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In the field of brain-computer interfaces, it is very common to use EEG signals for disease diagnosis. In this study, a style regularized
least squares support vector machine based onmultikernel learning is proposed and applied to the recognition of epilepsy abnormal
signals. The algorithm uses the style conversion matrix to represent the style information contained in the sample, regularizes it in
the objective function, optimizes the objective function through the commonly used alternative optimization method, and
simultaneously updates the style conversion matrix and classifier during the iteration process parameter. In order to use the
learned style information in the prediction process, two new rules are added to the traditional prediction method, and the style
conversion matrix is used to standardize the sample style before classification.

1. Introduction

Due to the proposal of support vector machine (SVM) [1] and
the development of related theories, the kernel method has
become an effective method to deal with nonlinear fractional
data. Since the performance of the classification algorithm
depends largely on the representation of data, the kernel
method uses relatively simple functional operations to map
samples to higher dimensions, avoiding the design of feature
space and complex inner product calculation in feature space.
For example, in [2], a fast kernel ridge regression was proposed
by using the kernelmethod. In the last decades, the kernelmethod
has been applied in many fields of machine learning [3–5].

However, some data sets contain samples with uneven
distribution, heterogeneous features, or irregular data; the
single-kernel method using only a single feature space per-
forms poorly. And since different kernel functions have their
characteristics, even in the same application, the effect of
using different kernel functions may be very different, which
makes the selection of kernel functions and their parameters
have an important influence on the performance of the
algorithm. Since one kernel function often cannot meet the
requirements in some practical application scenarios, multi-

kernel learning that combines multiple kernel functions has
been attracting more attention [6].

The combination generated by multikernel learning
can be the combination of the same kernel function under
different parameters or the combination of many different
kernel functions [7]. After years of research, compared
with single kernel function, multikernel learning has stronger
flexibility, higher interpretability, and better performance in
data dimension reduction [8], text classification [9], domain
adaptation [10], and other fields.

Although the multikernel learning algorithm fully com-
bines the mapping ability of different kernel functions for
data, essentially, it only uses the physical characteristics of
samples that include similarity and distance and fails to take
into account the implicit information in the stylized data set
in the real situation. In practical application, in addition to
the representative content information, the data set often
contains a variety of style information, and samples with
the same style often exist in the form of groups. For example,
there are two ways of dividing the letters shown in
Figure 1(a), i.e., by the content shown in Figure 1(b) and by
the font shown in Figure 1(c), where each font is regarded
as a style, and such data is regarded as stylized data.
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Tomine the style information of data, scholars have done
many types of research. The second-order statistical model
proposed in the literature [11] is applied to the problem of
number recognition, but it only has a good effect on the data
subject to the Gaussian distribution, which leads to a great
limitation in the application scenario of the algorithm. The
bilinear discriminant model proposed in the literature [12]
has achieved good results in behavior recognition data, but
the computational cost of the algorithm is relatively high.
The domain Bayesian algorithm proposed in the literature
[13] improves the naive Bayesian algorithm to identify the
style information in the sample group, but it needs to specify
a clear data distribution type for the algorithm in advance.
However, the distribution of data in real situations is often
complex and difficult to be determined in advance. The
algorithm proposed in the literature [14, 15] uses a single
mapping to mine the style information of samples and
achieves excellent results in regression and classification
problems, but it makes limited use of the physical character-
istics of samples. The time-series style model of mining
sample historical information proposed in the literature
[16] and the bilayer clustering model of user’s age and gender
information proposed in the literature [17] effectively make
use of the style information in the data in the unsupervised
problem, but the algorithm is only targeted at specific fields,
and the use of style information is limited.

