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The motor-imagery brain-computer interface system (MI-BCI) has a board prospect for development. However, long calibration
time and lack of enough MI commands limit its use in practice. In order to enlarge the command set, we add the combinations
of traditional MI commands as new commands into the command set. We also design an algorithm based on transfer learning
so as to decrease the calibration time for collecting EEG signal and training model. We create feature extractor based on data
from traditional commands and transfer patterns through the data from new commands. Through the comparison of the
average accuracy between our algorithm and traditional algorithms and the visualization of spatial patterns in our algorithm, we
find that the accuracy of our algorithm is much higher than traditional algorithms, especially as for the low-quality datasets.
Besides, the visualization of spatial patterns is meaningful. The algorithm based on transfer learning takes the advantage of the
information from source data. We enlarge the command set while shortening the calibration time, which is of significant
importance to the MI-BCI application.

1. Introduction

As a technique decoding brain activity, Brain-Computer Inter-
face (BCI) based on electroencephalogram (EEG) enables peo-
ple to interact with computers without the involvement of
peripheral muscular activity, which builds a communication
bridge between the brain and computer. With signal process-
ing, pattern classification, machine learning, and other tech-
niques, the BCI system translates different kinds of brain
activities such as attentive mental states [1], motor imagery
[2–5] (MI), and so on into machine instruction for controlling
devices. For example, it could be used to control unmanned
aerial vehicles [5], to help train solders [6], to help patients

with motor disabilities, such as amyotrophic lateral sclerosis
[7], brainstem stroke [2, 8] to recover.

Among most studies about EEG signal classification,
researchers are highly concerned about the EEG signal gener-
ated from motor imagery which has been widely used in
many BCI applications [2–5]. Motor imagery is a BCI para-
digm in which brain activity is generated at the sensorimotor
cortex during the imagination of the limb movement [9] such
as left hand (LH), right hand (RH), and both feet (F). During
the MI experiment, the power of the alpha band (8-12Hz)
and beta band (13-30Hz) increase or decrease in the sensori-
motor cortex of the ipsilateral hemisphere and the contralat-
eral hemisphere [10, 11]. The power suppression and
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enhancement observed through EEG signal are, respectively,
called event-related desynchronization (ERD) and event-
related synchronization (ERS) [12]. The ERD/ERS patterns
can be used for translating brain activity and classifying the
imagination of limbs through machine learning.

However, most of MI-BCI promising applications are
prototypes and still scarcely used outside laboratories.
Among the reasons preventing MI-BCI from being widely
put into practice, we want to give solutions to two of them,
which are the long calibration time [13–16] and the lack of
enough MI commands [17].

The first problem, namely, the long calibration time,
means researchers require a large number of calibration trials
for training a subject-specific and task-specific model, which
is time-consuming in collecting data and training model. Due
to the intersubject and intertask variability of the EEG signal
[18], the training samples need to contain the EEG data from
every MI commands for model construction. Thus, the data
collection for BCI takes a lot of time. And the variability
between datasets makes it difficult to give a model fit for
every subject, which lengthens the time for the training
model. As for the second question, the lack of enough MI
commands makes it less available for BCIs. In the traditional
MI experiment, there are almost 4 types of commands for
subjects to imagine, that is left hand, right hand, both feet,
and tongue [19].

In order to add more commands into the BCI system, the
combination of single limbs command can be added into the
command set. For example, on the basis of existing MI com-
mand (LH, RH, and F), we can obtain combined commands,
movement of both left hand and right hand simultaneously
(LH&RH), movement of the left hand and both feet simulta-
neously (LH&F), and movement of the right hand and both
feet simultaneously (RH&F). However, researchers have to
collect the same scale of dataset for new MI commands as
which for old commands, which multiples the time spent
on data collection. The larger MI dataset also lengthen the
time spent on model training. Besides, as for a new subject,
the imagination of new MI commands is harder than typical
commands, which leads them to train those commands for a
long period of time before the recording. Due to the increas-
ing number and complexity of the entire six commands, the
expansion of the command set becomes less feasible.

In order to shorten the time on model construction as
well as enlarge the command set, transfer learning would
have a profound impact. Transfer learning algorithms use
datasets, features, or model parameters [20] from the
source domain for training the model in the target domain
so as to reduce the scale of training data in the target
domain, which reduces the sampling and training cost. In
the classification of the EEG signal, there have been many
algorithms based on task-to-task transfer and subject-to-
subject transfer in response to intertask and intersubject
variability. Among those algorithms, the features extractors
based on the Common Spatial Pattern algorithm (CSP) are
one of the mainstream techniques. The method of CSP
designs spatial filters, which maximize the discriminability
of two classes of data and make the variances in filtered
data are optimal for classification [21–23]. Based on CSP

and transfer learning, researchers raised a lot of algorithms
to generate spatial filters from the source domain, for
example, Regularized CSP [24–26], stationary subspace
CSP [27], Bayesian CSP [28]. Through adjusting parame-
ters, finding the common subspace, and using the Bayesian
model, similar features from source subjects can be shared
and the feature extractors from the source domain can be
used in the target domain.

