-2) puts the world in threat. The structural research on the receptor recognition
by SARS-CoV-2 has identified the key interactions between SARS-CoV-2 spike protein and its host (epithelial cell) receptor, also
known as angiotensin-converting enzyme 2 (ACE2). It controls both the cross-species and human-to-human transmissions of
SARS-CoV-2. In view of this, we propose and analyze a mathematical model for investigating the effect of CTL responses over
the viral mutation to control the viral infection when a postinfection immunostimulant drug (pidotimod) is administered at
regular intervals. Dynamics of the system with and without impulses have been analyzed using the basic reproduction number.
This study shows that the proper dosing interval and drug dose both are important to eradicate the viral infection.

1. Introduction

A novel coronavirus named SARS-CoV-2 (an interim name
proposed by WHO (World Health Organization)) became a
pandemic since December 2019. The first infectious respira-
tory syndrome was recognized in Wuhan, Hubei province of
China. Dedicated virologists identified and recognized the
virus within a short time [1]. The SARS-CoV-2 is a single-
stranded RNA virus genome which is closely related to
severe acute respiratory syndrome- (SARS-) CoV [2]. The
infection of SARS-CoV-2 is associated with a SARS-CoV-
like a disease with a fatality rate of 3.4% [3]. The World
Health Organization (WHO) have named the disease as
COVID-19 and declared it as a public health emergency
worldwide [4].

The common symptoms of COVID-19 are fever, fatigue,
dry cough, and myalgia. Also, some patients suffer from
headaches, abdominal pain, diarrhea, nausea, and vomiting.
In the acute phase of infection, the disease may lead to
respiratory failure which leads to death also. From clinical
observation, within 1-2 days after patient symptoms, the
patient becomes morbid after 4-6 days and the infection

may clear within 18 days [5] depending on the immune
system. Thus, appropriate quarantine measure for a mini-
mum of two weeks is taken by the public health authorities
for inhibiting community spread [6].

In [1], Zhou et al. identified the respiratory tract as the
principal infection site for COVID-19 infection. SARS-
CoV-2 infects primary human airway epithelial cells. The
angiotensin-converting enzyme 2 (ACE2) receptor of epi-
thelial cells plays an important role in cellular entry [1, 7].
It has been observed that ACE2 could be expressed in the
oral cavity. ACE2 receptors are higher in the tongue than
buccal and gingival tissues. These findings imply that the
mucosa of the oral cavity may be a potentially high-risk
route of COVID-19 infection. Thus, epithelial cells of the
tongue are the major routes of entry for COVID-19. Zhou
et al. [1] also reported that SARS-CoV-2 spikes (S) bind
with the ACE2 receptor of epithelial cells with high affinity.
The bonding between S (spikes) of SARS-CoV-2 and ACE2
[7] results from the fusion between the viral envelope and
the target cell membrane, and the epithelial cells become
infected. The S protein plays a major role in the induction
of protective immunity during the infection of SARS-CoV-
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2 by eliciting neutralization antibody and T cell responses
[8]. The S protein is not only capable of neutralizing anti-
body, but it also contains several immunogenic T cell epi-
topes. Some of the epitopes are found in either the S1 or
S2 domain. These proteins are useful for SARS-CoV-2 drug
development [9].

We know that virus clearance after acute infection is
associated with strong antibody responses. Antibody
responses have the potential to control the infection [10].
Also, CTL responses help to resolve infection and virus
persistence caused by weak CTL responses [11]. Antibody
responses against SARS-CoV-2 play an important role in
preventing the viral entry process [8]. Hsueh et al. [2] found
that antibodies block viral entry by binding to the S
glycoprotein of SARS-CoV-2. To fight against the pathogen
SARS-CoV-2, the body requires SARS-CoV-2-specific CD4+

