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Semiparametric generalized varying coefficient partially linear models with longitudinal data arise in contemporary biology,
medicine, and life science. In this paper, we consider a variable selection procedure based on the combination of the basis
function approximations and quadratic inference functions with SCAD penalty. The proposed procedure simultaneously selects
significant variables in the parametric components and the nonparametric components. With appropriate selection of the
tuning parameters, we establish the consistency, sparsity, and asymptotic normality of the resulting estimators. The finite sample
performance of the proposed methods is evaluated through extensive simulation studies and a real data analysis.

1. Introduction

Identifying the significant variables is of great significance in
all regression analysis. In practice, a number of variables are
available for an initial analysis, but many of them may not
be significant and should be excluded from the final model
in order to increase the accuracy of prediction. Various
procedures and criteria, such as stepwise selection and subset
selection with Akaike information criterion (AIC), Mallows
Cp, and Bayesian information criterion (BIC), have been
developed. Nevertheless, these selection methods suffer from
expensive computational costs. Many shrinkage methods
have been developed for the purpose of computational
efficiency, e.g., the nonnegative garrote [1], the LASSO [2],
the bridge regression [3], the SCAD [4], and the one-step
sparse estimator [5]. Among those, the SCAD possesses the
virtues of continuity, unbiasedness, and sparsity. There are
a number of works on the SCAD estimation methods in
various regression models, e.g., [6–9]. Zhao and Xue [8]
proposed a variable selection method to select significant
variables in the parametric components and the nonpara-
metric components simultaneously for the varying coefficient
partially linear models (VCPLMs).

On the other hand, longitudinal data occurs frequently in
biology, medicine, and life science, in which it is often neces-
sary to make repeated measurements of subjects over time.
The responses from different subjects are independent, but
the responses from the same subject are very likely to be
correlated. This feature is called “within-cluster correlation”.
Qu et al. [10] proposed a method of quadratic inference
functions (QIFs) to treat the longitudinal data. The QIF can
efficiently take the within-cluster correlation into account
and is more efficient than the generalized estimating equa-
tion (GEE) [11] approach when the working correlation
is misspecified. The QIF approach has been applied to
many models, including varying coefficient models (VCM)
[12, 13], partially linear models (PLM) [14], varying coeffi-
cient partially linear models (VCPLMs) [15], and generalized
partially linear models (GPLM) [16]. Wang et al. [13] pro-
posed a group SCAD procedure for variable selection of
VCM with longitudinal data. More recently, Tian et al. [15]
proposed a QIF-based SCAD penalty for the variable selec-
tion for VCPLM with longitudinal data.

As introduced in Li and Liang [17], the generalized par-
tially linear varying coefficient model (GPLVCM) possesses
the great flexibility of a nonparametric regression model
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and provides the explanatory power of a generalized linear
regression model, which arises naturally due to categorical
covariates. Many models are the special case of GPLVCM,
e.g., VCM, VCPLM, PLM, and GLM. Li and Liang [17] stud-
ied variable selection for GPLVCM, where the parametric
components are identified via the SCAD but the nonpara-
metric components are selected via a generalized likelihood
ratio test instead of shrinkage. In this paper, we extend the
QIF-based group SCAD variable selection procedure to
GPLVCM with longitudinal data, and the B-spline methods
are adopted to approximate the nonparametric component
in the model. With suitable chosen tuning parameters, the
proposed variable selection procedure is consistent, and the
estimators of regression coefficients have oracle property,
i.e., the estimators of the nonparametric components achieve
the optimal convergence rate, and the estimators of the para-
metric components have the same asymptotic distribution as
that based on the correct submodel.

The rest of this paper is organized as follows. In Section 2,
we propose a variable selection procedure for the GPLVCM
with longitudinal data. Asymptotic properties of the resulting
estimators and an iteration algorithm are presented in
Section 3. In Section 4, we carry out simulation studies to
assess the finite sample performance of the method. A real
data analysis is given in Section 5 to illustrate the proposed
methodology. The details of proofs are provided in the
appendix.

2. Methodology

2.1. GPLVCM with Longitudinal Data. In this article, we
consider a longitudinal study with n subjects andmi observa-
tions over time for the ith subject (i = 1,⋯, n) for a total of
N =∑n

i=1 mi observations. Each observation consists of a
response variable Yij and the predicator variables ðXij, Zij,
UðijÞÞ, where Xij ∈ Rp, Zij ∈ Rq andUij is a scalar. We assume
that the observations from different subjects are indepen-
dent, but those within the same subject are dependent. The
generalized varying coefficient partially linear model (GPLVM)
with longitudinal data takes the form

μij = E Yij ∣ Xij, Zij,Uij

� �
= h XT

ijβ + ZT
ijα Uij

� �� �
, ð1Þ

where μij is the expectation of Yij when Xij, Zij, and Uij are

given, β = ðβ1,⋯,βpÞT is an unknown p × 1 regression coef-
ficient vector, hð·Þ is a known smooth link function, and
αðuÞ = ðα1ðuÞ, α2ðuÞ,⋯,αqðuÞÞT is a q × 1 unknown mono-
tonic smooth function vector. Without loss of generality, we
assume U ∼U½0, 1�.

We approximate αð·Þ by B-spline basis functions BðuÞ =
ðB1ðuÞ,⋯,BLðuÞÞT with the order of M, where L = K +M + 1
and K is the number of interior knots, i.e.,

αk uð Þ ≈ α∗k uð Þ = B uð ÞTγk, k = 1,⋯, q, ð2Þ

where γk = ðγk1,⋯,γkLÞT is a L × 1 vector of unknown regres-
sion coefficients. Accordingly, μij is approximated by

μij = E Yij ∣ Xij, Zij,Uij

� �
= h XT

ijβ + ZT
ij · Iq ⊗ B Uij

� �Tγ� �
,

ð3Þ

where γ = ðγT1 ,⋯, γTq ÞT and “ ⊗ ” is the Kronecker product.
We use the B-spline basis functions because they are numeri-
cally stable and have bounded support [18]. The spline
approach also treats a nonparametric function as a linear func-
tion with the basis functions as pseudodesign variables, and
thus, any computational algorithm for the generalized linear
models can be used for the GPLVCMs.