Inspired by the above scholars, we propose style regular-
ization least squares support vector machine based on multi-
ple kernel learning (SR-MKL-SVM) to excavate and utilize
the physical similarities between sample points and the
implied style information in samples. In addition to using
the physical characteristics of each basic kernel function for
data mapping to express the similarity between samples, the
algorithm uses the style transformation matrix to represent
and mine the style information contained in the data set
and takes it into the objective function. In the training pro-
cess, the alternate optimization strategy is used to update
the style transformation matrix in addition to the classifier
parameters, and the mined style information is used to syn-
chronously update the kernel matrix. To use the sample style
information obtained by training in the process of predic-
tion, two new prediction rules are added on top of the
prediction method of traditional multikernel least squares
support vector machine. Because the style information con-
tained in the sample is used effectively in the training and
prediction process, the experiments of most of the stylized
data sets show that SR-MKL-SVM is relatively recent and
the classical multikernel support vector machine algorithm
is effective.

2. Related Works

2.1. Multikernel Learning. Let x and z be two sample vec-
tors; Φ is a mapping function from the input space to
the feature space. If there is a function kð⋅ , ⋅Þ, which can
be defined as

k x, zð Þ = <Φ xð Þ,Φ zð Þ > =ΦT xð ÞΦ zð Þ, ð1Þ

then we call kð⋅ , ⋅Þ the kernel function. Multikernel learn-
ing expects to achieve better mapping performance by
combining different kernel functions. There are many
ways to combine [6] kernel functions. In this study, we
use the following way to find a final combined kernel
function based on M basic kernel functions kið⋅ , ⋅Þ. If we
use μi to represent the kernel function coefficient, then
the final combined kernel function is formulated as

k x, zð Þ = 〠
M

i=1
μiki x, zð Þ, ð2Þ

where

〠
M

i=1
μi, μi > 0, i = 1, 2,⋯M: ð3Þ

According to Mercer’s theory, the combined kernel
function generated by the above method still meets the
Mercer condition.

2.2. Least Squares Support Vector Machine Based on
Multikernel Learning. Let D = fðx1, y1Þ, ðx2, y2Þ⋯ , ðxn, ynÞg
be the training sample set; x j ∈ Rd and yi ∈ f+1,−1g are the
label corresponding to x j. The objective function of the
least squares support vector machine (LSSVM) proposed
by Suykens [18] can be formulated as

min
w,b,e

1
2w

Tw + λ

2〠
n

j=1
e2j

s:t: yj = wTΦ x j
� �

+ b + ej, j = 1, 2,⋯, n,
ð4Þ

where Φðx jÞ represents the mapped x j in a high dimen-
sion, w and b are the classification hyperplane parameters,
ejðj = 1, 2,⋯nÞ is the error term, and λ is the regulariza-
tion parameter.

The Lagrange multiplier α is introduced into Equation
(4), and its dual form can be further obtained by the Slater
constraint specification:

max
a

−
1
2 α

TKα −
1
2λ α

Tα + αTY

s:t: αTIn = 0,
ð5Þ

(a) (b) (c)

Figure 1: Example of stylistic data: (a) data set; (b) different
contents; (c) different styles.
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whereK ∈ Rn×n is the kernel matrix. With (11), we can obtain
the following two equations,

α = ~K−1 Y − blnð Þ,

b = InT ~K
−1Y InT ~K

−1In
� �−1

,
ð6Þ

where ~K =K + I/λ and Y = ðy1, y2,⋯, ynÞT .
By integrating K into (2) and (3), we can obtain multiple

kernel least squares support vector machine (MK-LSSVM) as

min
μ

max
α

−
1
2〠

M

i=1
μiαTKiα −

1
2λ α

Tα + αTY

s:t: 〠
M

i=1
μi = 1, 0 ≤ μi, αT l = 0:

ð7Þ

Let f ðμ, αÞ =max
α

− ð1/2Þ∑M
i=1αTKiα − ð1/2λÞαTα + αTY,

and replace f ðμ, αÞ with t; we have

min
μ

t

s:t: f μ, αð Þ ≤ t,
μln = 1, 0 ≤ μ, αT l = 0:

ð8Þ

It is obvious that (8) is a semi-infinite linear program
(SILP) problem, which can be solved by many existing
mature optimization toolkits. For an unseen sample x, MK-
LSSVM predicts it by using the following equation:

y = sign wTΦ xð Þ + b
� �

= sign 〠
n

j=1
αj 〠

M

i=1
μiki xj, x
� �

+ b

 !