T helper cells for developing this specific antibody [8].
Antibody-mediated immunity protection helps the anti-
SARS-CoV serum to neutralize COVID-19 infection.
Besides that, the role of T cell responses in COVID-19 infec-
tion is very much important. Cytotoxic T lymphocyte (CTL)
responses are important for recognizing and killing infected
cells, particularly in the lungs [8]. But the kinetics of the
CTL responses and antibody responses during SARS-CoV-
2 infection is yet to be explored. Our study will focus on
the role of CTL and its possible implication on treatment
and drug development. The drug that stimulates the CTL
responses represents the best hope for control of COVID-
19. Here, we have modeled the situation where CTLs can
effectively control the viral infection when the postinfection
drug is administered at regular intervals.

Mathematical modeling with real data can help in pre-
dicting the dynamics and control of an infectious disease
[12, 13]. A four-dimensional dynamical model for a viral
infection is proposed by Tang et al. [14] for MERS-CoV
mediated by DPP4 receptors. In the case of SARS-CoV-2,
the infection process is almost similar with MERS-CoV and
SARS-CoV. For SARS-CoV-2 infection, the ACE2 receptors
of epithelial cells are the major target area.

Since the dynamics of the disease transmission of
SARS-CoV-2 in the cellular level is yet to be explored, we
investigate the system in the light of the previous literature
of [14–18] to formulate the dynamic model which plays a
significant role in describing the interaction between unin-
fected cells, free virus, and CTL responses. We propose a
novel deterministic model which describes the cell biologi-
cal infection of SARS-CoV-2 with epithelial cells and the
role of the ACE2 receptor.

We explained the dynamics in the acute infection stage.
It has been observed that CTLs proliferate and differentiate
antibody production after they encounter antigens. Here,
we investigate the effect of CTL responses over the viral
mutation to control viral infection when a postinfection
drug is administered at regular intervals by a mathematical
perspective.

It is clinically evident that immunostimulants play a cru-
cial role in the case of respiratory disease. Among the currently
available immunostimulants, pidotimod is the most effective
for the respiratory disease [19]. Pidotimod increases the level

of immunoglobulins (IgA, IgM, and IgG) and activates the
CTL responses to fight against the disease.

In this article, we have considered the infection dynamics
of SARS-CoV-2 infection in the acute stage. We have used
impulsive differential equations to study the immunostimu-
lant drug dynamics and the effects of perfect drug adherence.
In recent years, the effects of perfect adherence have been
studied by using impulsive differential equations in [20–26].
With the help of impulsive differential equations, the effect
of maximal acceptable drug holidays and optimal dosage
can be found more precisely [20, 26].

The article is organized as follows. The very next section
contains the formulation of the impulsive mathematical
model. Dynamics of the system without impulses has been
provided in Section 3. The system with impulses has been
analyzed in Section 4. Numerical simulations, on the basis
of the outcomes of Sections 3 and 4, have been included in
Section 5. Discussion in Section 6 concludes the paper.

2. Model Formulation

As discussed in the previous section, we propose a model
considering the interaction between epithelial cells and
SARS-CoV-2 virus along with lytic CTL responses over
the infected cells. We consider five populations, namely,
the uninfected epithelial cells TðtÞ, infected cells IðtÞ,
ACE2 receptor of the epithelial cells EðtÞ, SARS-CoV-2
virus V(t) and CTLs against the pathogen CðtÞ.

In this model, we consider which represents the concen-
tration of ACE2 on the surface of uninfected cells, which
can be recognized by the surface spike (S) protein of
SARS-CoV-2 [27].

It is assumed that the susceptible cells are produced at a
rate λ1 from the precursor cells and die at a rate dT . The
susceptible cells become infected at a rate βEðtÞVðtÞTðtÞ.
The constant dI is the death rate of the infected cells.
Infected cells are also cleared by the body’s defensive CTLs
at a rate p.