To incorporate the within-cluster correlation, we apply

the QIFs to estimate β and γ, respectively. Denote θ =
ðβT , γTÞT , we define the extended score gNðθÞ as follows:

gN θð Þ = 1
n
〠
n

i=1
gi θð Þ = 1

n
〠
n

i=1

_μTi A
−1
2

i M1A
−1
2

i Yi − μið Þ
⋮

_μTi A
−1
2

i MsA
−1
2

i Yi − μið Þ

0BBBBBB@

1CCCCCCA,

ð4Þ

where _μi = ∂μi/∂θ, Ai = diag ðVarðYi1Þ,⋯,VarðYimÞÞ is the
marginal variance matrix of subject Yi, and M1,⋯,Ms are
the base matrices to represent the inverse of the working cor-
relation matrix R in GEE approach. Following Qu et al. [10],
we define the quadratic inference functions to be

Qn θð Þ = ngT
N θð ÞΩn θð Þ−1gN θð Þ, ð5Þ

where ΩnðθÞ = ð1/nÞ∑n
i=1 giðθÞgiðθÞT . Note that Ωn depends

on θ. The QIF estimate eθ is then given by

eθ = argminθQn θð Þ: ð6Þ

2.2. Penalized QIF. In real data analysis, the true regression
model is always unknown. An overfitted model lowers the
efficiency of estimation while an underfitted one leads to a
biased estimator. A popular approach to identify the relevant
predictors while estimating the nonzero parameters and
functions in model (1) simultaneously is to exert some kind
of “penalty” on the original objective function. Here, we
choose the smoothly clipped absolute deviation (SCAD) pen-
alty because it has several advantages such as unbiasedness,
sparsity, and continuity. The SCAD-penalized quadratic
inference function (PQIF) is defined as follows:

Qp
n θð Þ =Qn θð Þ + n〠

p

l=1
pλ1 βlj jð Þ + n〠

q

k=1
pλ2 γkk kH

� �
, ð7Þ
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where kγkkH = ðγTk HγkÞ1/2,H = ðhijÞL×L, hij =
Ð 1
0 BiðuÞBT

j ðuÞ
du and pλ is the SCAD penalty function, where the derivative
is defined as

p′l ωð Þ = λ I ω ⩽ lð Þ + aλ − ωð Þ+
a − 1ð Þλ I ω > λf g

� �
, ð8Þ

where a > 2, ω > 0, pλð0Þ = 0; here, we choose a = 3:7 as in [4].
Note that

γkk kH =
ð1
0
γTk B uð ÞBT Uð Þγkdu

� 	1/2
=

ð1
0
α∗ uð Þ½ �2du

� 	1/2
:

ð9Þ

This group-wised penalization ensures that the spline coeffi-
cient vector of the same nonparametric component is treated
as an entire group in model selection.

Denote bθ to be the penalized estimator obtained by
minimizing the penalized objective function of (7). Then,bβ = ðθ∧1,⋯,θ∧pÞT is the estimator of the parameter β

and the estimator of the nonparametric function αðuÞ is

calculated by bαðuÞ = BðuÞTbγ , where bγ = ðγ∧T
1 ,⋯,γ∧T

q ÞT =
ðθ∧p+1,⋯, θ∧p+L, θ∧p+L+1,⋯, θ∧p+qLÞT .

3. Asymptotic Properties

3.1. Oracle Property. We next establish the asymptotic prop-
erties of the resulting penalized QIF estimators. We first
introduce some notations. Let β0 and α0ð·Þ denote the true
values of βð·Þ and αð·Þ. In addition, γ0 is the spline coefficient
vector from the spline approximation to α0ð·Þ. Without loss
of generality, we assume that β0l ≠ 0, l = 1,⋯, p1 and β0l =
0, l = p1 + 1,⋯, p, i.e., only the first p1 component of β0 is
nonzero. Similarly, we assume that α0kð·Þ ≠ 0, k = 1,⋯, q1
and α0kð·Þ = 0, k = q1 + 1,⋯, q, i.e., only the first q1 compo-
nent of α0ð·Þ is nonzero. For convenience and simplicity,
let C denote a positive constant that may have different
values at each appearance throughout this paper and ∥A∥
denote the modulus of the largest singular value of matrix
or vector A. Before the proof of our main theorems, we list
some regularity conditions used in this paper.

Assumption (A1). The spline regression parameter γ is iden-
tifiable, that is, γ0 is the spline coefficient vector from the
spline approximation to α0ð·Þ. In addition, there is a unique
θ0 = ðβ0, γ0Þ ∈ S satisfying EfgNðθ0Þg = 0, where S is the
parameter space.

Assumption (A2). The weight matrix Ωn = ð1/nÞ∑n
i=1 giðθÞ

gTi ðθÞ converges almost surely to a constant matrix Ω0,
where Ω0 is invertible.

Assumption (A3). The covariatematricesXi and Zi, i = 1,⋯, n,
satisfy supiEkXik4 <∞ and supiEkZik4 <∞.

Assumption (A4). The error εi = Yi − μi satisfies EðεiεTi Þ =
Vi, supikVik <∞, and there exists a positive constant δ such

that supiEkεik2+δ <∞.

Assumption (A5). All marginal variances Ai ≥ 0 and
supikAik <∞.

Assumption (A6). fmig is a bounded sequence of positive
integers.

Assumption (A7). αiðuÞ, i = 1, 2,⋯, q is rth continuous
differentiable on ð0, 1Þ, where r ≥ 2.

Assumption (A8). The inner knots fci, i = 1,⋯, Kg satisfy

max
1≤i≤K

hi+1 − hij j = o K−1� �
,

max hi
min hi

≤ C0,
ð10Þ

where hi = ci − ci−1.

