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Preeclampsia (PE) is one of the mainly caused maternal and infant incidences and mortalities worldwide. However, the
mechanisms underlying PE remained largely unclear. The present study identified 1716 high expressions of gene and 2705 low
expressions of gene using GSE60438 database, and identified 7087 hypermethylated and 15120 hypomethylated genes in
preeclampsia using GSE100197. Finally, 536 upregulated genes with hypomethylation and 322 downregulated genes with
hypermethylation were for the first time revealed in PE. Gene Ontology (GO) analysis revealed that these genes were associated
with peptidyl-tyrosine phosphorylation, skeletal system development, leukocyte migration, transcription regulation, T cell
receptor and IFN-γ-involved pathways, innate immune response, signal transduction, cell adhesion, angiogenesis, and
hemopoiesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that aberrantly methylated
differentially expressed genes were involved in regulating adherens junction, pluripotency of stem cell regulation, immune
processing, T cell receptor and NF-κB pathways, HTLV-I and HSV infections, leishmaniasis, and NK-induced cytotoxicity.
Protein-protein interaction (PPI) network analysis identified several hub networks and key genes, including MAPK8, CCNF,
CDC23, ABL1, NF1, UBE2E3, CD44, and PIK3R1. We hope these findings will draw more attention to these hub genes in
future PE studies.

1. Background

As a kind of pregnancy-induced hypertension, preeclampsia
(PE) is one of the mainly caused maternal and infant inci-
dences and mortalities worldwide [1, 2]. Numerous body
organs and functional systems could be affected by PE,
followed by emerging renal failure, ischemic heart, type II
diabetes, etc. [1–3]. Several researches have shown a part of
external and internal factors that had been identified to
induce PE [4]. Currently, trophoblast invasion and failure
of spiral artery transformation have been considered to be
one inducer of PE [5]. Even though perinatal care was
improved, the ratio occurrence of PE has not been reduced

[6, 7]. Up to date, the inherent mechanism of PE taken part
in many physiological disorders stayed elusive.

Many studies have identified a large number of differen-
tially expressed genes (DEGs) and differentially methylated
genes (DMGs) in PE based on advanced technologies [8–
12]. Liu et al. reported that 268 dysfunctional genes were
identified in PE, which were related to hormone activity
and immune response. Besides, this study revealed TLR2,
GSTO1, and mapk13 functioned importantly in the progres-
sion of PE [10, 11]. Presently, no studies to investigate the
regulated role of gene expression implicated in PE.

Epigenetics indicated that the change of gene expression
was heritable, but did not turn out to be in DNA [13, 14].
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Among them, DNA methylation was the mostly generated
modification in biological metabolism [15]. DNA methyl-
transferases (DNMTs) were responsible for transmitting
DNA methylation to target sites [16]. Nevertheless, the
details towards the methylation are not fully understood.

Here, we wanted to explore the association of gene
expression with DNA methylation and potential signal path-
way in PE development. Therefore, we evaluated the
unknown interaction and related signaling pathways of
DEG and DMGs in PE by gene expression microarray data
(GSE60438) [12] and gene methylation microarray data
(GSE100197) [17]. To this end, we attempted to uncover
the potential indicator for early diagnosis and prognosis of
PE, and also give a hint of probing the involved pathways
of DEG/DMGs in PE.

2. Materials and Methods

2.1. Microarray Data. Differently expressed genes (DEGs)/-
differently methylated genes (DMGs) were individually ana-
lyzed by GSE60438 [12] (including 47 preeclampsia and 48
normal samples) and GSE100197 (including 22 preeclampsia
and 51 normal samples) [17]. The details could be seen in the
website https://www.ncbi.nlm.nih.gov/geo/.

