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In this paper, we explore the potential of using the multivoxel proton magnetic resonance spectroscopy (1H-MRS) to diagnose
neuropsychiatric systemic lupus erythematosus (NPSLE) with the assistance of a support vector machine broad learning system
(BL-SVM). We retrospectively analysed 23 confirmed patients and 16 healthy controls, who underwent a 3.0 T magnetic
resonance imaging (MRI) sequence with multivoxel 1H-MRS in our hospitals. One hundred and seventeen metabolic features
were extracted from the multivoxel 1H-MRS image. Thirty-three metabolic features selected by the Mann-Whitney U test were
considered to have a statistically significant difference (p < 0:05). However, the best accuracy achieved by conventional statistical
methods using these 33 metabolic features was only 77%. We turned to develop a support vector machine broad learning system
(BL-SVM) to quantitatively analyse the metabolic features from 1H-MRS. Although not all the individual features manifested
statistics significantly, the BL-SVM could still learn to distinguish the NPSLE from the healthy controls. The area under the
receiver operating characteristic curve (AUC), the sensitivity, and the specificity of our BL-SVM in predicting NPSLE were 95%,
95.8%, and 93%, respectively, by 3-fold cross-validation. We consequently conclude that the proposed system effectively and
efficiently working on limited and noisy samples may brighten a noinvasive in vivo instrument for early diagnosis of NPSLE.

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease involving multiple organs or systems, such as the central
nervous system (CNS), peripheral nervous system (PNS),
skin, joints, and kidneys [1]. Up to 75% of SLE patients suffer
from CNS and PNS disorder [2]. The neuropsychiatric sys-
temic lupus erythematosus (NPSLE) is closely related to a
worse prognosis and a serious mortality [3–5]. In 1999, a
classification criterion for NPSLE has been developed by
the American College of Rheumatology (ACR), which
included case definitions for 19 neuropsychiatric syndromes,
significant exclusions, and recommendation of ascertain-

ment [6]. It is still a tough task to ascribe a specific symptom
or sign to NPSLE.

Magnetic resonance imaging (MRI) is widely considered
a promising noninvasive tool for SLE diagnosis [7]. Conven-
tional MRI sequences, including T1-weighted, T2-weighted,
T2 fluid-attenuated inversion recovery (T2-FLAIR) images,
and diffusion-weighted imaging (DWI) can sensitively reveal
abnormal changes caused by axonal damage, cortical dam-
age, cerebral atrophy, cerebral infarctions, inflammatory-
like lesions, and small vessel disease [8–10]. However, there
were about 50% of NPSLE patients that had normal intensi-
ties in the structural MRI [11], displaying the limitation of
conventional MRI.
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Proton magnetic resonance spectroscopy (1H-MRS) is
accessible to the levels of tissue metabolites including N-
acetylaspartate (NAA), creatine (Cr), choline (Cho), gluta-
mate (Glu), Glu-glutamine (Gln), myo-inositol (mI), and lac-
tate (Lac) [12–14].

N-Acetylaspartate (NAA) is a special character of neural
cells, and a decreased peak of NAA inMRS spectra represents
the reduction of neurons [15–17]. Choline (Cho) plays an
important role in generating the phospholipid of the cell
membrane. An elevated Cho peak shows the increased cell
membrane synthesis, which reflects that the cell structure is
in a mess [16]. Glutamate (Glu) and Glu-glutamine (Gln)
are related to glutamatergic neurotransmitters, and increased
Glu and Gln represent a high risk in psychosis [17]. Myo-
inositol (mI) is involved in glial metabolism, and increased
mI reflects glial involvement [18]. Moreover, 1H-MRS
enables quantifying metabolic concentration noninvasively
in vivo [19]. Thus, it has been widely explored in pioneering
researches of noninvasively diagnosing NPSLE [9, 20, 21]. In
previous studies, a reduction in NAA was observed, whereas
total Cho (tCho) and mI are raised, in normal appearing
brain tissue of NPSLE patients [20], which demonstrated that
neural biomarkers were able to predict the early involvement
of the central nervous system in SLE. However, Zimny et al.
found that the levels of mI and Cho were almost normal in
their patients with SLE or NPSLE [22].