The solution to calibration time extension caused by
command set expansion is to decrease the scale of the dataset
collected for new commands. Therefore, in order to increase
the number of commands on the premise of not lengthening
calibration time, it is proper to make the most of other avail-
able data for new filters and classifiers. While the intertask
variability of EEG signals varies from one class to another,
the principle feature characteristics remain invariant across
classes. Thus, although it is unwise to simply add training
set of old commands to that of new classes, the prior knowl-
edge collected from the previous training set can be used into
the building of filters and classifiers for new classes. Conse-
quently, using transfer learning to construct model is an opti-
mal solution. We regard data from typical commands and
new commands as source data and target data, respectively.
And we use source data to improve the property of our model
for target data.

In this paper, we provide a spatial pattern transfer algo-
rithm. We add a screening process before the utilization of
spatial filters generated from datasets of old MI commands.
In order to shrink the difference of the generated filters and
objective filters, we reject the filters performing badly based
on the fisher ratio [29, 30].

The remainder of this paper is structured as follows. In
Section 2, we introduce our experimental paradigm, our
dataset as well as our algorithm. In Section 3, experimental
results are shown. The paper concludes with a discussion of
the results in Section 4.

2. Materials and Methods

In this section, we show our experiment and our algorithm
used for the data recorded in the experiment.

2.1. Experiment and Data Processing

2.1.1. Experiment. We recorded brain activity from 5 healthy
subjects in the experiment. The BCI paradigm consisted of
six different motor imagery tasks, namely the imagination
of the left hand (class 1), right hand (class 2), both feet (class
3), left hand and right hand (class 4), left hand and both feet
(class 5), and right hand and both feet (class 6). On the basis
of traditional commands, subjects were more familiar with
the combined commands comparing to imagining new body
parts. Consequently, we chose LH&F, RH&F, and LH&RH as
our new commands.

The experiment was comprised of 6 runs separated by
short breaks. One run consisted of 60 trials (10 for each of
the six classes), yielding a total of 360 trials for every subject
(60 trials in each class).
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The subjects in this experiment sat in a comfortable chair
in front of a computer screen. At the beginning of a trial, a
fixation cross appeared on the white screen. After 500ms,
an image in the form of one or two arrows pointing different
directions corresponding to one of six classes appeared and
stayed on the screen for 4 s. The relation between images
and MI commands are showed in Figure 1(a). The image
prompted the subjects to perform the MI task as requested
until the fixation cross appeared again after the appearance
of the image. The subject had a short break for 2.5 s and
waited for the next trial. The paradigm is illustrated in
Figure 1(b).

Multichannel EEG amplifiers with 64 channels band-pass
filtered between 0.05 and 200Hz and sampled at 500Hz were
used to record the EEG, whose montage is shown in
Figure 1(c). Horizontal and vertical EOG signals were
recorded to check for eye movements, which were not used
for classification.

2.1.2. Preprocessing. During the process of preprocessing, we
removed noise caused by eye and muscle movement and
select effective rhythm (sensorimotor rhythm) in order to
enhance the relevant information. Initially, we rereferenced
the data. The left mastoid was chosen as reference electrode
during the collection. In order to avoid laterality bias in the
data, we rereferenced the data offline by changing the refer-
ence electrodes into the average of value of the left and right

mastoids. We removed contamination from bad channels by
using the average of channels around the bad channel to
replace them. Then, the whole time series of EEG data was
band-pass filtered in 8-30Hz, as written in [23]. We ran
ICA to reject the EOG artifacts. We extracted epochs from
the whole time segment located from 0.5 s before instructing
the subject to performMI to 2 s after instructing. Signals were
baseline corrected over the interval 0-500ms before instruct-
ing. Finally, the processed data was visually screened to
discard any noise trials.

2.2. Method. In this subsection, we show the total scheme of
our algorithm and detailed description of every essential
component.