2.2. Data Processing. GEO2R is an online tool that allows
users to perform comparisons between different groups in
GEO series, which depends on the GEOquery and the Linear
Models for Microarray Analysis (LIMMA) R packages [18,
19]. The raw data in TXT format were checked in Venn soft-
ware online to detect the commonly DEGs among the three
datasets. The cutoff standards of DEGs were defined as P <
0:05 and fold change > 2, while those of DMGs were indi-
cated as FDR < 0:05 and a fold change > 2.

2.3. The Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathway Analysis. DAVID
[20] was conducted to do bioinformatics analysis. Significant
difference was indicated as P < 0:01.

2.4. Construction of Protein-Protein Interaction (PPI)
Network. PPI network, including highly methylated and
lowly methylated genes, was constructed by STRING data-
base. Interaction score of 0.4 was regarded as cutoff. Cytos-
cape and the Molecular Complex Detection (MCODE)
algorithm were separately applied to visualize PPI network
and screen modules. The Molecular Complex Detection
(MCODE) app was used to analyze PPI network modules
[21], and MCODE scores > 3 and the number of nodes > 5
were set as cutoff criteria with the default parameters
(degree cutoff ≥ 2, node score cutoff ≥ 2, K‐core ≥ 2, and
max depth = 100). DAVID was utilized to perform pathway
enrichment analysis of gene modules. Finally, cytoHubba, a
Cytoscape plugin, was utilized to explore PPI network hub
genes; it provides a user-friendly interface to explore impor-
tant nodes in biological networks and computes using eleven
methods, of which MCC has a better performance in the PPI
network [22].

3. Results

3.1. Identification of Aberrantly Methylated DEGs in PE.
After microarray analysis, our data have shown upregulated
and downregulated 3378 DEGs which were 1663 and 1715,
respectively. We identified 7087 highly methylated and
15120 lowly methylated genes in PE after relative to normal
samples. 829 highly methylated genes (Figure 1(c)) with
enhanced level and 408 lowly methylated genes
(Figure 1(d)) with weak level were classified after overlapping
DEGs and aberrantly methylated genes. Figure 1(a) shows
DEGs in GSE60438 and Figure 1(b) illustrates DMGs of PE
and normal tissue. The top 10 upregulated and downregu-
lated genes in PE are shown in Tables 1 and 2.

3.2. Functional Analysis. GO analysis indicated that high
methylation of genes with increasing expression was gener-
ally concentrated in peptidyl-tyrosine phosphorylation, skel-
etal system development, regulation of bone resorption,
mitotic cell cycle, peptidyl-serine phosphorylation pathway,
movement of cell or subcellular component, axonogenesis,
retina layer formation, calcium ion homeostasis, and cell pro-
liferation (Figure 2(a)).

Low methylation of genes with reduced expression was
abounded in leukocyte migration, transcription regulation,
T cell receptor and IFN-γ-involved pathways, innate
immune response, signal transduction, cell adhesion, angio-
genesis, and hemopoiesis (Figure 2(b)).

3.3. Analysis of Pathway. Upregulated genes with high meth-
ylation were dramatically enriched in adherens junction,
pluripotency of stem cell regulation, proteoglycans in cancer,
the ErbB and sphingolipid signaling pathways, actin cyto-
skeleton process, ovarian steroidogenesis, carbon metabo-
lism, renal carcinoma, and metabolic pathways (Figure 3(a)).

Downregulated genes with hypermethylation were
enriched in cell adhesion, immune processing, T cell receptor
and NF-κB pathways, HTLV-I and HSV infection, leishman-
iasis, and NK-induced cytotoxicity (Figure 3(b)).

3.4. PPI Network Establishment and cytoHubba Analysis. For
strong expression of genes with hypomethylation, 264 nodes
and 456 edges were elected. For weak expression of genes
with hypermethylation, 159 nodes and 290 edges were
obtained (Figure 4). For upregulated oncogenes with hypo-
methylation, 380 nodes and 1170 edges are shown in
Figures 4 and 5. Downregulated TSGs with hypermethyla-
tion are indicated in (Figure 5). Totally, 212 nodes and 458
edges were included in TSGs. MCODE plugin detection
revealed that FLNA and PRKCB were reduced with hyper-
methylation, and AKT1, PRDM10, CCND1, and FASN 4
were heightened with hypomethylation.