Therefore, these changes detected by single-voxel MRS in
the above studies may not be specific enough, since there is
limitation of one voxel which is not included in all the
regions that may have pathological changes. In this regard,
the conventional statistical methods easily fail to distinguish
NPSLE due to the individual difference of metabolic features
among limited samples. The accuracy of diagnosing NPSLE
by 1H-MRS required further improvement by emerging
machine learning techniques.

Deep neural networks have been successfully applied in a
great number of applications [23], including medical image
processing [24–26]. However, there are some unavoidable
systematic errors, such as relaxation and partial-volume
effects, which resulted in missing metabolic values. Conse-
quently, a sufficient and consistent training set can hardly
be constructed, which makes a great challenge to apply deep
techniques to this task, since the samples are too small to
train a deep structure with a great number of parameters.
Moreover, the metabolic features mingling with missing
values and noise also burden the classifier to make a correct
judgement.

To develop a robust and effective model to quantitatively
analyse the metabolic features or the nonlinear combination
of metabolic features of the NPSLE patients, we rethink the
potential of a support vector machine (SVM), which has been
regarded as a succinct model to separate complicated data in
limited samples and able to optimize convexly [27]. We also
draw the idea of the broad learning system [28] to construct a
shallow but effective learning system to extract discriminable
features by shallow structures in a layer-wise mechanism.
The proposed support vector machine broad learning system
(BL-SVM) was applied to a retrospective analysis of the met-
abolic features screened by 1H-MRS quantitatively. Although

the samples in the training set were limited, the SVMs
embedded in the BL-SVM can still learn from the metabolic
features layer-wise optimally. The diversity of each SVM is
increased by resampling the training using the bootstrap
method to enhance the robustness of the learning system.
The results have confirmed that the metabolic features
screened by multivoxel magnetic resonance spectroscopy
can be used to quantitatively distinguish NPSLE patients
from the healthy controls. Our findings may brighten an
automatic and noninvasive computer-aided diagnostic
instrument for NPSLE at an early stage.

2. Materials and Methods

2.1. Patients and Controls. This retrospective study has been
approved by the Research Ethics Committee of the 2nd Affil-
iated Hospital, Shantou University Medical College.
Informed consent was obtained from all subjects previously.
The identifiers of the subjects were removed before analysis.
The 1H-MRS data from 23 NPSLE patients and 16 age-
matched healthy controls (HCs) were obtained at the Depart-
ment of Rheumatology and Immunology of Shantou Central
Hospital and the Department of Endocrinology and the
Medical Examination Center of the 2nd Affiliated Hospital,
Medical College of Shantou University, during April 2014
to March 2015. The inclusion criteria were as follows: (1)
The group of NPSLE patients was diagnosed according to
the revised 1997 American College of Rheumatology (ACR)
criteria and the 1999 ACR definitions for NPSLE. All clinical
manifestations were obtained at the baseline visit by a careful
medical record review. In this group, patients had at least one
neuropsychiatric complaints. (2) HCs did not have any neu-
rologic, psychiatric, or systemic diseases, which would influ-
ence the results of multivoxel 1H-MRS, and none of them
uses any psychoactive medication. (3) All the subjects under-
went both conventional MRI examination and multivoxel
1H-MRS examination in our hospitals. (4) The clinical char-
acteristics of all patients were available.

2.2. Magnetic Resonance Imaging. All subjects underwent
MR imaging using a 3.0 T system (SIGNA, General Electric
Medical Systems) with an eight-channel standard head coil.
The repetition time (TR) of T2-weighted imaging was
4420ms. The echo time (TE) was 112.1ms. The slice thick-
ness was 5mm with a 1mm gap. The matrix size was 512 ×
512. The field of view (FOV) was 160 × 160 mm 2. The
parameters of T2-weighted imaging are listed in Table 1.