2.2.1. The Total Scheme of the Algorithm. The total scheme of
the algorithm is organized as described in Figure 2, which can
be divided into model training and model test. The training
of the model contains four components. First, the EEG signal
is collected during the motor imaginary experiment, prepro-
cessed, and divided into source data and target data accord-
ing to our standard. Second, the original spatial patterns are
constructed from source data based on the CSP algorithm.
Third, with the fisher ratio algorithm, we transfer the original
spatial filters into spatial filters for target data. At last, fea-
tures extracted by filters are given as input to a Support Vec-
tor Machine (SVM) classifier [31, 32] for training the model.
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Figure 1: (a) The correspondence between the image on the screen and task of MI commands. (b) The time series of one trial in a run, and the
image shown on the screen. (c) Electrode montage was used in the experiment.
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After the model has been trained, it can be used for the test
data. The features of test data are also extracted by transfer
spatial filters. And those features are used as input of classi-
fier for the testing model.

2.2.2. Data Transfer Standard on Division and Selection. The
preprocessed data will be divided into source data and target
data. The source data comes from the old command, and
target data from the new command. In order to improve
the stability of the transfer model, we need to choose proper
source data with the right label. In this section, we give our
standard of choosing source data and the reason why we
select those data depending on the target data. Initially,
because of the intersubject variability of the spatial features
between each subject, we select source data and target data
from the same subject. And owing to the domain adaptation
[18] standard in the transfer learning area, we choose the
most similar data between source data and target data in
terms of the imagery of body parts. For example, as for
the classification of LH&F and RH&F, we use the dataset
from LH and RH as source data. As for the classification
of LH&RH and RH&F, we use the dataset from F and RH
as source data. The standard for data selection will also be
discussed in Section 4.4.

2.2.3. Original Spatial Pattern Construction Based on CSP. As
for the classification of two distributions in a high-
dimensional space, the CSP algorithm designs spatial filters,
which maximize variance for one class and simultaneously
minimize variance for the other class. Based on the simulta-
neous diagonalization of covariance matrices of two classes,
spatial filters can lead to features whose variances are optimal
for the discrimination.

In the traditional algorithm, in order to construct spatial
filters extracting optimal features, the scale of training data is
always large. By using source data, we can decrease the
dependence on the training data. In order to make the most
of the source data, we use source data for constructing the
spatial filters. In the following section, we will take a particu-

lar classification as an example. We will use the source data
(LH and RH) to construct the source spatial filters for the
classification of target data (LH&F and RH&F).

The single-trial EEG signal from source data is repre-
sented as N ×Gmatrix Xi

c. N represents the number of chan-
nels, and G is the number of samples per channel. Xi

c is the i
th

(i ∈ ½1, K�) trial of EEG signal matrix which belongs to the
class c (c ∈ f1, 2g). The class 1 refers to data from LH, and
the class 2 refers to RH. The average spatial covariance
matrix of each class can be calculated as

Rc =
1
K
〠
i

Xi
c Xi

c

� �T
trace Xi

c Xi
c

� �T� � : ð1Þ

R is the sum of the covariance matrix from source data.
And the composite spatial covariance matrix R can be factor-
ized as

R = R1 + R2 =UΛUT : ð2Þ

U is the matrix of eigenvectors, and Λ is the diagonal
matrix of corresponding eigenvalues. Then, the whitening
transformation is obtained as

P =
ffiffiffiffiffiffiffiffi
Λ−1

p
UT : ð3Þ

R1 and R2 from LH and RH are whitened as S1 and S2:

S1 = PR1P
T , S2 = PR2P

T : ð4Þ

Then, S1 and S2 can be factorized as

S1 = BΛ1B
T , S2 = BΛ2BT,Λ1 +Λ2 = I ð5Þ

Λ1 and Λ2 are diagonal matrices. I is the identity matrix,
and S1 and S2 share the same eigenvector. Therefore, this
property makes the eigenvectors B effective for the
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Figure 2: The total structure of our algorithm. The blue line stands for the training process, and the red line stands for the testing processing.
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discrimination of two classes. B̂ is the matrix of the m first
and last eigenvectors in B. The spatial filters ω can be calcu-
lated as

ω = B∧TP: ð6Þ

2.2.4. Pattern Transfer Based on Fisher Ratio. The original
spatial filters created from source data are in a large scale.
There is no doubt that the original spatial filters are suit-
able for source data. However, not all filters can be used
to extract features for target data. We need to select a
valuable subset of filters from the original filters so as to
transfer the source filters into target filters. In this section,

we briefly introduce pattern transfer based on fisher ratio.
The filters we need can project target data into optimal
features which have higher fisher ratio. The purpose of
the fisher ratio is to find a subset of features, in which
the distances between each data in different classes are as
large as possible, while the distances between each data
in the same class are as small as possible. Therefore, the
fisher ratio is defined as the ratio of the variance between
classes to the variance within classes. There is a dataset D
which contains n samples (ω1, ω2,⋯, ωn), which belongs
to C classes. Each of the sample ω has K features
(xk, k ∈ ½1, K�). There are ni samples in one class. mk

i is
the mean value of xk in one class. And mk is the mean
value of all xk. Thus, the fisher ratio of the features in
every dimensionality can be calculated as