Assumption (A9). The link function hð·Þ is 2th continuous
differentiable and Efh2+δg <∞ for some δ > 2.

Assumption (A10). an =Oðn−1/2Þ ; bn ⟶ 0 as n⟶∞,
where

an =max
k,l

p′λ1 β0lj jð Þ

 

, p′λ2 γ0kk kH
� �

 

: βol ≠ 0, γ0k ≠ 0

n o
,

bn =max
k,l

p′′λ1 β0lj jð Þ

 

, p′′λ2 γ0kk kH
� �

 

: βol ≠ 0, γ0k ≠ 0

n o
:

ð11Þ

Theorem 1 indicates that the estimator of nonparametric
components achieve the optimal convergence rate.

Theorem 1. Assume that Assumptions (A.1)–(A.10) hold and
the number of knots K =OðN1/ð2r+1ÞÞ, then

bαk ·ð Þ − α0k ·ð Þk k =Op n−r/ 2r+1ð Þ
� �

,  k = 1,⋯, q: ð12Þ

Furthermore, under suitable condition, Theorem 1 shows
that the penalized QIF estimator has the sparsity property.

Theorem 2. Assume that the conditions in Theorem 1 hold
and λmax ⟶ 0, ffiffiffi

n
p

λmin ⟶∞ as n⟶∞, with probability
approaching 1,

bβ l = 0, l = p1 + 1,⋯, p,

bαk ·ð Þ ≡ 0, k = q1 + 1,⋯, q,
ð13Þ

where λmax = max fλ1, λ2g, λmin = min fλ1, λ2g.
Theorems 1 and 2 indicate that with the tune parameter λ

being suitably chosen, the proposed selection method possesses
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model selection consistency. Next, we establish the asymptotic
property for the estimator of the nonzero parametric compo-
nents. Let β∗ = ðβ1,⋯, βp1

ÞT , α∗ð·Þ = ðα∗1 ð·Þ,⋯, α∗q1ð·ÞÞ
T and

let β∗
0 and α∗0 ð·Þ denote their true value, respectively. In addi-

tion, let γ∗ = ðγT1 ,⋯, γTq1Þ
T
and γ∗0 = ðγT01,⋯, γT0q1Þ

T
denote

the spline coefficient vector of α∗ð·Þ and α∗0 ð·Þ, respectively,
and let X∗

i and Z∗
i , i = 1,⋯, n denote their correspondent

covariate. Let ~Xi =H ′ðηiÞX∗
i , ~X = ð~XT

1 ,⋯, ~XT
n Þ, ~Wi =H ′ðηiÞ

W∗
i , ~W = ð ~WT

1 ,⋯, ~WT
n Þ, and

Γ = E ~X
T
τ~X − E ~X

T
τ ~W uj

h i
E ~W

T
τ ~W uj

h i−1
~W

T
τ~X

� �
,

Δ = E τ − E ~X
T
τ ~W uj

h i
E ~W

T
τ ~W uj

h i−1
E ~W

T
τ uj

h i� 

ε

� �⊗2

,

ð14Þ

where Δ⊗2 = ΔΔT , τ = ðτijÞn×n is a n × n block matrix with its
ði, jÞ block taking the form

τij = 〠
s

k=1
〠
s

l=1
A−1/2
i MkA

−1/2
i H ′ ηið ÞP∗

i Ω
−1
lk P

∗T
j H ′ ηj

� �
A−1/2

j MlA
−1/2
j :

ð15Þ

Theorem 3 states that β∧∗ is asymptotically normally
distributed.

Theorem 3. Suppose that Assumptions (A.1)–(A.9) hold and
the number of knots K =OðN1/ð2r+1ÞÞ, thenffiffiffi

n
p

β∧∗ − β∗
0ð Þ⟶L

N 0, Σð Þ, ð16Þ

where Σ = ðΓΔ−1ΓÞ−1 and ⟶L represents the convergence in
distribution.

3.2. Selection of Tuning Parameters. Theorems 1–3 imply that
the proposed variable selection procedure possessed the
oracle property. However, this attractive feature relies on
the choice of tuning parameters λi. The popular criteria to
choose λi include cross-validation, generalized cross-valida-
tion, AIC, and BIC. Wang et al. [19] suggested using BIC
for the SCAD estimator in linear models and partially linear
models and proved its model selection consistency property,
i.e., the optimal parameter chosen by BIC can identify the
true model with probability tending to one. Tian proved that
for partially linear models. Hence, we adopt BIC to choose
the optimal fλ1, λ2g. Following [19–21], we simplify the
tuning parameters as

λ1 =
λ0

~γ
0ð Þ
k

��� ���
H

,

λ2 =
λ0
~β

0ð Þ
k




 


 ,
ð17Þ

where ~β
ð0Þ
k and ~γð0Þk are the unpenalized QIF estimates. Con-

sequently, the original two-dimensional problem becomes a
univariate problem about λ0, which can be selected according
to the following BIC-type criterion:

BICλ =Qp
n

bθλ

� �
+ df λ × log nð Þ, ð18Þ

where bθλ = ðbβλ, bγT
1λ,⋯, bγT

qλÞ is the regression coefficient
estimated by minimizing the penalized QIF in (2.8) for a

given λ and df λ is the number of nonzero coefficients of bβλ
and kbγ1λkH ,⋯, kbγqλkH . Thus, the tuning parameter λ is

obtained by

bλ = arg min
λ

BICλ: ð19Þ

From Theorem 4 of Tian et al. [15], the BIC tuning
parameter selector enables us to select the true model
consistently.