3.5. Key Module and Gene Analysis. There is obvious differ-
ence between three modules with hypomethylation of upreg-
ulated genes and three modules with hypermethylation of
downregulated genes (Figure 4). The hub network 1 of over-
expressed hypomethylated genes included CCNF, RNF14,
UBE2B, SH3RF1, UBE2V1, FBXO30, FBXW7, FBXO17,
PJA2, UBE2M, TRIM36, HECW2, UBE2E3, SOCS1, MYLIP,
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Figure 1: Identification of aberrantly methylated differentially expressed genes in PC. (a) Identification of differently expressed genes in PC
using GSE60438. (b) Identification of differently methylated genes in PC using GSE100197. (c) A total of 829 upregulated hypomethylated
genes were identified in PC. (d) A total of 409 downregulated hypermethylated genes were identified in PC.
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and CDC23. The hub network 2 of overexpressed hypo-
methylated genes included GPER1, OPN4, GPR17, PLCB4,
MCHR2, MCHR1, TAS2R14, PTGER3, CCL4, NPS, KISS1,
and ADCY8. The hub network 3 of overexpressed hypo-
methylated genes included SEC22B, LHB, CGA, HNRNPA3,
NEIL3, TAAR6, SLC30A5, GOLIM4, BAG4, ABCB1,
GOLGA5, MAN1A2, CRH, PTPN6, PREB, SEC24B, FOLR1,
DEPDC1B, TPX2, SLC30A2, CEP152, FGFR1, SGOL2,
LIMK1, PSG3, CDC25C, KHSRP, DHX9, SYNCRIP, PAK4,
ERBB2, SDC3, SDC1, PSG6, JUP, DCTN3, RPL22L1,
KRT19, NUF2, PSG11, NCAPG, QPCT, RHOBTB1,
RPL34, SRP19, YWHAE, MATR3, NTF3, LMAN1, PSG4,
ERBB3, SPCS3, SEC11A, ARHGEF11, SLC30A1, SLC39A1,
TROAP, MAN1C1, MAP2K1, RRAS2, AKT3, SLC39A8,
PSG9, TRIP13, TIMP2, TRIM24, and PSG1.

The hub network 1 of downregulated hypermethylated
genes included ATG7, UBA7, RNF213, ARIH2, FBXL19,
FBXO44, HERC4, and ASB15. The hub network 2 of down-
regulated hypermethylated genes included SRSF4, RBM5,
PRPF3, SF3B1, HNRNPU, CPSF2, and CSTF3. The hub net-
work 3 of downregulated hypermethylated genes included
ADCY7, ZAP70, GPR18, LY9, NPBWR1, CD4, ITGA4,
CD44, FPR3, SSTR1, GABBR1, GNB4, CCR3, and SLAMF1
(Figure 5).

Among these genes, MAPK8, CCNF, CDC23, ABL1,
NF1, UBE2E3, CD44, and PIK3R1 were identified as key reg-

ulators in PE by connecting with more than 20 different
genes in the network.

4. Discussion

Preeclampsia was reported to be largely related to increasing
incidence and death of maternal organ, dysfunction of
maternal organ, or restricted growth of foetal organ [23].
However, the mechanisms related to this disease remained
largely unclear. Emerging studies demonstrated that the
aberrant changes in DNA methylation contributed to the
abnormal expression of key genes in multiple diseases, such
as preeclampsia [24]. Therefore, conclusive delineation of
gene level and methylation could provide novel insights to
identify novel predictive and therapeutic targets for pre-
eclampsia. The present study identified 1716 high expres-
sions of gene and 2705 low expressions of gene using
GSE60438 database, and identified 7087 hypermethylated
and 15120 hypomethylated genes in preeclampsia using
GSE100197 database. Finally, 536 upregulated genes with
hypomethylation and 322 downregulated genes with hyper-
methylation were for the first time revealed in PE.