Jk =
Skbetween
Skwithin

,

Skbetween = 〠
C

i=1

ni
n

mk
i −mk

� �2
,

Skwithin =
1
n
〠
C

i=1
〠
x∈ωi

xk −mk
i

� �2
:

ð7Þ

The higher the fisher ratio of the feature is, the more
discriminative the features between the two classes are.

Getting back to the pattern transfer, we think that the
more optimal filter is, the higher the fisher ratio of feature
is extracted. Consequently, to test the performance of each
line of filters, we sort features generated through the pro-
jection of train data on original spatial filters. The score of
each dimensionality in features calculated by the fisher
ratio algorithm represents the performance of each spatial
filter. Based on the principle of CSP, the original filters
from source data should be divided into two groups which
gives the larger eigenvalues of S1 and smaller eigenvalues
of S2, respectively. Consequently, the transfer filters should
also be selected by the same amount in each group. We
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divide the original spatial filters into two equal groups,
which, respectively, are generated from the first and last
eigenvectors through CSP. Then, we select the same

amount of filters, which have a higher score in each group,
and combine them as transfer filters. The transfer of filters
is described as Figure 3

(a) (b)

(c) (d)

Spatial patterns from source data

Spatial patterns from target data

15

10

5

–5

–10

–15

0

Figure 5: Spatial patterns of twomost significant features in the transfer CSP and CSP algorithms, which were extracted from the 3rd subject’s
imagery of LH&F and RH&F. (a, c) are spatial patterns of LH&F and (b, d) are spatial patterns of RH&F.
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2.2.5. SVM for Classification. Before the classification, we use
our transfer spatial filters for extracting features. With the
transfer spatial filters ω′, single-trial EEG signal Xi

c can be
calculated as

Z = ω′Xi
c: ð8Þ

The feature vector f ip can be calculated as

f ip = log
varip

∑2m
p=1varip

 !
: ð9Þ

varip is the variance of pth row in Z matrix.
Aiming at finding decision boundary between the class

samples, SVM is an algorithm which can effectively prevent
the defects of traditional classification algorithm, such as
overtraining, dimension disaster, and local minima [31, 33].

The SVM classifier maximizes the distance between decision
boundary and margin. Due to the strength of the SVM clas-
sifier, it has been widely used in BCI classification [34, 35].

We utilized the entire 60 trials of source data from two
selected classes which have been introduced in the previous
section and 5 trials each class of target data for constructing
spatial filters. In the selection of filters based on the fisher
ratio, we chose the top 4 in the original filters which have
higher scores. Then, we transferred the previous 5 trial target
data into training features with the selected spatial filter.
Combining with corresponding class information as the
training label, we trained the classifier model.

As for the SVM classifier, the Gaussian radial basis func-
tion is used as the kernel function, and a five-hold cross-
validation is used to choose suitable parameters for the test-
ing data.

3. Results and Discussion

The performance of our algorithm in our dataset is compared
with two popular algorithms, which are CSP and power

Table 1: The average classification accuracy and accuracy range of three algorithms on the target dataset.

Average accuracy (max-min)
Transfer CSP CSP PSD

Sub 1 70.13% (79.58%-66.25%) 56.47% (70.83%-48.33%) 49.95% (56.25%-40.42%)

Sub 2 85.18% (91.43%-69.05%) 78.85% (92.38%-63.81%) 56.35% (70.00%-39.05%)

Sub 3 95.93% (98.79%-81.52%) 91.57% (99.39%-74.24%) 74.32% (88.79%-46.06%)

Sub 4 62.16% (78.61%-42.50%) 54.60% (69.72%-42.50%) 49.31% (56.39%-42.22%)

Sub 5 96.29% (99.39%-84.85%) 98.86% (100.00%-96.36%) 74.83% (91.82%-51.52%)
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spectrum density (PSD) [36]. We utilize each algorithm to
extract features from the testing set of the target data. In
the CSP algorithm, we use spatial filters generated from tar-
get data. As for PSD, we use power spectral density values
from one-way EEG data at particular channels (C3, C4, and
Cz). We also calculate averaged PSD for the three channels.
In order to test the robustness of the algorithm, we use the
12-CV 5 times on the target dataset of each subject. In order
to decrease the scale of transfer data, in the cross-validation,
we use 1/12 as training data and 11/12 as test data. We will
compare the average accuracy of all algorithms. And the
comparison of the different discriminative patterns from dif-
ferent algorithms will be showed in the following part.
Besides, in order to make the comparison more particularly,
the spatial patterns have been illustrated by focusing on the
particular brain region.