The infected cells produce new viruses at the rate mdI
during their life, and dV is the death rate of new virions,
where m is any positive integer. It is also assumed that
ACE2 is produced from the surface of uninfected cells at
the constant rate λ2 and the ACE2 is destroyed, when free
viruses try to infect uninfected cells, at the rate θβEðtÞVðtÞ
TðtÞ and is hydrolyzed at the rate dEE.

CTL proliferation in the presence of infected cells is
described by the term

αIC 1 − C
Cmax

� �
, ð1Þ

which shows the antigen-dependent proliferation. Here, we
consider the logistic growth of CTL with Cmax as the maxi-
mum concentration of CTL, and dc is its rate of decay.

With the above assumptions, we have the following math-
ematical model characterizing the SARS-CoV-2 dynamics:
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dT
dt

= λ1 − βEVT − dTT ,

dI
dt

= βEVT − dII − pIC,

dV
dt

=mdII − dVV ,

dE
dt

= λ2 − θβEVT − dEE,

dC
dt

= αIC 1 − C
Cmax

� �
− dcC:

ð2Þ

A short description of the model parameters and their
values is shown in Table 1. We now modify the above model
by incorporating pulse periodic drug dosing using impulsive
differential equations [28, 29].

We consider the perfect adherence behavior of the
immunostimulant drug for SARS-CoV-2-infected patients
at fixed drug dosing times tk, k ∈ℕ.

We assume that CTL cells increase by a fixed amount ω,
which is proportional to the total number of CTLs that the
drug can stimulate. Thus, the above model takes the follow-
ing form:

dT
dt

= λ1 − βEVT − dTT ,

dI
dt

= βEVT − dII − pIC,

dV
dt

=mdII − dVV ,

dE
dt

= λ2 − θβEVT − dEE,

dC
dt

= αIC 1 − C
Cmax

� �
− dcC, t ≠ tk,

C t+kð Þ = ω + C t−kð Þ, t = tk:

ð3Þ

Here, Cðt−k Þ denotes the CTL cell concentration immedi-
ately before the impulse, Cðt+k Þ denotes the concentration
after the impulse, and ω is the fixed amount which is propor-
tional to the total number of CTLs the drug stimulates at each
impulse time tk, k ∈ℕ.

Remark 1. It can be noted that when there is no drug applica-
tion in the system, model (3) becomes model (2).

3. Analysis of the System without the Drug

In this section, we analyze the dynamics of the system with-
out impulses, i.e., system (1). We have derived the basic
reproduction number for the system. Stability of equilibria
is discussed using the number.

3.1. Existence of Equilibria. Model (2) has three steady states,
namely, (i) the disease-free equilibrium E1ðλ1/dT , 0, 0, λ2/dE,

0Þ; (ii) with �E > dTdV /βλ1m, there is a CTL response-free
equilibrium, E2ð�T ,�I, �V , �E, 0Þ, where

�T = dV
βm�E

,

�I = βλ1m�E − dTdV
βdIm�E

,

�V = βλ1m�E − dTdV
βdV�E

,

�E =
− θβλ1m − βλ2mð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θβλ1m − βλ2mð Þ2 + 4βmdTdVdEθ

q
2βdEm

;

ð4Þ

and (iii) the endemic equilibrium E∗ which is given by

T∗ = λ1α − dIαI
∗ − pdc

dTα
,

V∗ = dImI∗

dV
,

E∗ = λ2α − θαdII
∗ − θpdc

dEα
,

ð5Þ

C∗ = αI∗ − dcð ÞCmax
αI∗

, ð6Þ

where I∗ is the positive root of the cubic equation

L0I
3 + L1I

2 + L2I + L3 = 0, ð7Þ

Table 1: Set of parameter values used of numerical simulations.