3.3. An Algorithm Using Local Quadratic Approximation.
Based on Fan and Li’s local quadratic approximating
approach [4], we propose an iterative algorithm to minimize
the PQIF (7). Similar with Tian et al. [15], we choose the
unpenalized QIF estimator eθ as the initial estimator. Let

θk = ðβk
1,⋯, βk

p, γkT1 ,⋯, γkTq ÞT be the value of θ at the kth

iteration. If βk
l (or γkl ) is close to 0 (or 0), i.e., jβk

l j ⩽ ϵ
(or kγkl kH ⩽ ϵ) with some small threshold value ϵ, then

we set βk
l = 0 (or γkl = 0). We consider ϵ = 10−6 in our

simulations.
Suppose βk+1

l = 0, for l = pk + 1,⋯, p, and γk+1l = 0, for
l = qk + 1,⋯, q, and βk+1 = ðβk+1

1 ,⋯, βk+1
pk

, βk+1
pk+1,⋯, βk+1

p ÞT =

ððβk+1N ÞT , ðβk+1Z ÞTÞT , where βk+1N = ðβk+1
1 ,⋯, βk+1

pk
ÞT are the

nonzero parametric components and βk+1Z = ðβk+1
pk+1,⋯,

βk+1
p ÞT = 0. Similarly, let γk+1 = ððγk+11 ÞT ,⋯, ðγk+1qk

ÞT ,
ðγk+1qk+1Þ

T ,⋯, ðγk+1q ÞTÞT = ððγk+1N ÞT , ðγk+1Z ÞTÞT , where γk+1N =

ððγk+11 ÞT ,⋯, ðγk+1qk
ÞTÞT and γk+1Z = ððγk+1qk+1Þ

T ,⋯, ðγk+1q ÞTÞT
correspond to qk zero functions and q − qK zero functions,

respectively. Let θ = ðβTN , βTZ , γTN , γTZÞ
T
denote a vector which

has the same length and same partition with θk+1.
For the parametric term, if jβk

l j > ϵ, the penalty function
at βl ≈ βk

l is approximated by

pλ βlð Þ ≈ pλ βk
l

� �
+ 1
2
pλ′ βk

l




 


� �
βk
l




 


 β2
l − βk

l

� �2
� 	

: ð20Þ
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Similarly, to the nonparametric component, if kγkl kH > ϵ,
the penalty function at γl ≈ γkl is approximated by

pλ γlk kHð Þ ≈ pλ γkl
��� ���

H

� �
+ 1
2
pλ′ γkl

�� ��
H

� �
γkl

�� ��
H

γlk kH2 − γkl
��� ���

H

2
� 	

= pλ γkl
��� ���

H

� �
+ 1
2
p′λ γkl

�� ��
H

� �
γkl

�� ��
H

βTl Hβl − βkTl Hβkl
� �

,

ð21Þ

where p′λ is the first-order derivative of the penalty function
pλ. This leads to the local approximation of the PQIF Qp

nðθÞ
by a quadratic function:

Qn θk
� �

+ _Qn θk
� �T

ω11 − ωk
11

� �
+ 1
2 ω11 − ωk

11

� �T
€Qn θk

� �
ω11 − ωk

11

� �
+ n
2 ω

t
11Λ θk

� �
ω11,

ð22Þ

where _QnðθkÞ = ∂QnðθkÞ/∂ω11, €QnðθkÞ = ∂2QnðθkÞ/∂ω11∂ωT
11,

with ω11 = ðβTN , γTZÞ
T
, and

Minimizing the quadratic function (22), we obtain ωk+1
11 .

The Newton-Raphson method then iterates the following
process to convergence:

ωk+1
11 = ωk

11 − €Qn ωk
11

� �
+ nΛ ωk

11

� �n o−1

� _Qn ωk
11

� �
+ nΛ ωk

11

� �
ωk
11

n o
:

ð24Þ

4. Simulation Studies

4.1. Assessing Rule. In this section, we conduct a simulation
study to assess the finite sample performance of the proposed

procedures. Following [17], the performance of estimator bβ
will be assessed by the generalized mean square error
(GMSE), which is defined as

GMSE = 1
n
〠
n

i=1

bβ − β
� �

X∗
i X

∗
i
T bβ − β
� �

: ð25Þ

The performance of estimator bαð·Þ will be assessed by the
square root of average square errors (RASE)

RASE = 1
M

〠
M

v=1
〠
q

k=1
α∧k uvð Þ − αk uvð Þ½ �2

( )1/2

, ð26Þ

where uv , v = 1,⋯,M are the grid points where the functionbαðuÞ is evaluated. In our simulation, M = 300 is used.
To assess the performance of the variable selection, we

use “C” to denote the average number of zero regression coef-
ficients that are correctly estimated as zero and use “IC” to
denote the average number of nonzero regression coefficients
that are erroneously set to zero. The more closer the value of
“C” to the number of true zero coefficient in the model and

the more closer the value of “IC” to zero, the better the
performance of the variable selection procedure is.

In our simulations, we use the sample quantiles of Uij as
knots and take the number of internal knots to be 3, that is,
OðN1/5Þ. This particular choice is consistent with the asymp-
totic theory in Section 3 and performs well in the simulations.
For each simulated dataset, the proposed estimation proce-
dures for finding out penalized QIF estimators with SCAD
and LASSO penalty functions are considered. The tuning
parameters λ1, λ2 for the penalty functions are chosen by
BIC from 50 equispaced grid points in ½−15, 5�. For each of
these methods, the average of zero coefficients over the 500
simulated datasets is reported.