The multivoxel 1H-MRS was based on a point-resolved
spectroscopy sequence (PRESS) with a two-dimensional
multivoxel technique. The TR of the multivoxel 1H-MRS
was 1500ms. The TE was 35ms. The number of excitations
(NEX) was 1. The phase × frequency = 18 × 18, and the
volumes of interest ðVOIsÞ = 10 × 8 × 2 cm3. The VOIs of
1H-MRS were placed on the T2-weighted images including
the entire basal ganglion level. The parameters of multivoxel
1H-MRS are listed in Table 2.

2.3. Imaging Processing. The acquired spectroscopy data were
firstly preprocessed by a SAGE software package (GE
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Healthcare) to correct the phase and frequency. Then, com-
mercially available automatic LCModel software (LCModel
Inc., Canada, version 6.2-2B) was used to fit the spectra, cor-
rect the baseline, relaxation, and partial-volume effects, and
quantify the concentration of metabolites. Furthermore, we
used the absolute NAA concentration in single-voxel MRS
as the standard to gain the absolute concentration of metab-
olites. After that, the NAA concentration of the correspond-
ing voxel of multivoxel MRS was collected consistently. The
spectra would be accepted if the signal-to-noise ratio (SNR)
is greater than or equal to 10 and the metabolite concentra-
tion with standard deviations (SD) is less than or equal to
20%. Notice that every individual metabolite has its basis
spectra, even if the metabolites are hardly separated, such
as NAA and N-acetylaspartylglutamate (NAAG). However,
the linear combination of similar spectra of metabolic con-
centrations is more accurate than the individual concentra-
tions. In this regard, we list the linear combination,
together with their %SD values, in the concentration table.
Concentration ratios are not easily affected by water scaling
and less sensitive to relaxation and partial-volume effects.
Thus, we extracted the absolute metabolic concentrations,
the corresponding ratio, and the linear combination of the
spectra from different brain regions, which were RPCG,
LRCG, RDT, RDT, LDT, RLN LLN, RPWM, and LPWM.

2.4. Quantitative Analysis via a SVM-Based Broad Learning
System. The computer-aided analysis not only is user-
friendly, rapid, and low-cost for learning and operation but
also avoids clinical subjective judgment [25]. Building deeper
neural networks has attracted increasing interests from acad-
emies and industries [23]. However, the neural network-
based deep models still suffer from nonconvex optimization,
unfriendly paralleling, and uninterpretable issues [27]. In
particular, when the training samples are limited, the neural

network-based deep models tend to overfit the training set;
e.g., the model remembers what all training samples are
exactly alike but fails to distinguish the samples which they
have never seen. In this regard, the conventional deep neural
networks are not compatible with this task. Thus, we formu-
late this retrospective analysis as a classification problem, so
we develop a support vector machine broad learning system
(BL-SVM) for quantitative analysis to distinguish the NPSLE
patients from control ones. Unlike backpropagate deep
stacked architecture, the BL-SVM organizes support vector
machines (SVMs) in a shallow but broad scheme. The SVMs
in each layer optimally extract the data representation layer-
wise even if the training samples are limited, which ensures
the antisaturation property. Different from a BP-like tuning
scheme developed by Wang et al. [27], our BL-SVM enables
fast learning for each SVM in each layer simultaneously and
without time consumption for backpropagating iteratively.

The features involved in this model were selected by
recursive feature elimination (see [29] for more details).
Then, we construct a training set T = fðxk, ykg, where x ∈
ℝn, y ∈ f−1,+1g, k = 1⋯ K , and K is the total number of
training samples. We denote the ith SVM in the lth layer as
svmðl, iÞ, which can be trained by optimizing

max
ω,b

2
∥ω∥

,

s:t:  yk ωΤxk + b
� �

≥ 1, k = 1,⋯, K:
ð1Þ

For each SVM, the further away from a sample from its
corresponding hyperplane, the more confident the SVM
makes the classification decision. Different from Wang
et al. [27], we design a new confidence function, e.g., equation
(2), for the ith SVM in the lth layer, since tanh ð·Þ is contin-
uously differentiable everywhere.

y l,ið Þ = tanh ω⊤xk + b
� �

: ð2Þ

The input of the SVMs in l + 1th layer is the initial input
concatenating the confidence values of all SVMs in previous
layers.