Parameter Explanation Assigned value

λ1 Production rate of uninfected cell 5

λ2 Production rate of ACE2 1

β Disease transmission rate 0.0001

θ Bonding rate of ACE2 0.3

dT Death rate of uninfected cells 0.1

dI Death rate of infected cells 0.1

dV Removal rate of virus 0.1

dE Hydrolyzing rate of epithelial cells 0.1

dc Decay rate of CTL 0.1

p Killing rate of infected cells by CTL 0.01

m Number of new virions produced 10-100

α Proliferation rate of CTL 0.22

Cmax Maximum proliferation of CTL 100
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with

L0 = −α2θβd3I m,
L1 = −2αθβd2I dcmp + α2θβd2Iλ1m + α2βd2Iλ2m,
L2 = α2dTdIdVdE + αθβdIdcλ1mp + αβdIdcλ2mp

− α2βdIλ1λ2m − θβdId
2
cmp2,

L3 = αdTdVdEdcp:

ð8Þ

Remark 2. Note that L0 < 0 and L3 > 0. Thus, equation (7) has
at least one positive real root. If L1 > 0 and L2 < 0, then (3) can
have two positive roots. For a feasible endemic equilibrium, we
also need

min λ1α − pdc
dIα

, λ2α − θpdc
θαdI

� �
> I∗ > dc

α
: ð9Þ

3.2. Stability of Equilibria. In this section, the characteristic
equation at any equilibrium is determined for the local stability
of system (2). Linearizing system (2) at any equilibrium
EðT , I, V , E, CÞ yields the characteristic equation

Δ ξð Þ = ∣ξIn −A∣ = 0, ð10Þ

where In is the identity matrix and A = ½aij� is the following
5 × 5 matrix given by

A =

−βEV − dT 0 −βET −βVT 0

βEV −dI − pC βET βVT −pI

0 dIm −dv 0 0

−θβEV 0 −θβET −θβVT − dE 0

0 αC 1 − C
Cmax

� �
0 0 a55

2
666666666666666666666664

3
777777777777777777777775

,

ð11Þ

with a55 = αIð1 − 2C/CmaxÞ − dc. We finally get the charac-
teristic equation as

ψ ξð Þ = ξ5 + A1ξ
4 + A2ξ

3 + A3ξ
2 + A4ξ + A5 = 0: ð12Þ

The coefficients Ai, i = 1, 2,⋯, 5, are given in the
appendix.

Looking at stability of any equilibrium E, the Routh-
Hurwitz criterion gives that all roots of this characteristic

equation (12) have negative real parts, provided the following
conditions hold

A5 > 0,
A1A2 − A3 > 0,

A3 A1A2 − A3ð Þ − A1 A1A4 − A5ð Þ > 0,
A1A2 − A3ð Þ A3A4 − A2A5ð Þ − A1A4 − A5ð Þ2 > 0:

ð13Þ

Let us define the basic reproduction number as

R0 =
mβλ1λ2
dTdEdV

: ð14Þ

Then, using (5), we can derived the following result.

Theorem 3. Disease-free equilibrium E1ðλ1/dT , 0, 0, λ2/dE , 0Þ
of model (2) is stable for R0 < 1 and unstable for R0 > 1.

At E2, one eigenvalue is −dc and the rest of the eigen-
values satisfy the following equation:

ξ4 + B1ξ
3 + B2ξ

2 + B3ξ + B4 = 0: ð15Þ

The coefficients Bi, i = 1, 2,⋯, 5, are given in the
appendix.

Using the Routh-Hurwitz criterion, we have the follow-
ing theorem:

Theorem 4. The CTL-free equilibrium, E2ð�T ,�I, �V , �E, 0Þ, is
asymptotically stable if and only if the following conditions
are satisfied:

B1 > 0,
B2 > 0,
B3 > 0,
B4 > 0,

B1B2 − B3 > 0,
B1B2 − B3ð ÞB3 − B2

1B4 > 0:

ð16Þ

DenotingA∗
i = AiðE∗Þ and using (5), we have the following

theorem establishing the stability of coexisting equilibrium E∗.