4.2. Study 1 (Partial Penalty). Consider a Bernoulli response

logit Yij

� �
= XT

ijβ + α Uij

� �
, ð27Þ

where β = ð2,1:5,0:7, 0T17ÞT ,m = 6, Xij ∼Nð0, I20Þ, αðUijÞ =
0:4 cos ððπ/2ÞUijÞ, and Uij are drawn independently from
U ½0, 1�. Response variable Yij with compound symmetry
correlation structure (CS) is generated according to Oman
[22]. In our simulation study, we consider ρ = 0:25 and
0.75, representing weak and strong correlations, respectively.
In some situations, we prefer not to shrink some certain com-
ponents in the variable selection procedure when some kind
of prior information is available. Partial penalty arises natu-
rally for such case. In this example, we only exert penalty
on the parametric component, i.e., coefficient β. In this situ-
ation, the PQIF (7) becomes

Qp
n θð Þ =Qn θð Þ + n〠

p

l=1
pλ1 βlð Þ: ð28Þ

Λ θk
� �

= diag
p′λ2 βk

1




 


� �
βk
1




 


 ,⋯,
p′λ2 βk

pk

� �
βk
pk




 


 ,
p′λ1 γk1

�� ��
H

� �
γk1

�� ��
H

H,⋯,
p′λ1 γkqk

��� ���
H

� �
γkqk

��� ���
H

H

8><>:
9>=>;: ð23Þ
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The variable selection result is reported in Tables 1 and 2.
Tables 1 and 2 show that the performance of the pro-

posed variable selection approach improves as n increases,
e.g., the number of correctly recognized zero coefficient
increases to the number of true zero coefficient in the model

and the GMSE of bβ decreases as n increases. In addition, the
RASE of bαðuÞ also decreases as n increases, which means the
estimated curve of bαðuÞ fits better to the true line of αðuÞ
when the sample size increases. Moreover, the SCAD penalty
method outperforms the LASSO penalty ones in the sense of
correct variable selection rate, which significantly reduces the
model uncertainty and complexity.

4.3. Study 2 (Fixed-Dimensional Setup). In this example, we
generate data from the following model:

logit Yij = 1 ∣ Xij,Uij

� �
= XT

ijβ + ZT
ijα Uij

� �
, ð29Þ

where β = ð2,1:5,0:7, 0T7 Þ and αðuÞ = ðα1ðuÞ, α2ðuÞ, 0T5 ÞT
with α1ðuÞ = 0:8 cos ððπ/2ÞuÞ, α2ðuÞ = 1:5 + u2, Xij and Zij

ðj = 1,⋯,6Þ come from a multivariate normal distribution
with mean zero, marginal variance 1 and correlation coeffi-
cient 0:5, and u ∼Uð0, 1Þ. Response variable Yij with com-
pound symmetry correlation structure (CS) is generated by
the same method as study 1 and we also consider ρ = 0:25
and 0.75, representing weak and strong correlations, respec-
tively. We generated 500 datasets for each pair of ðN , ρÞ.
The results are also reported in Tables 3 and 4.

Table 3 reports the variable selection for the parametric
components; it shows that the performances become better
and better as n increases, e.g., the number of correctly recog-
nized zero coefficients, which is denoted as values in the
column labeled “C,” becomes more and more closer to the
true number of zero regression coefficients in the model. At
the same time, the GMSE decreases steadily as n increases.
Table 4 shows that, for the nonparametric components, the
performances of the proposed variable selection method are
similar to those of the method for the parametric compo-
nents. As n increases, the RASE of the estimated nonpara-
metric function also becomes smaller and smaller. This
reflects that the estimate curves fit better to the correspond-
ing true line as the sample size increases. Moreover, the
SCAD penalty method outperforms the LASSO penalty ones
in the sense of correct variable selection rate, which signifi-
cantly reduces the model uncertainty and complexity.

To study the influence of misspecified correlation struc-
ture to the proposed approach, we perform variable selection
when the working correlation structure is specified to be CS
and first-order autoregressive (AR-1), respectively. The result
is listed in Table 5. It is known that the QIF estimator is
insensitive to misspecification in correlation structure.
Table 5 shows that the proposed variable selection procedure
gives similar results even when the correlation structure is
misspecified. This indicates that our method is robust.

4.4. Study 3 (High-Dimensional Setup). In this example, we
discuss how the proposed variable selection procedure can
be applied to the “large n, diverging p/q” setup for longi-
tudinal models. We consider the high-dimensional setup
of study 2. In this simulation, we take n = 300,m = 6, p =
20 =OðN1/4Þ, q = 10 =OðN1/4Þ. The true coefficient vector

is β = ð2,1:5,0:7, 0T17ÞT , αðuÞ = ðα1ðuÞ, α2ðuÞ, 0T10ÞT , where
α1ðuÞ and α2ðuÞ are defined in study 2. The other settings
are the same with study 2. The results are reported in
Table 6. It is easy to see that the proposed variable selec-
tion procedure is able to correctly identify the true model
and works well in the “large n, diverging p/q” setup.

5. Application to Infectious Disease Data

We apply the proposed method to analyze an infectious
disease data (indon.data), which has been well analyzed by
many authors, such as [16, 23–27]. In this study, a total of
275 preschool children were examined every three months
for 18 months. The response is the presence of respiratory
infection (1 = yes, 0 = no). The primary interest is in studying
the relationship between the risk of respiratory infection and
vitamin A deficiency (1 = yes, 0 = no).

In our study, we consider the following GPLVCM model

logit μij ∣ Xij, tij
n o

= 〠
6

k=1
βixij + α0 tij

� �
+ zijα1 tij

� �
, ð30Þ

Table 1: Variable selection for the parametric components under different methods.

Method
n = 150 n = 200 n = 300

GMSE C IC GMSE C IC GMSE C IC

ρ = 0:75 SCAD 0.0011 15.83 0 0.0006 16.246 0 0.0005 16.746 0

LASSO 0.0006 14.81 0 0.0005 15.346 0 0.0004 15.574 0

ρ = 0:25 SCAD 0.0011 15.75 0 0.0006 16.70 0 0.0004 16.846 0

LASSO 0.0007 14.82 0 0.0006 14.96 0 0.0005 15.35 0

Table 2: RASE of bαðuÞ under different methods.

Method n = 150 n = 200 n = 300

ρ = 0:75 SCAD 0.1920 0.2051 0.1054

LASSO 0.0999 0.0840 0.1064

ρ = 0:25 SCAD 0.2449 0.2460 0.0694

LASSO 0.1399 0.1205 0.1033
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where t is age, X1 is vitamin A deficiency, X2, X3 are the sea-
sonal cosine and seasonal sine variables, respectively, which
indicate the season when those examinations took place, X4
is gender (1 = female, 0 = male), X5 is height, X6 is stunting
status (1 = yes, 0 = no), and Z1 = X2

5 is the square of height.
The with-cluster correlation structure is assumed to be
exchangeable, i.e., compound symmetric. This structure is
also used in [16, 26, 27].