x l+1ð Þ = x 1,1ð Þ,⋯, x 1,ið Þ, y 1,1ð Þ,⋯, y 1,ið Þ, y 2,1ð Þ,⋯, y 2,ið Þ,⋯, y l,1ð Þ,⋯, y l,ið Þ
n o⊤

ð3Þ

The ith SVM in the l + 1th layer takes xðl+1Þ as input to
calculate the confidence value yðl+1,iÞ. Then, we train the
SVMs layer-wise. In each layer, we resample the training set
for each SVM to increase the diversity of the individual
SVM using the bootstrap method proposed by Zhou et al.
[30].

In this study, the number of layers is set to 5. We use 3-
fold cross-validation, which is a common resampling proce-
dure in machine learning, to evaluate the performance of
our metabolism-based diagnosis model, since it generally
results in a less biased or less optimistic estimate of the model
skill than other methods, such as a simple train/test split,
especially on a dataset with limited samples. Twenty-three

Table 1: The parameters of T2-weighted imaging.

Parameters Value

Repetition time (TR) 4420ms

Echo time (TE) 112.1ms

Slice thickness 5mm

Slice gap 1mm

Matrix size 512 × 512
Field of view (FOV) 160 × 160mm2

Table 2: The parameters of multivoxel 1H-MRS.

Parameters Value

Repetition time (TR) 1500ms

Echo time (TE) 35ms

Number of excitations (NEX) 1

Phase 18

Frequency 18

Volumes of interest (VOIs) 10 × 8 × 2 cm3
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NPSLE patients and sixteen healthy controls were randomly
divided into 3-fold. The cross-validation was conducted 50
times. For each run, 2 out of 3 subjects were selected for
training, and the rest was used for testing, using different ran-
dom seeds. We calculated the accuracy, sensitivity, and spec-
ificity to evaluate the performance of our model.

3. Results

3.1. Demographics. Twenty-three NPSLE patients and sixteen
healthy controls met the inclusion criteria and satisfied the
spectra quality detailed in our previous study [9]. Table 3
summarizes the number of NPSLE patients presenting with
neuropsychiatric manifestations, including myelitis, seizure
disorder, severe headache, stroke, peripheral polyneuropa-
thy, acute confusional state, and anxiety in this study.

There was no significant difference in age between
NPSLE patients and the HC set (p = 0:765). Obviously, SLE
was closely related to gender (p = 0:018), and 79% of the
patients were females in our study. Although there was a sig-
nificant difference between NPSLE and HCs, the perfor-
mance of predicting NPSLE would not be influenced. As we
used 3-fold cross-validation to evaluate the accuracy of our
BL-SVM system, every subject had the chance to be one of
the training set. Results for their demographic characters
are summarized in Table 4.

3.2. Metabolic Features from Multivoxel 1H-MRS. We col-
lected metabolic data from the bilateral posterior cingulate
gyrus (PCG), dorsal thalamus (DT), lentiform nucleus
(LN), and posterior paratrigonal white matter (PWM), as
well as from the right insula (RI) in all subjects. The meta-
bolic features include creatine (Cr), phosphocreatine (PCr),
Cr+PCr, NAA, N-acetylaspartylglutamate (NAAG), NAA
+NAAG, NAA+NAAG/Cr+PCr ratio, myo-inositol (mI),
mI/Cr+PCr, glycerophosphocholine (GPC/Cho)+phospho-
choline (Pch), Cho+Pch/Cr+PCr, glutamate (Glu)+gluta-
mine (Gln), and Glu+Gln/Cr+PCr. All brain regions and
metabolic features were combined into 117 metabolic fea-
tures as shown in Table 5. Thirty-three features were found
with significant difference (p < 0:05) between NPSLE patients
and HCs: PCr and Cho+PCh in the right PCG; NAA
+NAAG, NAA+NAAG/Cr+PCr, and mI in the left PCG;
PCr, Cr+PCr, NAA, NAA+NAAG/Cr+PCr, mI/Cr+PCr,
and Cho+PCh in the right DT; NAAG, NAA+NAAG/Cr
+PCr, mI, mI/Cr+PCr, Cho+PCh, and Glu+Gln in the left
DT; Cr, PCr, mI, Cho+PCh, and Cho+PCh/Cr+PCr in the
right LN; PCr, mI/Cr+PCr, Cho+PCh, and Cho+PCh/Cr
+PCr in the left LN; Cr and NAA in RI; PCr and Cho
+PCh/Cr+PCr in the right PWM; and Cr, NAAG, and mI
in the left PWM. The corresponding AUC values using these
features for quantitative analysis are listed in Table 5. The
AUC values generated by mI/Cr+PCr in LDT and the
mI/Cr+PCr in RDT are 0.77 and 0.76, respectively, which
achieve the best performance for diagnosing NPSLE among
the evaluated features. Obviously, as shown in Figure 1, it is
hard to distinguish the NPSLE patients and the HCs, whether
by structure images or MRS alone.