Theorem 5. The coexisting equilibrium E∗ is asymptotically
stable if and only if the following conditions are satisfied:

A∗
5 > 0,

A∗
1A

∗
2 − A∗

3 > 0,
A∗
3 A∗

1A
∗
2 − A∗

3ð Þ − A∗
1 A∗

1A
∗
4 − A∗

5ð Þ > 0,
A∗
1A

∗
2 − A∗

3ð Þ A∗
3A

∗
4 − A∗

2A
∗
5ð Þ − A∗

1A
∗
4 − A∗

5ð Þ2 > 0:

ð17Þ
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4. Dynamics of the System with Impulsive
Drug Dosing

In this section, we consider the model system (3). Before ana-
lyzing the system, we first discuss the one-dimensional
impulse system as follows:

dC
dt

= αIC 1 − C
Cmax

� �
− dcC, t ≠ tk,

C t+kð Þ = ω + C t−kð Þ, t = tk:

ð18Þ

Cðt−k Þ denotes the CTL responses immediately before the
impulse drug dosing, Cðt+k Þ denotes the concentration after
the impulse, and ω is the dose that is taken at each impulse
time tk, k ∈ℕ.

We now consider the following linear system:

dC
dt

= −dcC, t ≠ tk,

ΔC = ω, t = tk,
ð19Þ

where Δ = Cðt+k Þ − Cðt−k Þ. Let τ = tk+1 − tk be the period of the
campaign. The solution of system (10) is

C tð Þ = C t+kð Þe−dc t−tkð Þ, for tk < t ≤ tk+1: ð20Þ

In presence of impulsive dosing, we can get the recursion
relation at the moments of impulse as

C t+kð Þ = C t−kð Þ + ω: ð21Þ

Thus, the amount of CTL before and after the impulse is
obtained as

C t+kð Þ = ω 1 − e−kτdc
� �
1 − e−τdc

,

C t−k+1ð Þ = ω 1 − e−kτdc
� �

e−τdc

1 − e−τdc
:

ð22Þ

Thus, the limiting case of the CTL amount before and
after one cycle is as follows:

lim
k→∞

C t+kð Þ = ω

1 − e−τdc
,

lim
k→∞

C t−k+1ð Þ = ωe−τdc

1 − e−τdc
,

C t+k+1ð Þ = ωe−τdc

1 − e−τdc
+ ω = ω

1 − e−τdc
:

ð23Þ

Definition 6. Let Λ ≡ ðSu, Sa, I, CÞ and B0 = ½B : R4
+ → R+�;

then, we say that B belong to class B0 if the following condi-
tions hold:

(i) B is continuous on ðtk, tk+1� × R3
+, n ∈N , and for all

Λ ∈ R4, limðt,μÞ→ðt+k ,ΛÞBðt, μÞ = Bðt+k ,ΛÞ exists

(ii) B is locally Lipschitzian in Λ

We now recall some results for our analysis from [28, 29].

Lemma 7. Let ZðtÞ be a solution of system (9) with Zð0+Þ ≥ 0.
Then, ZiðtÞ ≥ 0, i = 1,⋯, 4, for all t ≥ 0. Moreover, ZiðtÞ > 0,
i = 1,⋯, 4, for all t > 0 if Zið0+Þ > 0, i = 1,⋯, 4.

Lemma 8. There exists a constant γ such that TðtÞ ≤ γ, IðtÞ
≤ γ, VðtÞ ≤ γ EðtÞ ≤ γ, and CðtÞ ≤ γ for each and every
solution ZðtÞ of system (9) for all sufficiently large t.