= sign 〠
M

i=1
μj 〠

n

j=1
αiki xj, x
� �

+ b

 !
=

sign 〠
M

i=1
〠
n

j=1
μjwi

TΦi xð Þ + b

 !
:

ð9Þ

2.3. MK-LSSVM Algorithm Process. The algorithm steps of
MK-LSSVM is shown in Algorithm 1.

3. SR-MKL-SVM

3.1. Objective Function. Let D = fðx11, y11Þ,⋯, ðxt1, yt11 Þ,⋯,
ðx1N , y1NÞ,⋯, ðxtNN , ytNN Þg be a training set, where the set can
be divided into N groups according to the style. The samples
in each group have the same style, and the superscript t j is the

number of samples in group j. xkj ∈ Rdðj = 1, 2,⋯,N , k = 1,
2,⋯, t jÞ is the kth sample in group j. Under the above defini-
tion, the objective function of SR-MKL-SVM can be formu-
lated as

min
wi ,b,μi ,Aj

JSR−MKL−SVM = 1
2〠

M

i=1
μiwi

Twi +
λ

2〠
N

j=1
〠
t j

k=1
ej
k

� �2
+ λγ〠

N

j=1
AT

j − l
��� ���2

F

s:t: ykj = 〠
M

i=1
μiwT

i AT
j Φi xkj
� �

+ b + ekj ,

〠
M

i=1
μi = 1, μi ≥ 0, i = 1, 2,⋯,M, j = 1, 2,⋯,N , k = 1, 2,⋯, t j,

ð10Þ

where μiði = 1, 2,⋯,MÞ is the weight coefficient of the kernel
matrix, whereM is the number of predefined kernel matrices,
fAj ∈ Rd×dg is the style conversion matrix of the sample of

style j, and I ∈ Rd×d is the identity matrix.
The first two subformulas in JSR−MKL−SVM are standard

MK-LSSVM expressions, and the third subformula is a pen-
alty term using the Frobenius norm, which is used to control
the degree of style conversion of the style conversion matrix
to the sample, where the parameter γ ∈ Rðγ > 0Þ is used.
Obviously, when γ is larger, the deviation of the sample
AT

j Φðxkj Þ is smaller after style conversion from its original
style; otherwise, it is larger; especially when γ→ +∞ is set,
there is AT

j Φðxkj Þ→Φðxkj Þ.
3.2. Optimization. The goal of the algorithm is to minimize
the value of JSR−MKL−SVM. It is very difficult to directly

MK-LSSVM.
Input: Dataset D, threshold σ, parameter λ
Output: fμ,w, bg
1. Set μi = 1/Mði = 1, 2,⋯,MÞ
2. Set iter = 1
3. Repeat
4. Use (2) to combine kernel function and (6) to compute fa, bg
5. Fix α, update μ by equation (8)
6. Untilðj1 − f iterðμ, αÞ/f iterðμ, αÞj ≤ σÞ
7. Uses fμ, αg to compute w

Algorithm 1.

3Computational and Mathematical Methods in Medicine



optimize the objective function. We can use the alternating
optimization method to obtain a sufficiently available local
optimal solution. When A j and fwi, b, μig are given sepa-
rately, the objective functions are optimization problems
about fwi, b, μig and Aj, and the above two processes are
repeated until convergence or the maximum number of
iterations is exceeded. To be specific,

(1) When fixing Ajðj = 1, 2,⋯,NÞ, the optimization
problem of formula (10) is transformed into

min
wi ,b,μi

1
2〠

M

i=1
μiwi

Twi +
λ

2〠
N

j=1
〠
t j

k=1
ek
� �2

s:t: ykj = 〠
M

i=1
μiwT

i AT
j Φi xkj
� �

+ b + ekj ,

〠
M

i=1
μi = 1, μi ≥ 0, i = 1, 2,⋯,M, j = 1, 2,⋯,N , k = 1, 2,⋯, t j:

ð11Þ

The above formula is about the standard MK-LSSVM
problem of sample AjΦiðxkj Þ after style conversion,
and fμi,wi, bg can be determined by Algorithm 1
in Section 2.2 of the article. At this time, the sample
AjΦiðxkj Þ mapped to the high dimension cannot be
directly calculated, but the synthetic kernel matrix
formed by the style-converted sample AjΦiðxkj Þ can
be updated by the kernel method to obtain the
style-converted kernel matrix. The specific method
of using the kernel method to obtain the style-
converted synthetic kernel matrix will be introduced
in Section 3.3 of the article

(2) When fμi,wi, bg is fixed, then the optimization
problem of Equation (10) is transformed into

min
A j∈Rd×d

λ

2〠
t j

k=1
ej
k

� �2
+ λγ AT

j − I
��� ���2

F

s:t: ykj = 〠
M

i=1
μiwT

i AT
j Φi xkj
� �

+ b + ekj ,

〠
M

i=1
μi = 1, μi ≥ 0, i = 1, 2,⋯,M, j = 1, 2,⋯,N , k = 1, 2,⋯, t j:

ð12Þ

The above formula is a linear constrained quadratic pro-
gramming problem for Aj, which can be transformed into N
independent problems for each Aj to be solved. At this time,
the parameters of the synthetic kernel matrix and the classi-
fier have been fixed, similar to the original LSSVM, and the
dual form can be obtained after introducing the Lagrange

multiplier to Equation (12):

max L =
αkj

λ

2〠
t j

k=1
ej
k

� �2
+ λγ AT

j − I
��� ���2

F

− 〠
t j

k=1
αkj 〠

M

i=1
μiwT

i AT
j Φi xkj
� �

+ b + ekj − ykj

 !

− 〠
M

i=1
βi 1 − 〠

M

i=1
μi

 !
− ρiμi

" #
:

ð13Þ

Let ∂L/∂Aj = 0; we have

AT
j =

1
2λγ〠

t j

k=1
〠
M

i=1
αkjμiwiΦT

i xkj
� �

+ I: ð14Þ

Let ∂L/∂ekj = 0 get αkj = λekj . It can be seen that this for-
mula has the same KKT [18] condition as LSSVM.

Through the process of alternating optimization, it can be
known that in the process of training classifier parameters,
the samples converted by the style conversion matrix are
used as training data. In the first iteration, the style conver-
sion matrix is initialized to the identity matrix. At this time,
the samples after the style conversion are the same as the
original samples, and no style conversion is generated.
Therefore, the classifier parameters obtained by the first
round of SR-MKL-SVM training are the same as the original
MK-LSSVM. In the subsequent iteration process, due to the
optimization of the style conversion matrix, the samples in
each style group undergo the transformation of the style con-
version matrix and gradually approach the standard style.
The classifier parameters trained at this time fully consider
the style information contained in the sample as a whole.
At the same time, the process of solving the style conversion
matrix from Equation (14) not only uses the physical charac-
teristics of the samples obtained by training but also effec-
tively uses the style information in the data. The style
conversion matrix trained at this time contains each style
group style information. According to the above analysis,
the processes of training the classifier parameters and the
style conversion matrix make full use of the style information
contained in the sample, and the two processes promote each
other.

3.3. Style Transformation. Since the dimension after the sam-
ple is mapped to the high-dimensional space may be infinite,
the sample AjΦðxkj Þ value after the style transformation can-
not be obtained directly. At this point, each element in the
synthetic kernel matrix can be updated with the help of the
kernel method to obtain the synthetic kernel matrix after
the style transformation.