3.3. Metabolic Features for the BL-SVM System. We
employed a feature selection method, e.g., recursive feature
elimination [29], to analyse which metabolite or combination
of metabolites was closely related to NPSLE and filter out
weak features to avoid overfitting. We first built the model
on the entire set of metabolite features and computed an
importance score for each feature. Then, the least important
feature was removed from the current feature set. We
retrained the model and computed the important score
again. We repeat this step on the feature set until the specified
number of features were selected. In the end, we found 26
features that were of the highest importance, as shown in
Figure 2. The 26 features were as follows: NAAG, mI/Cr
+PCr, and Glu+Gln/Cr+PCr in the right PCG; Cr+PCr,
NAA+NAAG, NAA+NAAG/Cr+PCr, mI/Cr+PCr, and Glu
+Gln in the left PCG; NAA, NAAG, and Cho+PCh in the left
DT; PCr, Cr+PCr, Cho+PCh, Cho+PCh/Cr+PCr, and Glu
+Gln/Cr+PCr in the right LN; mI/Cr+PCr, Cho+PCh, and
Cho+PCh/Cr+PCr in the left LN; NAA+NAAG/Cr+PCr
and Cho+PCh in RI; Cho+PCh/Cr+PCr and Glu+Gln/Cr
+PCr in the right PWM; and PCr, NAAG, and NAA
+NAAG/Cr+PCr in the left PWM.

However, these features had a complex nonlinear rela-
tionship, which made our diagnosis quite challenging. This
motivated us to leverage the kernel tricks of the SVM classi-
fier to map the features into a higher dimensional space to
make the samples linearly separable. With the selected fea-
tures, we evaluated the performance of our BL-SVM system
on a ROC curve as shown in Figure 3. The AUC, sensitivity,
and specificity were 95%, 95.8%, and 93%, respectively.

To estimate the generalization capacity of the proposed
model, we perform the cross-validation for 50 times. In each
run, we feed a different random seed for the resampling pro-
cedure. Two-thirds of samples are for training, and the rest is
for testing. The scores of the AUC, sensitivity, and specificity

Table 3: The neuropsychiatric manifestations occurring in NPSLE
patients.

Neuropsychiatric manifestations Number

Myelitis 1

Seizure disorder 9

Severe headache 5

Stroke 3

Peripheral polyneuropathy 2

Acute confusional state 1

Anxiety 2

Table 4: The demographic characters of the NPSLE patients and
healthy controls.

Number Mean age (year) Sex (male/female)

NPSLE 23 31.71 2/14

HC 16 29.5 5/18

p value — 0.765∗ 0.018∗

∗Student’s t-test.
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Table 5: Changes of major metabolite features detected in 1H-MRS in NPSLE patients vs. healthy controls.