Lemma 9. Let B ∈ B0 and also consider that

D+B t, Zð Þ ≤ j t, B t, Z tð Þð Þð Þ, t ≠ tk,
B t, Z t+ð Þð Þ ≤Φn B t, Z tð Þð Þð Þ, t = tk,

ð24Þ

where j : R+ × R+ → R is continuous in ðtk, tk+1� for e ∈ R2
+,

n ∈N , the limit limðt,VÞ→ðt+k Þ jðt, gÞ = jðt+k , xÞ exists, and Φi
n

ði = 1, 2Þ: R+ → R+ is nondecreasing. Let yðtÞ be a maximal
solution of the following impulsive differential equation:

dx tð Þ
dt

= j t, x tð Þð Þ, t ≠ tk,

x t+ð Þ =Φn x tð Þð Þ, t = tk, x 0+ð Þ = x0,
ð25Þ

existing on ð0+,∞Þ. Then, Bð0+, Z0Þ ≤ x0 implies that B
ðt, ZðtÞÞ ≤ yðtÞ, t ≥ 0, for any solution ZðtÞ of system (9). If j
satisfies additional smoothness conditions to ensure the exis-
tence and uniqueness of solutions for (12), then yðtÞ is the
unique solution of (12).

We now consider the following subsystem:

dC tð Þ
dt

= −dcC, t ≠ tk, C t+kð Þ = C tkð Þ + ω, C 0+ð Þ = C0:

ð26Þ

The lemma provided above gives the following result.

Lemma 10. System (13) has a unique positive periodic solution
~CðtÞ with period τ and given by

~C tð Þ = ω exp −dc t − tkð Þð Þ
1 − exp −τdcð Þ , tk < t ≤ tk+1, ~C 0+ð Þ

= dc
1 − exp −τdcð Þ :

ð27Þ

We use this result to derive the following theorem.

Theorem 11. The disease-free periodic orbit ð~T , 0, 0, ~E, ~CÞ of
system (2) is locally asymptotically stable if

~R0 < 1, ð28Þ

5Computational and Mathematical Methods in Medicine



where

~R0 =
mdIβ

dTdEdVτ

ðτ
0

~T~E

dI + p~C
dt: ð29Þ

Proof. Let the solution of system (9) without infected people
be denoted by ð~T , 0, 0, ~E, ~CÞ, where

~C tð Þ = ω exp −dc t − tkð Þð Þ
1 − exp −τdcð Þ , tk < t ≤ tk+1, ð30Þ

with initial condition Cð0+Þ as in Lemma 10. We now
test the stability of the equilibria. The variational matrix
at ð~T , 0, 0, ~E, ~CÞ is given by

M tð Þ = mij

	 

=

−dT 0 m13 0 0

0 − dI + p~C
� �

β~E~T 0 0

0 mdI −dv 0 0

0 0 m43 −dE 0

0 m52 0 0 −dc

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

: ð31Þ

The monodromy matrix ℙ of the variational matrix
MðtÞ is

ℙ τð Þ = In exp
ðτ
0
M tð Þdt

� �
, ð32Þ

where In is the identity matrix. Note that m13, m43, and
m52 are not required for this analysis; therefore, we have
not mentioned their expressions.

We can write ℙðτÞ = diag ðσ1, σ2, σ3, σ4, σ5Þ, where σi,
i = 1, 2, 3, 4, 5, are the Floquet multipliers and they are
determined as

σ1 = exp −dTτð Þ,

σ2,3 = exp
ðτ
0

1
2 −A ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4B

ph i
dt

� �
,

σ4 = exp −dEτð Þ,
σ5 = exp −dcτð Þ:

ð33Þ

Here, A = dI + dV + p~C and B = dVðdI + p~CÞ −mdIβ~E~T.
Clearly, λ1,4,5 < 1. It is easy to check that A2 − 4B > 0, and if B
≥ 0 and hold, then we have λ2,3 < 1. Thus, according to Floquet
theory, the periodic solution ð~T , 0, 0, ~E, ~CÞ of system (9) is
locally asymptotically stable if the conditions given in (14) hold.

5. Numerical Results and Discussion

In this section, we have observed the dynamical behaviors of
the system without the drug (Figures 1 and 2) and with impul-
sive effect of the drug dose (Figures 3 and 4) through numerical
simulations taking the parameters mainly from [14, 19, 30].