Furthermore, bioinformatics analysis was performed to
reveal the potential functions of these aberrantly methyl-
ated DEGs in preeclampsia. Meanwhile, we identified aber-
rantly methylated DEGs in preeclampsia that were

Table 1: The top 10 upregulated genes in PE compared to normal samples.

Gene AVE NC AVE PE FC P value

CGB5 7.140694905 8.555772571 2.666740913 0.000524413

CRH 7.35786819 8.743007971 2.611972633 0.00019934

CGB1 7.330520262 8.540119829 2.312734358 0.00097466

KISS1 7.882624452 9.119308971 2.356563438 0.00381749

ADAM12 8.732927738 10.04238443 2.478481844 0.002319055

DLK1 7.393902548 8.500453743 2.153302782 0.010929138

CGA 8.495501333 9.765370743 2.41139737 0.003638636

PSG6 8.514054476 9.723809743 2.312983969 0.007442872

CGB8 7.176896333 8.174694886 1.996950473 0.001320154

PAGE4 7.430149214 8.450650829 2.028624174 0.009079707

Table 2: The top 10 downregulated genes in PE compared to normal samples.

Gene AVE NC AVE PE FC P value

LOC647169 8.7158875 8.070096229 0.639142146 0.012472714

FCN1 10.84868995 10.03952706 0.570712911 0.023728745

LYZ 12.23783017 11.29681926 0.520867776 0.002834118

CCL2 10.03269452 9.2354408 0.575443535 0.000263349

CX3CR1 8.787585643 8.068285229 0.607391905 0.007852246

CCL18 8.994379333 8.217637057 0.583683311 0.000247839

GSTA1 8.678950238 7.926187143 0.593465844 0.006579547

PI3 8.461040238 7.713865943 0.595769307 0.013088748

LTB 9.728131619 8.857907943 0.547062027 0.00330664

GSTA1 8.871995429 8.0231716 0.555237214 0.004279029
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associated with transcription level, cell defense, cell immu-
nity response, IFN-γ-involved pathway, and T cell receptor
pathway. These findings were consistent with previous
reports that abnormal regulation of immune functions
was related to preeclampsia progression [25]. Our results
showed that hypomethylated highly expressed genes were
related to the regulation of multiple key signalings in cell
biology, such as cell mitosis, axonogenesis, Ca2+ homeosta-

sis, cell proliferation, the ErbB signaling pathway, ovarian
steroidogenesis, and the sphingolipid signaling pathway.
As a second messenger, Ca2+ acts as a primary role in cell
growth, cell death, etc. [26]. Downstream pathway was acti-
vated by Ca2+ via exporting intracellular organelles or
importing extracellular depots [27–29]. As the foremost
form of Ca2+ pathway, downstream effectors of intracellular
Ca2+ oscillations included transcription factors, kinases, and
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Figure 2: GO analysis of aberrantly methylated differentially expressed genes in PC. GO analysis of upregulated hypomethylated genes (a)
and downregulated hypermethylated genes (b) in PC.
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other functional proteins [30–32]. Our data suggests that
the imbalance of Ca2+ in homeostatic cells may be linked
to the progression of PE. A very interesting finding is that
a recent study showed that Ca2+ signaling is related to the
activation of the ErbB pathway, involving lots of tyrosine
kinases, and is resistant to radiation and chemotherapy in
many tumors. Two tyrosine residues were dimerized and
phosphorylated by EGFR after conjugating to ligands [33,

34]. Conversely, these phosphorylated tyrosines could be
regarded as binding sites for some signal transmitters which
participated in biological pathways.