We apply the proposed QIF-based group SCAD variable
selection procedure to the above model and recognize five
nonzero coefficients and one nonzero function α0ðtÞ, where
β1 = 0:842, β2 = −0:685, β3 = −0:309, β4 = −0:554, and β6 =
0:966. The results are generally consistent with those previ-
ous studies, but our results show that the height has no signif-
icant impact on the infectious rate and can be removed from
the model. Figure 1 reports the curve of baseline age function
α0ðtÞ estimated by QIF-based group SCAD that is estimated
by QIF and that is estimated by QIF-based SCAD partial
penalty to β in [16], where the GPLM without the varying
coefficient term is used. Figure 1 implies that the probability
of having respiratory infection increases at the very early
stage, then decreases steadily, and declines dramatically when
the age is over 5.5 years old. This also coincides with previous
results [16, 26, 27].

Table 3: Variable selection for the parametric components under different methods.

Method
n = 150 n = 200 n = 300

GMSE C IC GMSE C IC GMSE C IC

ρ = 0:75 SCAD 0.0048 6.76 0 0.0036 6.846 0 0.0030 6.864 0

LASSO 0.0039 4.694 0 0.0033 4.766 0 0.0028 5.074 0

ρ = 0:25 SCAD 0.0047 6.76 0 0.0035 6.718 0 0.0028 6.846 0

LASSO 0.0038 4.814 0 0.0035 4.98 0 0.0029 5.048 0

Table 4: Variable selection for the nonparametric components under different methods.

Method
n = 150 n = 200 n = 300

GMSE C IC GMSE C IC GMSE C IC

ρ = 0:75 SCAD 0.1696 4.35 0 0.1221 4.66 0 0.0812 4.83 0

LASSO 0.1932 4.38 0 0.1540 4.36 0 0.1235 4.57 0

ρ = 0:25 SCAD 0.1636 4.42 0 0.1076 4.72 0 0.0344 4.85 0

LASSO 0.1982 4.40 0 0.1160 4.68 0 0.0398 4.76 0

Table 5: Variable selection when the true R is CS when n = 300.

Working R Method
β α ·ð Þ

GMSE C IC RASE C IC

ρ = 0:75

CS
SCAD 0.0030 6.864 0 0.0812 4.83 0

LASSO 0.0028 5.074 0 0.1235 4.57 0

AR-1
SCAD 0.0033 6.856 0 0.0935 4.82 0

LASSO 0.0034 4.924 0 0.1230 4.57 0

ρ = 0:25

CS
SCAD 0.0028 6.846 0 0.0344 4.85 0

LASSO 0.0029 5.048 0 0.0398 4.76 0

AR-1
SCAD 0.0030 6.846 0 0.0354 4.86 0

LASSO 0.0031 5.048 0 0.0411 4.75 0

Table 6: Variable selection under high-dimensional setup.

Method
β α ·ð Þ

GMSE C IC RASE C IC

ρ = 0:75 SCAD 0.0036 16.664 0 0.1148 9.656 0

LASSO 0.0033 15.574 0 0.1239 9.546 0

ρ = 0:25 SCAD 0.0034 16.846 0 0.1047 9.875 0

LASSO 0.0039 15.35 0 0.1138 9.802 0
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Figure 1: The estimated function on age for the infectious disease
data.
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6. Conclusion and Discussion

We proposed a QIF-based group SCAD variable selection
procedure for the generalized partially linear varying coeffi-
cient models with longitudinal data. This procedure can
select significant variables in the parametric components
and nonparametric components simultaneously. Under mild
conditions, the estimators of regression coefficients have ora-
cle property. Simulation studies indicate that the proposed
procedure is very effective in selecting significant variables
and estimating the regression coefficients.

In this paper, we assume that the dimensions of the
covariates X and Z are fixed. Study 3 in simulations shows
that the proposed approach still have desired results when
the dimensions p and q go to infinity as n⟶∞. However,
when in ultrahigh-dimensional case, the proposed variable
selection procedure may not work well anymore. As a future
research topic, it is interesting to consider the variable selec-
tion for the generalized partially linear varying coefficient
models with ultrahigh-dimensional covariates.

Appendix

A. Proofs of the Main Results

For convenience and simplicity, let C denote a positive con-
stant that may have different values at each appearance
throughout this paper and kAk denote the modulus of the
largest singular value of matrix or vector A.

Let ηij = XT
ijβ + ZT

ij · Iq ⊗ BðUijÞTγ, then μij = hðηijÞ. Let
ηi = ðηi1,⋯, ηimÞT , μi = ðμi1,⋯, μimÞT , and θ = ðβT , γTÞT ,
Yi = ðYi1,⋯, YimÞT , Xi = ðXi1,⋯, XimÞT .

Similarly, let Wij = BðUijÞ ⊗ Iq · Zij, Pij = ðXT
ij ,WijÞT ,

and Wi = ðWi1,⋯,WimÞÞT , Pi = ðPi1,⋯, PimÞT = ðXi,WðUiÞÞ;
then, ηij = PT

ijθ, ηi = Piθ, and ∂ηij/∂θ = Pij, ∂ηi/∂θ = PT
i .