We have mainly focused on the role of CTL and its possible
implication on the treatment and drug development. The drug
that stimulates the CTL responses represents the best hope for
control of COVID-19. Here, we have determined the situation
where CTLs can effectively control the viral infection when the
postinfection drug is administered at regular intervals.

Existence of equilibria of the system without the drug dose
is shown for different values of basic reproduction number R0.
In plotting Figure 1, we have varied the value of infection rate
β. It is observed that for the lower infection rate (that corre-
sponds to R0 < 1), disease-free equilibrium E1 is stable
(corroborated with Theorem 3). It becomes unstable and
ensures the existence of the CTL-free equilibrium E2 which

R0

0
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Stable
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Unstable E2
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(a)
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Figure 1: Existence and stability of equilibria is shown with respect to R0: Parameter values used in this figure are taken from Table 1 and
m = 10. We have varied the value of β in ð0:00001,0:0001Þ.
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is stable if R0 < 2:957 (which corresponds to β = 0:00005963)
and unstable otherwise. (This satisfies Theorem 4.) Again,
we see that when E2 is unstable, E

∗ is feasible. Also, whenever
E∗ exists, it is stable which verified the Theorem 5.

The effect of the immune response rate α is plotted in
Figure 2. We observe that in the absence of the drug, the CTL
count and ACE2 increase with increasing value of α. The
steady-state value of infected cell I∗ and virusV∗ decreases sig-
nificantly as α increases.

Due to the impulsive nature of the drugs, there are no
equilibria of the system; i.e., population does not reach

towards the equilibrium point, rather approach a periodic
orbit. Hence, we evaluate equilibrium-like periodic orbits.
There are two periodic orbits of system (3), namely, the
disease-free periodic orbit and endemic periodic orbit. Here,
our aim is to find the stability of the disease-free periodic orbit.

Figure 3 compares the system without and with impulse
drug effect. In the absence of the drug, we observe that the
CTL count approaches a stable equilibrium. Under regular
drug dosing, the CTL count oscillates in an impulsive
periodic orbit. Assuming perfect adherence, if the drug is
sufficiently strong, both infected cell and virus population
approach towards extinction. In this case, the total number
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Figure 2: In the absence of the drug, the effect of the growth rate of CTL, i.e., α on the steady-state values of model population, is shown.
Parameter values used in this figure are the same as Figure 1 except α.
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of uninfected cells reaches its maximum level which implies
that the system approaches towards its infection-free state
(Theorem 11).

If we take sufficiently large impulsive interval τ = 5 days
(keeping rate ω = 50 fixed, as in Figure 3) or lower dosage
effect ω = 20 (keeping interval τ = 2 fixed, as in Figure 3), in
both the cases, infection remains present in the system. Thus,
the proper dosage of drug and optimal dosing interval are
important for infection management.

6. Conclusion

In this article, the role of the immunostimulant drug (mainly
pidotimod) during interactions between SARS-CoV-2 spike
protein and epithelial cell receptor ACE2 in COVID-19 infec-
tion has been studied as a possible drug dosing policy. To reac-
tivate the CTL responses during the acute infection period,
immune activator drugs are delivered to the host system in
an impulsive mode.
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Figure 3: Numerical solution of the model system with and without the drug dose is shown taking parameters as in Figure 1. In this figure,
τ = 2 and ω = 50.
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When the immunostimulant drug is administered, the best
possible CTL responses can act against the infected or virus-
producing cells to neutralize infection. This particular situation
can keep the infected cell population at a very low level. In the
proposed mathematical model, we have analyzed the optimal
dosing regimen for which infection can be controlled.

From this study, it has been observed that when the basic
reproduction ratio lies below one, we expect the system to

attain its disease-free state. However, the system switches
from the disease-free state to the CTL-free equilibrium state
when 1 < R0 < 2:957. If R0 > 2:957, the CTL-free equilibrium
moves to an endemic state (Figure 1).