3.1. PSD Analysis for the Dataset. In order to test the availabil-
ity of the EEG dataset, PSD features at particular channels in
the motor cortex (C3, C4, and Cz) are calculated based on
temporal Fourier transform for each trial of EEG data. Notice-
able differences can be observed in the averaged PSD for two
target tasks. Imagining the LH&F movement leads to the
decrease of alpha and beta bands’ power at C4 and Cz chan-
nels and the increase at C3, whereas the contrary phenomena
occur during imagining RH&F movement. The phenomenon
from PSD analysis confirms the description of ERD/ERS.
Figure 4 shows the average power spectrum at channel C3,
Cz, and C4 for 3rd subject, evident differences are presented
between the two tasks, especially around 10-30Hz.

3.2. Spatial Patterns Illustration. In order to show the superi-
ority of transfer spatial patterns, we visualize the spatial

Table 2: The accuracy of classification on three different kinds of tasks (both old commands, both new commands, new commands and old
commands) using the same source data.

Subject LvsR L&FvsR&F FvsL&R FvsR&F FvsL&F LvsL&R LvsR&F LvsL&F RvsL&R RvsR&F RvsL&F

Sub1 61.9% 63.9% 69.5% 53.2% 65.1% 56.0% 63.4% 52.4% 63.2% 49.3% 67.6%

Sub2 98.6% 98.6% 68.9% 65.4% 81.9% 98.3% 98.5% 49.9% 61.9% 49.6% 99.6%

Sub3 99.1% 99.6% 70.2% 69.5% 86.3% 98.9% 98.7% 52.3% 69.0% 53.0% 99.8%

Sub4 63.1% 61.0% 71.9% 51.8% 67.9% 54.5% 62.2% 48.7% 63.3% 48.3% 64.0%

Sub5 100.0% 99.9% 50.2% 97.3% 99.9% 99.3% 99.7% 49.7% 97.3% 54.5% 100.0%
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Figure 9: The accuracy of classification on three different kinds of tasks (both old commands, both new commands, new commands and old
commands) using the same source data. The x-axis refers to different groups of tasks. The y-axis refers to accuracy. The bars in purple mean
the first and second kinds of classification, and the rest refers to the third group. The green bars mean classification which has lower accuracy.
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patterns from our algorithm and traditional CSP algorithm
and compare the visualization of them. The visualization of
the two most discriminative spatial patterns extracted
through two algorithms from the 3rd and 1st subjects is illus-
trated in Figures 5 and 6. In both figures, the spatial patterns
in the first row are generated from our algorithm, and the
spatial patterns in the second row are generated from CSP.
As for the two subjects, the classification accuracies of 3rd
subject for both algorithms is higher than the 1st subject.
The accuracies for the 3rd subject in our algorithm and
CSP are, respectively, 99.09% and 98.18%, which has a high
accuracy in both algorithms and the optimization of the algo-
rithm can only cause a little increase. As for the 1st subject,
the accuracies are, respectively, 69.17% and 56.67%, which
has a lower accuracy in the CSP algorithm but has a great
increase in accuracy caused by the transfer algorithm. In
Figure 5, the visualization shows that the highest discrimina-
tive weights can be viewed at FC5, FC6 channels from both
patterns of our algorithm and CSP. The physiologically evi-
dences from both our algorithm and CSP are similar to the
result showed in PSD analysis. In Figure 6, the visualization
shows that the patterns from our algorithm are clearer than
patterns in CSP, which is fitter for the result in PSD compar-
ing to the traditional algorithm. The optimization in spatial
pattern also causes the increase in classification.

3.3. Classification Results on the Testing Set. The average clas-
sification results for all algorithms are listed in Table 1 and
showed in Figure 7. As for every task of every subject, we
run 12-CV for 5 times and collect the average accuracy and
the range of the accuracy. Because of the different quality of
data from each subject, the average accuracy from each sub-
ject in each task varies in a large range. However, we find that
our algorithm performs better than two baseline algorithms
on most subjects. In addition, it performs much better as
for the dataset which performs badly in motor imagery tasks.
Based on the accuracy in traditional algorithms, we find that
the accuracies of the 1st and 4th subjects are relatively lower
in all of the accuracies, which means the 1st and 4th subjects
perform worse in all of the subjects. The difference on the
accuracy between our algorithm and traditional algorithm
is shown in Figure 8. We can find that the increase on accu-
racy of the 1st and 4th is more remarkable compared to all of
the subjects.