Let h′ðtÞ = dhðtÞ/dt, then ∂μij/∂θ = h′ðηijÞPij. Let

H ′ ηið Þ ≜

h′ ηi1ð Þ
⋱

h′ ηimð Þ

0BBBBB@

1CCCCCA,H ′′ ηið Þ ≜

h′′ ηi1ð Þ
⋱

h′′ ηi,
� �

0BBBBB@

1CCCCCA:

ðA:1Þ

Then,

_μi =

∂μi1
∂β1

⋯
∂μi1
∂γqL

⋮ ⋯ ⋮

∂μim
∂β1

⋯
∂μim
∂γqL

0BBBBBBBBB@

1CCCCCCCCCA
=

∂μi1
∂θ

� 	T

⋮

∂μim
∂θ

� 	T

0BBBBBBBBB@

1CCCCCCCCCA
=

PT
i1h′ ηi1ð Þ
⋮

PT
imh′ ηimð Þ

0BBBBBB@

1CCCCCCA
=H ′ ηið ÞPi:

ðA:2Þ

Proof of Theorem 1. Let δ = n−1/2, β = β0 + δD1, γ = γ0 + δD2,

and D = ðDT
1 ,DT

2 ÞT . We first show that for any given ε > 0,
there exists a large constant C such that

P inf
Dk k=C

QP
n β, γð Þ >QP

n β0, γ0ð Þ
� �

≥ 1 − ε: ðA:3Þ

Note that β0l = 0, for all l = P1 + 1,⋯, p, and γ0k = 0, for
all k = q1,⋯, q, together with Assumption (A1) and pλð0Þ =
0, we have

Qp
n θð Þ −Qp

n θ0ð Þ ⩾ Qn θð Þ −Qn θ0ð Þ½ �

+ n〠
p1

l=1
pλ2 βlj jð Þ − pλ2 β0lj jð Þ
h i

+ n〠
q1

k=1
pλ1 γkk kH

� �
− pλ1 γ0kk kH

� �h i
≜ I1 + I2 + I3:

ðA:4Þ

By Taylor expansion and Assumption (A4), we have

I2 = n〠
p1

l=1
δp′λ2 β0lj jð Þ sgn β0lð Þ D1lj j
h

+ δp′′λ2 β0lj jð Þ sgn β0lð Þ D1lj j2 1 + o 1ð Þf g
i

⩽
ffiffiffiffiffi
p1

p
an Dk kO n1/2

� �
+ bn Dk k2O 1ð Þ

= ffiffiffiffiffi
p1

p
Dk kO n−1/2

� �
+ Dk k2o 1ð Þ:

ðA:5Þ

Invoking the proof of Theorem 2 in Zhang and
Xue [16],

I1 =Qn θð Þ −Qn θ0ð Þ
=DT _gTN θ0ð ÞΩ−1

n θ0ð Þ _gN θ0ð ÞD
+ Dk k2op 1ð Þ + Dk kOp 1ð Þ:

ðA:6Þ

By choosing a sufficient large C, I1 dominates I2. Similarly,
I1 dominates I3 for a sufficient large C. Thus (A.3) holds, i.e.,
with probability at least 1 − ε, there exists a local minimizerbθ that satisfies kbθ − θ0k =OpðδÞ. Therefore, kbγ − γ0k =
Opðn−1/2Þ and kbβ − β0k =Opðn−1/2Þ. Let RkðuÞ = αkðuÞ −
BðUÞTγk and γok denote the spline coefficient vector from
the spline approximation to αkð·Þ. From Assumptions (A7)
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and (A8) and Theorem 12.7 in [18], we get that kRkðuÞk =
OðK−rÞ. Therefore,

α∧k uð Þ − α0k uð Þk k2

=
ð1
0

α∧k uð Þ − α0k uð Þf g2 du

=
ð1
0

B uð ÞTγ∧k − B uð ÞTγ0k + Rk uð Þ
n o2

du

≤ 2
ð1
0

B uð ÞTγ∧k − B uð ÞTγ0k
n o2

du + 2
ð1
0
Rk uð Þ2 du

= 2 γ∧k − γ0kð ÞT
ð1
0
B uð ÞBT uð Þ du bγk − γ0kð Þ

+ 2
ð1
0
Rk uð Þ2 du =Op n−2r/ 2r+1ð Þ

� �
:

ðA:7Þ

Thus, we complete the proof of Theorem 1.

Proof of Theorem 2. According to Theorem 2, in order to
prove the first part of Theorem 2, we need only to prove that,
for any γ satisfying kγ − γ0k =Opðn−1/2Þ and for any βl satis-
fying kβl − β0lk =Opðn−1/2Þ, l = 1,⋯, p1, there exists a certain
ϵ = Cn−1/2 that satisfies, as n⟶∞, with probability tending
to 1:

∂Qp
n β, γð Þ
∂βl

> 0, for 0 < βl < ϵ, l = p1 + 1,⋯, p, ðA:8Þ

∂Qp
n β, γð Þ
∂βl

< 0, for  − ϵ < βl < 0, l = p1 + 1,⋯, p: ðA:9Þ

These imply that the PQIF Qp
nðβ, γÞ reaches its minimum

at βl = 0, l = p1 + 1,⋯, p.
Following Lemmas 3 and 4 of [16], we have

∂Qp
n β, γð Þ
∂βl

= ∂gTn β, γð Þ
∂βl

Ω−1
n β, γð Þgn β, γð Þ +Op 1ð Þ

+ np′λ2 ∣βl ∣ð Þ sgn βlð Þ

= −2〠
n

i=1

_μTi A
−1/2
i M1A

−1/2
i

∂μi
∂βl

⋮

_μTi A
−1/2
i MsA

−1/2
i

∂μi
∂βl

0BBBBBB@

1CCCCCCA

T

Ω−1
n β, γð Þgn β, γð Þ

+ np′λ2 ∣βl ∣ð Þ sgn βlð Þ +Op 1ð Þ
= n1/2 n1/2λ2 λ−12 p′λ2 ∣βl ∣ð Þ sgn βlð Þ

n o
+Op 1ð Þ

h i
:

ðA:10Þ

According to (8), the expression of the derivative of
SCAD-penalized function, it is easy to see that limn→∞

liminfβl→0λ
−1
2 p′λ2ð∣βl ∣ Þ = 1. Together with Assumption

(A10), λ2n
1/2 > λminn

1/2 ⟶∞, it is clear that the sign of

(A.10) is decided by that of βl. This implies (A.8) and (A.9)
hold. Thus, we complete the proof of the first part.