Because the synthesis kernel function still has to satisfy
the allowed kernel of the theorem, as kðxk1j1 , xk2j2 Þ = <Φðxk1j1 Þ,
Φðxk2j2 Þ > =∑M

i=1μikiðxk1j1 , xk2j2 Þ, let ϕ be for the synthesis of
the combined map of the core matrix; by formula (9),
you can make the synthesis of the core matrix kðxk1j1 , xk2j2 Þ =
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<Φðxk1j1 Þ,Φðxk2j2 Þ > =∑M
i=1μi <Φiðxk1j1 Þ,Φiðxk2j2 Þ > ; let bΦðxkj Þ

=AT
j Φðxkj Þ; you can get after the style conversion of the core

matrix elements as

k̂ xk1j1 , xk2j2
� �

=Φ∧T xk1j1
� � bΦ xk2j2

� �
= < bΦ xk1j1

� �
, bΦ xk2j2
� �

>

=ΦT xk1j1
� �

Aj1AT
j2Φ xk2j2
� �

,

ð15Þ

where k∧ðxk1j1 , xk2j2 Þ is the core matrix element after style trans-

formation and w =∑N
j=1∑

t j
k=1αkjΦðxkj Þ; formula (15) can be

updated to

k̂ xk1j1 , xk2j2
� �

=ΦT xk1j1
� �

Aj1AT
j2Φ xk2j2
� �

=ΦT xk1j1
� �

⋅
1

2λγ 〠
N

m1=1
〠
tm1

n1=1
αk1j1αn1m1Φ xk1j1

� �
ΦT xn1m1
� �

+ I
" #

⋅
1

2λγ 〠
N

m2=1
〠
tm2

n2=1
αn2m2αk2j2Φ xn2m2

� �
ΦT xk2j2
� �

+ I
" #
⋅Φ xk2j2
� �

= 1
4λ2γ2

⋅ 〠
N

m1=1
〠
N

m2=1
〠
tm1

n1=1
〠
tm2

n2=1
αn1m1αn2m2αk1j1αk2j2

"
⋅ Φ xk1j1

� �
, xk1j1
� �D E

⋅ Φ xk2j2
� �

,Φ xk2j2
� �D E

⋅ Φ xn1m1
� �

,Φ xn2m2
� �� �#

+ 1
2λγ 〠

N

m1=1
〠
tm1

n1=1
αk1j1αn1m1

⋅ Φ xk1j1
� �

,Φ xk1j1
� �D E

⋅ Φ xn1m1
� �

,Φ xk2j2
� �D E

+ 1
2λγ 〠

N

m2=1
〠
tm2

n2=1
αk2j2αn2m2 ⋅ <Φ xk1j1

� �
,Φ xn2m2
� �

>

⋅ <Φ xk2j2
� �

,Φ xk2j2
� �

> + <Φ xk1j1
� �

,Φ xk2j2
� �

> :

ð16Þ

Because of kðxk1j1 , xk2j2 Þ = <Φðxk1j1 Þ,Φðxk2j2 Þ > formula (16)
can be updated to:

k̂ xk1j1 , xk2j2
� �

= 1
4λ2γ2

⋅ 〠
N

m1=1
〠
N

m2=1
〠
tm1

n1=1
〠
tm2

n2=1
αn1m1α

n2
m2α

k1
j1α

k2
j2

" #
⋅ k xk1j1 , xk1j1
� �

⋅ k xk2j2 , xk2j2
� �

⋅ k xn1m1, xn2m2
� �

+ 1
2λγ 〠

N

m1=1
〠
tm1

n1=1
αk1j1α

n1
m1 ⋅ k xk1j1 , xk1j1

� �
⋅ k xn1m1, xk2j2
� �

+ 1
2λγ 〠

N

m2=1
〠
tm2

n2=1
αk2j2α

n2
m2

⋅ k xk1j1 , xn2m2

� �
⋅ k xk2j2 , xk2j2
� �

+ k xk1j1 , xk2j2
� �

ð17Þ

3.4. Algorithm. The training algorithm of SR-MKL-SVM is
listed as follows.

SR-MKL-SVM uses alternate optimization method to
solve the problem, which can be divided into two steps. The
first step is kernel matrix weight coefficient and classifier
parameter optimized steps can be divided into two subpro-
cesses, respectively, i.e., solving the kernel weight SILP prob-
lems and solving the linear programming problem of the
classifier parameters for the synthesis of kernel matrix at
the same time, the time complexity OðM2n2Þ and OðnÞ,
respectively. Due to M ≥ 1, the total time complexity can be
treated as OðM2n2Þ. The second step is to optimize the
style-standardization matrix, and the time complexity of this
step is OðN2n2Þ. Therefore, the total time complexity of the
algorithm training process is Oðiter · ðM2n3 +N2n2ÞÞ, where
M is the number of predefined basic kernel matrices, N is the
total number of samples, n is the number of styles in the data
set, and iter is the number of iterations of the algorithm.

Compared with typical MKL-SVM, the MK-SRLSSVM
algorithm is in the process of training in style transformation
matrix to the regularization processing style samples, but the
multikernel support vector machine (SVM) algorithm in
solving the basic kernel function in the process of the weight
coefficient is applied to solve the need to invoke the original
SVM algorithm in this paper; using the original LSSVM
subspaces, the SVM training process is essential in solving
quadratic programming problem and the nature of the
training process of LSSVM for solving linear programming
problems. Therefore, the computational complexity of SR-
MKL-SVM in this step is far less than that of the typical
MKL-SVM algorithm. The algorithm presented in this paper
optimizes the weight coefficient by solving SILP problems,
which is superior to the support vector machine algorithm
that optimizes the weight coefficient by solving SDP prob-
lems or QCQP problems and is comparable to the multiker-
nel support vector machine algorithm that uses SILP and
other problems to solve the weight coefficient. Therefore,
SR-MKL-SVM has the same complexity as typical support
vector machine algorithms.

3.5. Prediction Rules. Two new prediction rules were defined
based on MK-LSSVM in order to use the weight, classifier
parameter fμi,w, bg and the style transformation matrix

SR-MKL-SVM.
Input: Dataset D, parameters λ and γ
Output: Weight μi, classifier parameter fw, bg, style trans-
formation matrix fAjg
1. Set μi = 1/Mði = 1, 2,⋯,MÞ
2. Set iter = 1, Aj = Iðj = 1, 2,⋯,NÞ
3. Repeat
4. Calculate the value of the objective function Viter
5. Update μi and fw, bg by (11)
6. Update Aj by (14) and the synthetic kernel matrix
by (11)
6. Until (Iteration count reaches its maximum)

Algorithm 2.
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Ajðj = 1, 2,⋯,NÞ. Since the style of the sample may or
may not appear in the training process in the practical
application, two new prediction rules Rule 2 and Rule 3
are added into the traditional prediction method to deal
with the two cases, respectively.

Let X0 = fx10, x20,⋯, xt00 g be a subset of the entire testing
data set in which each element has the same style, and xt00 ∈
Rdðk = 1, 2,⋯t0Þ is a sample.

Rule 1. Traditional prediction method.

Traditional prediction methods only use weight μi and
classifier parameters w and b to predict the sample xk0 in
the testing data set and obtain the corresponding label yk0:

yk0 = sign wTΦ xk0
� �

+ b
h i

= sign 〠
N

j=1
〠
Lj

k=1
αkj 〠

M

i=1
μiki xkj , xk0
� �

+ b

24 35: ð18Þ

Rule 2. Test sample style is known.

If the style of the test sample already exists in the training
data set, the corresponding style transformation matrix
acquired during the training process can be directly used to
process the style transformation of the sample, so that the
sample is close to the standard style. Then, the predicted label
yk0 was obtained by using traditional prediction rules for the
processed sample AT

0Φðxk0Þ.

y0
k = sign wTA0

TΦ x0
k

� �
+ b

h i
= sign 〠

N

j=1
〠
t j

k=1
αkj 〠

M

i=1
μik̂i xkj , xk0
� �

+ b

" #
:

ð19Þ

k̂iðxkj , xk0Þ can be obtained from Section 3.3.