3.4. Classification Results on Different Task. In order to check
the performance of the algorithm when classifying different
tasks, we use the spatial pattern transfer algorithm on differ-
ent command tasks. We use data from LH and RH as source
data for three different kinds of target data classification,
which are target data from old commands, new commands,
and both old and new commands. Aiming at the source data,
we choose the LH vs. RH as the first group, and LH&F vs.
RH&F as the second group. As for the third group which is
the classification between old command and new command,
we make the classification for each two groups which means
LH vs. LH&F, LH vs. RH&F, LH vs. LH&RH, RH vs. LH&F,
RH vs. RH&F, RH vs. LH&RH, F vs. LH&F, F vs. RH&F, and
F vs. LH&RH. The classification results are listed in Table 2

and showed in Figure 9. Comparing the accuracy of all tasks
using the same source data, we find that our spatial filters can
classify both old commands and both new commands in a
similar accuracy. However, as for the classification between
new commands and old commands, the accuracy is seriously
influenced by the similarity of the MI tasks. According to the
comparison of accuracy in the second group, we find that
each of the new commands has one type of old commands
which is really similar and should be used as source data
for the classification of new commands. For example, in the
comparison of the LH vs. LH&F, RH vs. LH&F, and F vs.
LH&F, we find that LH vs. LH&F caused a really low accu-
racy which contrast the accuracy of RH vs. LH&F and F vs.
LH&F.

4. Conclusion

In order to addmoreMI commands, we add the combination
of traditional MI commands into the BCI system. To reduce
the time for researchers spending on collecting data and
training model for new commands, this paper presented a
new algorithm for feature extracting based on transfer learn-
ing. On one hand, it reduces the long calibration time
through making the most of existing data and decreasing
the number of training data in new MI commands. On the
other hand, it increases the accuracy of the classification on
less training samples in the BCI system. Our algorithm solves
the problem of long calibration time and lack of MI com-
mands, as well as increases the accuracy. Furthermore,
because of its outstandingly increasing performance in sub-
jects who have low accuracy in traditional CSP classification,
it is helpful for subjects who cannot perform well in the BCI
system. Our algorithm makes the BCI system more user-
friendly for subjects. There is no need for subjects to train
for a long time in order to adapt the MI tasks.

We compared our algorithm and traditional algorithms
on the dataset collected by our laboratory. The spatial pat-
terns from our algorithm are more physiologically reasonable
in bad performing subjects. And our algorithm performs bet-
ter than traditional algorithms.

In summary, our algorithm is better than traditional algo-
rithms especially for subjects with less training samples and
poor performances in traditional algorithm. With good per-
formance and stability, our proposed algorithm can reduce
the need for the training samples of new MI command by
transferring the source data from the old MI command.

The method of spatial patterns is suitable for discriminat-
ing between 2 classes. Through changing the multiclass clas-
sification into binary classes, our algorithm can also be used
in multiclass problem. In the future, with more state-of-the-
art feature extractor from our algorithm, we can utilize it
on feature extraction of deep transfer learning. With the help
of a deep learning algorithm and the optimal features, the
performance of classification may become better.

Data Availability

The data used to support the findings of this study are not
publicly available due to technology policy of Tongji

9Computational and Mathematical Methods in Medicine



University but are available from the corresponding author
upon reasonable request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Xuanci Zheng, Jie Li, and Hongfei Ji designed the whole
research. Xuanci Zheng and Lili Duan performed the
research. Xuanci Zheng, Jie Li designed the algorithm.
Xuanci Zheng made data analysis. Xuanci Zheng and Maoz-
hen Li wrote the manuscript. Jie Zhuang, Tianhao Gao, Ron-
grong Lu, and Zilong Pang made contribution after receiving
reviews of the manuscript. Jie Zhuang, Rongrong Lu and
Tianhao Gao helped refine the data analysing. Zilong Pang
helped refine the code. Because of authors’ negligence, Jie
Zhuang, Rongrong Lu, Tianhao Gao and Zilong Pang was
forgotten to be added into the author list before acceptance.

Acknowledgments

This work was supported in part by the Science and Technol-
ogy Commission of Shanghai Municipality under Grant
18ZR1442700, in part by Shanghai International Science
and Technology Cooperation Fund 19490712800, and in part
by the Program for Professor of Special Appointment (East-
ern Scholar) at Shanghai Institutions of Higher Learning
(No. TP2018056).