Similarly, we can prove that with probability tending
to 1, bγk = 0, k = q1 + 1,⋯, q. Note that kBðuÞk =Oð1Þ andbαkðuÞ = BTðuÞbγk; the second part of Theorem 2 is proved.
Thus, we complete the proof of Theorem 2.

Proof of Theorem 3. Let θ∗ = ðβ∗T , γ∗TÞT and let P∗
i =

ðX∗T
i ,W∗T

i ÞT , i = 1,⋯, n denote the covariates correspond-
ing to θ∗. Denote _Q1nðβ, γÞ and _Q2nðβ, γÞ to be the first
derivatives of the PQIF Qp

n with respect to β and γ, respec-
tively, i.e.,

_Q1n β, γð Þ = ∂Qp
n β, γð Þ
∂β

,

_Q2n β, γð Þ = ∂Qp
n β, γð Þ
∂γ

:

ðA:11Þ

By Theorems 1 and 2, ðβ∧∗T , 0TÞT and ðγ∧∗T , 0TÞT sat-
isfies that

_Q1n β∧∗T , 0T
� �T

, γ∧∗T , 0T
� �T� 	

= 0T ,

_Q2n β∧∗T , 0T
� �T

, γ∧∗T , 0T
� �T� 	

= 0T :
ðA:12Þ

By the Taylor expansion, we have

Q1n β∧∗T ,0Tð ÞT , γ∧∗T ,0Tð ÞT
� �





=Q1n






β∗T0 ,0Tð Þ β∗T

0 ,0Tð ÞT , γ∗T0 ,0Tð ÞT
� �

+ ∂Q1n
∂β θ=eθ β∧∗T , 0T

� �T
− β∗T

0 , 0T
� �T

� �




+ ∂Q1n

∂γ






θ=eθ γ∧∗T , 0T

� �T − γ∗T0 , 0T
� �Tn o

+ 〠
p1

i=1
np′λ2 bβ l

� �
sgn bβ l

� �
,

ðA:13Þ

where eθ is between ððβ∗T
0 , 0TÞT , ðγ∗T0 , 0TÞTÞ and ððβ∧∗T ,

0TÞT , ðγ∧∗T , 0TÞTÞ. Apply the Taylor expansion to p′λ2ð∣bβ l ∣ Þ,
we obtain

p′λ2 bβ l




 


� �
= p′λ2 β0lj jð Þ + p′′λ2l β0lj jð + op 1ð Þ

n o bβ l − β0l

� �
:

ðA:14Þ
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By Assumption (A10), p′′λ2ð∣β0l ∣ Þ = opð1Þ. Note that p′λ2l
ð∣β0l ∣ Þ = 0 as λmax ⟶ 0; therefore, by Lemma 4 of [16]
and through some calculation, we have

1
n
Q1n






β∗T
0 ,0Tð ÞT , γ∗T0 ,0Tð ÞT

� �
= −

2
n2

〠
n

i=1
〠
n

j=1
〠
s

k=1
〠
s

l=1
X∗T
i H ′ ηið ÞA−1/2

i MkA
−1/2
i H ′ ηið ÞP∗

i

n
·Ω−1

kl P
∗T
j H ′ ηj

� �
A−1/2

j MlA
−1/2
j Y j − μ0j

� �o
+ op n−1/2

� �
= −

2
n2

〠
n

i=1
〠
n

j=1
X∗T
i H ′ ηið Þτij Y j − μ0j

� �
+ op n−1/2

� �
= −

2
n2

〠
n

i=1
〠
n

j=1
~X
T
i τij ~R U j

� �
+ εj

� �
+ op n−1/2

� �
,

ðA:15Þ

where ~Xi =H ′ðηiÞX∗
i , ~RðUiÞ =H ′ðηiÞRðUiÞ,Ω−1

kl is the ðl, kÞ
block of Ω−1 and

τij = 〠
s

k=1
〠
s

l=1
A−1/2
i MkA

−1/2
i H ′ ηið ÞP∗

i Ω
−1
kl P

∗T
j H ′ ηj

� �
A−1/2

j MlA
−1/2
j :

ðA:16Þ

Similarly, we have

1
n
∂Q1n
∂β






θ=θ~= −

2
n2

〠
n

i=1
〠
n

j=1
~X
T
i τij~Xj + op n−1/2

� �
,

1
n
∂Q1n
∂γ






θ=eθ = −

2
n2

〠
n

i=1
〠
n

j=1
~X
T
i τij ~W Uj

� �
+ op n−1/2

� �
,

ðA:17Þ

where ~WðUjÞ =H ′ðη jÞW∗ðU jÞ,W∗ðUjÞ = ðW∗
j1,⋯,W∗

jmÞT ,
W∗

ij = BðUijÞ ⊗ Iq · Z∗
ij. Hence,

1
n
Q1n






β∗T
0 ,0T0ð ÞT , γ∗T0 ,0T0ð ÞT

� �
= −

2
n2

〠
n

i=1
〠
n

j=1
~X
T
i τij ~Xj β

∗
0 − β∧∗ð Þ + ~W Uj

� �
· γ∗0 − γ∧∗ð Þ�

+ ~R U j

� �
+ εj

�
+ op β∧∗ − β∗

0ð Þ,
1
n
Q2n






β∗T
0 ,0T0ð ÞT , γ∗T0 ,0T0ð ÞT

� �
= −

2
n2

〠
n

i=1
〠
n

j=1
~W Uið ÞTτij ~Xj β

∗
0 − β∧∗ð Þ�

+ ~W Uj

� �
· γ∗0 − γ∧∗ð Þ + ~R U j

� �
+ εj

�
+ op γ∧∗ − γ∗0ð Þ:

ðA:18Þ

Following the proof of Theorem 2 in [16], we prove (16).
Thus, we complete the proof of Theorem 3.
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