Rule 3. Test sample style is unknown.

If the sample group X0’s style does not exist in the train-
ing data set, to effectively make use of the style information
obtained by training; based on the direct extrapolation idea,
we consider the same style of the information contained in
the sample group as a new style. The detailed steps are as
follows:

Step 1. Obtain the temporary label Y temp = fy10, y20,⋯, yt00 g of
testing data set X0 by using Rule 1.

Step 2. Train X0 and its temporary label Y temp with the train-
ing data set to obtain the new weight bμ i, classifier parameter
fŵ, b̂g, and style transformation matrix AT

0 .

Step 3. Use fbμ i, ŵ, b̂,AT
0 g to predict test set X0 and get the

formal prediction labelY0 = fy10, y20,⋯, yt00 g.

Since that most of the data in real scenes contain implicit
or obvious style characteristics, the new prediction method
added in SR-MKL-SVM takes into account the situation of
known style and unknown style. The style information corre-
sponding to the predicted samples is directly used to predict
the samples with known styles. The direct extrapolation
method is used to predict the unknown style samples, and
the trained style information is used effectively, so the
algorithm has good universality.

3.6. Analysis of SR-MKL-SVM. Different from SVM, which
only searches for the optimal classification hyperplane
according to the physical distribution of the original data,
SR-MKL-SVM not only considers the physical characteristics
contained in the data but also mines the style characteristics
of the data. In this paper, the whole training samples are used
to optimize the classifier parameters and the data sets with

Table 1: Description of epileptic EEG data set.

Group Type

A
Healthy

B

C

PatientD

E

0 500 1000 1500 2000 2500 3000 3500 4000
–200

0
200

0 500 1000 1500 2000 2500 3000 3500 4000
–500

0
500

0 500 1000 1500 2000 2500 3000 3500 4000
–500

0
500

0 500 1000 1500 2000 2500 3000 3500 4000
–200

0
200

0 500 1000 1500 2000 2500 3000 3500 4000
–2000

0
2000

Figure 2: EEG data visualization.

Table 2: Detail of experimental data sets.

Num Training data Testing data

DS.1 Each 50% z (A, B, E) Other 50% (A, B, E)

DS.2 Each 50% (B, D, E) Other 50% (B, D, E)

DS.3 Each 50% (A, C ,E) Other 50% (A, C, E)

DS.4 Each 50% (A, C, E) Other 50% (A, C, E)
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different styles are processed, respectively. With the advan-
tage of multikernel learning for data mapping, the algorithm
in this paper can represent and process the data containing
more complex styles and make full use of the trained style
information to conduct style regularization processing on
the original samples in both training and testing methods,
so that the data distribution after style transformation can
be more easily divided. Compared with traditional SVM
and SR-MKL-SVM, we find that SR-MKL-SVM can make
full use of the information contained in the stylized data to
improve the classification performance.

4. Experimental Results

4.1. Data. In this section, we introduce the EEG data pro-
vided by Bonn University to evaluate our proposed method.
The EEG data set consists of 5 groups of samples from 2
groups, with detailed information as shown in Table 1, and
randomly selected samples from each group as shown in
Figure 2. As can be seen from Figure 2, the fluctuation of
samples from different groups is very different. For example,
the signal fluctuation of patients in group A and healthy peo-
ple in group E is significantly different. The signal fluctuation
of patients in group C and group E also differed greatly under
different conditions.

Studies [19] showed that feature extraction of original
EEG data in advance could effectively improve classification
performance. In this paper, kernel principal component anal-
ysis (KPCA) [5, 20] was used to extract features from original
data. In this section, the data after dimension reduction is
used for experiments. As can be seen above, the number of
samples in the data set is 500, the number of categories is 2,
and the sample dimension is 70. Samples from the same
group are considered to have the same style.