Moreover, we revealed that hypermethylated genes with
low expression were associated with cell adhesion, angiogen-
esis, hemopoiesis, and the NF-kappa B signaling pathway. A
recent study showed that the genes of cell adhesion signaling
in the preeclamptic placentas were observed to be
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Figure 3: KEGG pathway analysis of aberrantly methylated differentially expressed genes in PC. KEGG pathway analysis of upregulated
hypomethylated genes (a) and downregulated hypermethylated genes (b) in PC.
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differentially methylated [35]. Endothelial cells have been
confirmed to be acted as the key inducer to angiogenesis via
cell-promoting cell metastasis [36]. Notedly, EPCs (endothe-
lial progenitor cells) functioned importantly in the genera-
tion of the postnatal blood vessel and vascular homeostasis
[37]. The endothelial dysfunction in PE probably led to the
destructive fetoplacental angiogenesis and neovasculogenesis
[38]. The decreasing level of some proangiogenic factors in
the placenta was observed in the early-stage PE not the
late-stage PE [38]. There were more than 2 angiogenesis-
related genes with the reduced level in the early-stage PE after
comparison with the late-stage PE or control [39]. Currently,
our data revealed that the growth/migration of human
umbilical vein endothelial cells was suppressed in the early-
stage PE compared to that in the late-stage PE or control,
suggesting negative regulation of angiogenesis in PE.

In order to identify the hub genes and networks in PE, we
conducted a PPI network analysis. The upregulated hypo-
methylated PPI network was composed of 380 nodes and

1170 edges, while the downregulated hypermethylated PPI
network consisted 380 nodes and 1170 edges. Furthermore,
we identified 6 hub networks using MCODE plugin in Cytos-
cape software. Among these genes, MAPK8, CCNF, CDC23,
ABL1, NF1, UBE2E3, CD44, and PIK3R1 were identified as
key regulators in PE. MAPK8 belonged to mitogen-
activated protein kinase (MAPK) family which is critical for
cellular function through regulating numerous signaling
pathways [40]. A recent study showed that MAPK8, which
is necessary for epithelial-mesenchymal transition, is respon-
sible for regulating transcription [41]. CDC23 is a cell cycle
regulator, exhibiting importantly in both initiation and elon-
gation of DNA replication [42, 43]. Loss of NF1 results in
dysregulation of MAPK, PI3K, and other signaling cascades,
to promote cell proliferation and to inhibit cell apoptosis.
UBE2E3 have a key role in regulation of cell aging which
was essential for homeostasis of tissues. Cells’ absence of
UBE2E3 will be senescent even though without DNA damage
[44]; meanwhile, accumulated mitochondrial and lysosomal

Figure 4: Protein-protein interaction network analysis of upregulated hypomethylated genes in PC. We constructed PPI networks of
upregulated hypomethylated genes in PC.
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mass and raised basal autophagic flux were shown in
UBE2E3 absent cells. CD44 as a member of CAM family
mostly takes part in cell movement and proliferation [45].
PIK3R1-encoded PI3K, p85α, could conjugate, maintain,
and suppress catalytic subunit of PI3K p110 [46]. Not only
did mutated PIK3R1 reduce the subtype of P110 inhibition
but also destroyed the new regulatory effect of p85α on PTEN
or activated a new signal pathway.

Nevertheless, our studies still had some limitations.
Firstly, our researches concentrated on the classification of
DEG with different methylations. Secondly, our researches
should broaden the analysis datasets so as to acquire com-

prehensive data. Thirdly, we needed to conduct qRT-PCR
or western blot to further ensure the selected gene level in
PE samples. Finally, the function and mechanism of bio-
markers in PE need to be further studied in vivo and
in vitro.

5. Conclusion

Collectively, we identified some oncogene expression pat-
terns and their links with corresponding pathways in PE,
providing a hint of exploring the mechanisms implicated in
PE onset and development.

Figure 5: Protein-protein interaction network analysis of downregulated hypermethylated genes in PC. We constructed PPI networks of
downregulated hypermethylated genes in PC.
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