Here, we have explored the immunostimulant drug
dynamics by the help of impulsive differential equations.
With the help of impulsive differential equations, we have
studied how the effect of the maximal acceptable optimal
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Figure 4: Numerical solution of the model system for different rates of drug dosing and different intervals of impulses.
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dosage can be found more precisely. The impulsive system
shows that the proper dosage and dosing intervals are impor-
tant for the eradication of the infected cells and virus popula-
tion which results in the control of the pandemic (Figure 3).

It has also been observed that the length of the dosing
interval and the drug dose play a very decisive role to control
and eradicate the infection. The most interesting prediction of
this model is that effective therapy can often be achieved, even
for low adherence, if the dosing regimen is adjusted appropri-
ately (Figure 4). Also, if the treatment regimen is not adjusted
properly, the therapy is not effective at all. This approach
might also be applicable to a combination of antiviral therapy.

Future extension work of the combination of drug ther-
apy should also include more realistic patterns of nonadher-
ence (random drug holidays, imperfect timing of successive
doses) and more accurate intracellular pharmacokinetics
which leads towards better estimates of drug dosage and drug
dosing intervals.

We end the paper with the quotation: “This outbreak is a
test of political, financial and scientific solidarity for the world
to fight a common enemy that does not respect borders..., what
matters now is stopping the outbreak and saving lives,” by Dr.
Tedros, Director General, WHO [31].

Appendix

Analysis of the System without the Drug

A1 = − a11 + a22 + a33 + a44 + a55ð Þ,

A2 = a11 a22 + a33ð Þ + a23a32 + a22a33 − a14a41

+ a11 + a22 + a33ð Þa44 − a25a52 + a11 + a22 + a33 + a44ð Þa55,

A3 = a32 a11a23 − a13a21 − a24a43ð Þ − a11a22 a44 + a33ð Þ

+ a14a33a41 + a44 a23a32 − a11a33 − a22a33ð Þ

+ a25a52 a33 + a44 + a11ð Þ − a11a55 a22 + a33ð Þ

+ a23a32a55 − a22a33a55 − a44a55

� a11 + a14a41a55 + a22 + a33ð Þ + a14a22a41,

A4 = a32a41 a23a14 − a13a24ð Þ − a22a33 a14a41 − a44a55ð Þ

− a14a21a32a43 + a13a21a32a44 − a11 a23a32a44 + a25a33a52ð Þ

+ a52 a14a25a41 − a11a25a44 − a25a33a44ð Þ + a13a21a32a55

− a11a55 a23a32 − a22a33ð Þ − a41a55 a14a22 + a14a33ð Þ

+ a55 a24a32a43 + a11a22a44 − a23a32a44ð Þ

+ a11a33 a22a44 + a44a55ð Þ + a11a24a32a43,

A5 = a25a33 a11a44a52 − a14a41a52ð Þ + a14a21a32 − a11a24a32ð Þa43a55
+ a41a55 a13a24a32 − a14a23a32 + a14a22a33ð Þ

+ a44a55 a11a23a32 − a13a21a32 − a11a22a33ð Þ:

ðA:1Þ

B1 = − b11 + b22 + b33 + b44ð Þ,

B2 = b11b22 − b23b32 + b33 b11 + b22ð Þ − b14b41 + b44 b11 + b22 + b33ð Þ,

B3 = b32 b11b23 − b13b21ð Þ − b22 b11b33 − b14b41ð Þ

+ b14b33b41 − b24b32b43 + b23b32 − b11b22ð Þb44 − b33b44 b11 + b22ð Þ,

B4 = b14b41 b23b32 − b22b33ð Þ − b13b24b32b41 − b14b21b32b43

+ b32 b11b24b43 + b13b21b44ð Þ − b44b11 b23b32 − b22b33ð Þ:

ðA:2Þ
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