In order to verify the validity of this algorithm, different
groups of data are selected to form two types of data sets.
The first type of data is all styles contained in the test set exist
in the training set at the same time. The second type of data is

the test set has a style not found in the training set, and the
details of the construction data set are shown in Table 2.

4.1.1. Epileptic EEG Data Set.Data sets DS.1 and DS.2 are the
first type of data; DS.3 and DS.4 are the second type of data.
All data were random, and 10 experiments were conducted
under the same set of parameters, averaging the results.
Rule 2 and Rule 3 are used to predict the two types of data.
The experimental results and parameters of all algorithms
[21–32] are shown in Table 3.

From the experimental results in Table 3, it can be
concluded that the decision tree algorithm in data set DS.1
has the best wave signal recognition effect, and the NLMKL
algorithm in data set DS.2 has the best classification accuracy,
leading all other algorithms including this algorithm. The
results of this algorithm in the first two data sets are not as
good as DT and NLMKL, but the difference is small.

From the above results, we can see the effectiveness and
stability of the proposed algorithm in improving the accuracy
of EEG signal recognition by mining and utilizing different
fluctuation features contained in each group of samples.

5. Conclusion

In order to use the style information contained in the sample,
this paper proposes a style regularization least squares sup-
port vector machine (SR-MKL-SVM) based on multicore
learning. In addition to the advantage of multicore learning
for the expression of physical similarity between samples,
the algorithm also mines and uses the style information con-
tained in the samples to improve the classification accuracy
of the algorithm. SR-MKL-SVM takes the style information
contained in the sample into the objective function, uses
the style conversion matrix to standardize the sample, uses
the regularization method to limit the degree of style conver-
sion, and optimizes both the classifier parameters and the
style standard during the training process conversion matrix.
In addition to the traditional prediction methods, new

Table 3: Experimental results of epileptic EEG.

Algorithm
Precision

DS.1 DS.2 DS.3 DS.4

simpleMKL 0.9273 C = e4
� �

0.7920 C = e1
� �

0.8133 C = e5
� �

0.8013 C = e1
� �

easyMKL 0.9520 λe = 0:1ð Þ 0.8333 λe = 0:8ð Þ 0.5333 λe = 0:6ð Þ 0.7767 λe = 0:3ð Þ
GMKL 0.9260 C = e0

� �
0.7867 C = e5

� �
0.7507 C = e−1

� �
0.7973 C = e2

� �
LMKL 0.9600 C = e0

� �
0.8120 C = e3

� �
0.8200 C = e3

� �
0.8133 C = e−1

� �
NLMKL 0.9507 C = e1

� �
0.9493 C = e5

� �
0.8293 C = e1

� �
0.8480 C = e3

� �
RBMKL 0.9413 C = e0

� �
0.8440 C = e4

� �
0.7787 C = e−1

� �
0.8067 C = e−1

� �
GLMKL 0.9413 C = e1

� �
0.8333 C = e3

� �
0.7627 C = e0

� �
0.8227 C = e−1

� �
CABMKL 0.9373 C = e2

� �
0.8453 C = e2

� �
0.7560 C = e0

� �
0.8027 C = e1

� �
NB 0.9520 0.8947 0.8067 0.7087

DT 0.9747 0.8467 0.7533 0.8120

SR-MKL-SVM 0.9503 λ = e−1, γ = e−3
� �

0.9353 λ = e3, γ = e−5a
� �

0.9153 λ = e−1, γ = e−2
� �

0.9120 λ = e1, γ = e−1
� �
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prediction rules that can use the trained style information are
added. Experiments in stylized data sets show the effective-
ness and certain practicality of the algorithm.

Data Availability

The original EEG data are available and can be downloaded
from http://www.meb.unibonn.de/epileptologie/science/physik/
eegdata.html.
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