Supplementary Materials

The supplementary material contains the code of the algo-
rithm in the manuscript. The detailed description of the code
can be seen in the README.md file in the RAR file
(Supplementary Materials)

References

[1] F. Fahimi, Z. Zhang, W. B. Goh, T. S. Lee, K. K. Ang, and
C. Guan, “Inter-subject transfer learning with an end-to-end
deep convolutional neural network for EEG-based BCI,” Jour-
nal of Neural Engineering, vol. 16, no. 2, article 026007, 2019.

[2] F. Pichiorri, G. Morone, M. Petti et al., “Brain–computer inter-
face boosts motor imagery practice during stroke recovery,”
Annals of Neurology, vol. 77, no. 5, pp. 851–865, 2015.

[3] K. K. Ang, C. Guan, K. S. G. Chua et al., “Clinical study of neu-
rorehabilitation in stroke using EEG-based motor imagery
brain-computer interface with robotic feedback,” in 2010
Annual International Conference of the IEEE Engineering in
Medicine and Biology, pp. 5549–5552, Buenos Aires, Argen-
tina, 2010.

[4] J. Kevric and A. Subasi, “Comparison of signal decomposition
methods in classification of EEG signals for motor-imagery
BCI system,” Biomedical Signal Processing and Control,
vol. 31, pp. 398–406, 2017.

[5] A. Nourmohammadi, M. Jafari, and T. O. Zander, “A survey
on unmanned aerial vehicle remote control using brain–com-

puter interface,” IEEE Transactions on Human-Machine Sys-
tems, vol. 48, no. 4, pp. 337–348, 2018.

[6] C. N. Munyon, “Neuroethics of non-primary brain computer
Interface: focus on potential military applications,” Frontiers
in Neuroscience, vol. 12, p. 696, 2018.

[7] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller,
and T. M. Vaughan, “Brain–computer interfaces for commu-
nication and control,” Clinical Neurophysiology, vol. 113,
no. 6, pp. 767–791, 2002.

[8] D. T. Bundy, L. Souders, K. Baranyai et al., “Contralesional
brain–computer interface control of a powered exoskeleton
for motor recovery in chronic stroke survivors,” Stroke,
vol. 48, no. 7, pp. 1908–1915, 2017.

[9] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Classifi-
cation of covariance matrices using a Riemannian-based ker-
nel for BCI applications,” Neurocomputing, vol. 112, pp. 172–
178, 2013.

[10] G. Pfurtscheller and F. H. L. da Silva, “Event-related EEG/-
MEG synchronization and desynchronization: basic princi-
ples,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–
1857, 1999.

[11] M. Pregenzer and G. Pfurtscheller, “Frequency component
selection for an EEG-based brain to computer interface,” IEEE
Transactions on Rehabilitation Engineering, vol. 7, no. 4,
pp. 413–419, 1999.

[12] G. Pfurtscheller, “Graphical display and statistical evaluation
of event-related desynchronization (ERD),” Electroencepha-
lography and Clinical Neurophysiology, vol. 43, no. 5,
pp. 757–760, 1977.

[13] J. Jin, S. Li, I. Daly et al., “The study of generic model set for
reducing calibration time in P300-based brain–computer
interface,” IEEE Transactions on Neural Systems and Rehabil-
itation Engineering, vol. 28, no. 1, pp. 3–12, 2020.

[14] M. Alamgir, M. Grosse–Wentrup, and Y. Altun, “Multitask
learning for brain-computer interfaces,” in Proceedings of the
thirteenth international conference on artificial intelligence
and statistics, pp. 17–24, Chia Laguna Resort, Sardinia, Italy,
2010.

[15] M. Krauledat, M. Tangermann, B. Blankertz, and K. R. Müller,
“Towards zero training for brain-computer interfacing,” PLoS
One, vol. 3, no. 8, p. e2967, 2008.

[16] W. Tu and S. Sun, “A subject transfer framework for EEG clas-
sification,” Neurocomputing, vol. 82, pp. 109–116, 2012.

[17] F. Lotte, A. Van Langhenhove, F. Lamarche et al., “Exploring
large virtual environments by thoughts using a brain–com-
puter interface based on motor imagery and high-level com-
mands,” Presence: teleoperators and virtual environments,
vol. 19, no. 1, pp. 54–70, 2010.

[18] V. Jayaram, M. Alamgir, Y. Altun, B. Scholkopf, and
M. Grosse-Wentrup, “Transfer learning in brain-computer
interfaces,” IEEE Computational Intelligence Magazine,
vol. 11, no. 1, pp. 20–31, 2016.

[19] V. Morash, O. Bai, S. Furlani, P. Lin, and M. Hallett, “Classify-
ing EEG signals preceding right hand, left hand, tongue, and
right foot movements and motor imageries,” Clinical Neuro-
physiology, vol. 119, no. 11, pp. 2570–2578, 2008.

[20] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345–1359, 2009.

[21] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Design-
ing optimal spatial filters for single-trial eeg classification in a

10 Computational and Mathematical Methods in Medicine

http://downloads.hindawi.com/journals/cmmm/2020/6056383.f1.md


movement task,” Clinical Neurophysiology, vol. 110, no. 5,
pp. 787–798, 1999.

[22] C. Guger and H. Ramoser, “Real-time eeg analysis with
subject-specific spatial patterns for a brain-computer interface
(bci),” IEEE Transactions on Rehabilitation Engineering, vol. 8,
no. 4, pp. 447–456, 2000.

[23] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal
spatial filtering of single trial EEG during imagined hand
movement,” IEEE Transactions on Rehabilitation Engineering,
vol. 8, no. 4, pp. 441–446, 2000.

[24] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Regular-
ized common spatial patterns with generic learning for EEG
signal classification,” in 2009 Annual International Conference
of the IEEE Engineering in medicine and biology society,
pp. 6599–6602, Minneapolis, MN, USA, 2009, September.

[25] H. Lu, H. L. Eng, C. Guan, K. N. Plataniotis, and A. N. Venet-
sanopoulos, “Regularized common spatial pattern with aggre-
gation for EEG classification in small-sample setting,” IEEE
Transactions on Biomedical Engineering, vol. 57, no. 12,
pp. 2936–2946, 2010.

[26] J. Jin, Y. Miao, I. Daly, C. Zuo, D. Hu, and A. Cichocki, “Cor-
relation-based channel selection and regularized feature opti-
mization for MI-based BCI,” Neural Networks, vol. 118,
pp. 262–270, 2019.

[27] W. Samek, F. C. Meinecke, and K. R. Müller, “Transferring
subspaces between subjects in brain–computer interfacing,”
IEEE Transactions on Biomedical Engineering, vol. 60, no. 8,
pp. 2289–2298, 2013.

[28] H. Kang and S. Choi, “Bayesian common spatial patterns for
multi-subject EEG classification,” Neural Networks, vol. 57,
pp. 39–50, 2014.

[29] C. M. Bishop, Neural Networks for Pattern Recognition,
Oxford university press, 1995.

[30] T. N. Lal, M. Schroder, T. Hinterberger et al., “Support vector
channel selection in BCI,” IEEE Transactions on Biomedical
Engineering, vol. 51, no. 6, pp. 1003–1010, 2004.

[31] C. J. Burges, “A tutorial on support vector machines for pat-
tern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121–167, 1998.

[32] K. P. Bennett and C. Campbell, “Support vector machines:
hype or hallelujah?,” Acm Sigkdd Explorations Newsletter,
vol. 2, no. 2, pp. 1–13, 2000.

[33] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern rec-
ognition: a review,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000.

[34] J. Atkinson and D. Campos, “Improving bci-based emotion
recognition by combining eeg feature selection and kernel clas-
sifiers,” Expert Systems with Applications, vol. 47, pp. 35–41,
2015.

[35] H. Xu, W. Song, Z. Hu, C. Cheng, and J. Zhang, “A speedup
SVM decision method for online EEG processing in motor
imagery BCI,” 10th International Conference on Intelligent Sys-
tems Design and Applications, ISDA, 2010, Cairo, Egypt, 2010,
2010.

[36] P. Welch, “The use of fast Fourier transform for the estimation
of power spectra: a method based on time averaging over
short, modified periodograms,” IEEE Transactions on Audio
and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967.

11Computational and Mathematical Methods in Medicine


	Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
	1. Introduction
	2. Materials and Methods
	2.1. Experiment and Data Processing
	2.1.1. Experiment
	2.1.2. Preprocessing

	2.2. Method
	2.2.1. The Total Scheme of the Algorithm
	2.2.2. Data Transfer Standard on Division and Selection
	2.2.3. Original Spatial Pattern Construction Based on CSP
	2.2.4. Pattern Transfer Based on Fisher Ratio
	2.2.5. SVM for Classification


	3. Results and Discussion
	3.1. PSD Analysis for the Dataset
	3.2. Spatial Patterns Illustration
	3.3. Classification Results on the Testing Set
	3.4. Classification Results on Different Task

	4. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