Brain region Metabolites HCs (n = 16) NPSLE (n = 23) p value AUC

RPCG

Cr 2:304 ± 0:473 3:124 ± 0:418 0.274 0.591

PCr∗ 4:184 ± 0:651 2:479 ± 0:583 0.035 0.588

Cr+PCr 3:465 ± 0:506 2:900 ± 0:491 0.391 0.432

NAA 4:457 ± 0:428 3:935 ± 0:419 0.478 0.457

NAAG∗∗ 3:604 ± 0:550 3:782 ± 0:581 0.848 0.548

NAA+NAAG 6:222 ± 0:728 4:996 ± 0:692 0.183 0.283

NAA+NAAG/Cr+PCr 3:622 ± 0:776 5:316 ± 0:649 0.086 0.62

mI 2:075 ± 0:388 2:535 ± 0:335 0.274 0.557

mI/Cr+PCr∗∗ 2:626 ± 0:473 3:437 ± 0:399 0.165 0.567

Cho+PCh∗ 5:151 ± 0:477 3:892 ± 0:502 0.039 0.492

Cho+PCh/Cr+PCr∗∗ 4:138 ± 0:535 4:867 ± 0:377 0.249 0.466

Glu+Gln 4:799 ± 0:503 4:452 ± 0:407 0.322 0.398

Glu+Gln/Cr+PCr 4:296 ± 0:494 4:253 ± 0:456 0.953 0.389

LPCG

Cr 4:211 ± 0:591 3:452 ± 0:491 0.442 0.485

PCr 4:248 ± 0:758 4:125 ± 0:602 0.825 0.435

Cr+PCr∗∗ 2:803 ± 0:620 3:788 ± 0:506 0.225 0.41

NAA 4:208 ± 0:340 3:395 ± 0:319 0.104 0.401

NAAG 4:681 ± 0:321 3:817 ± 0:437 0.249 0.444

NAA+NAAG∗∗∗ 7:005 ± 0:497 6:009 ± 0:333 0.005 0.66

NAA+NAAG/Cr+PCr∗∗∗ 7:655 ± 0:199 6:571 ± 0:259 0.006 0.658

mI∗ 7:284 ± 0:207 6:273 ± 0:293 0.009 0.62

mI/Cr+PCr∗∗ 6:893 ± 0:167 6:513 ± 0:159 0.132 0.413

Cho+PCh 6:303 ± 0:354 6:395 ± 0:369 0.636 0.391

Cho+PCh/Cr+PCr 8:776 ± 0:201 7:673 ± 0:486 0.076 0.457

Glu+Gln∗∗ 5:625 ± 0:898 6:886 ± 0:513 0.595 0.682

Glu+Gln/Cr+PCr 5:601 ± 0:174 5:385 ± 0:264 0.745 0.457

RDT

Cr 5:898 ± 0:163 5:931 ± 0:226 0.859 0.535

PCr∗ 9:658 ± 0:691 8:485 ± 0:431 0.008 0.694

Cr+PCr∗ 10:614 ± 0:269 9:178 ± 0:316 0.001 0.747

NAA∗ 8:094 ± 0:265 6:612 ± 0:314 0.002 0.76

NAAG 8:705 ± 0:266 7:739 ± 0:382 0.058 0.576

NAA+NAAG 7:660 ± 0:333 7:239 ± 0:427 0.636 0.435

NAA+NAAG/Cr+PCr∗ 9:645 ± 0:271 7:703 ± 0:529 0.004 0.639

mI 7:552 ± 1:146 8:459 ± 0:549 0.496 0.66

mI/Cr+PCr∗ 8:821 ± 0:195 7:907 ± 0:331 0.041 0.766

Cho+PCh∗ 9:435 ± 0:245 7:537 ± 0:374 0.001 0.776

Cho+PCh/Cr+PCr 0:753 ± 0:173 0:852 ± 0:207 0.79 0.5

Glu+Gln 0:830 ± 0:268 0:896 ± 0:219 0.767 0.478

Glu+Gln/Cr+PCr 0:501 ± 0:197 0:618 ± 0:217 0.767 0.457

LDT

Cr 2:163 ± 0:388 1:821 ± 0:378 0.221 0.591

PCr 0:429 ± 0:263 0:776 ± 0:247 0.188 0.435

Cr+Cr 1:005 ± 0:343 0:744 ± 0:326 0.274 0.457

NAA∗∗ 0:923 ± 0:344 1:594 ± 0:275 0.076 0.639
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Table 5: Continued.

Brain region Metabolites HCs (n = 16) NPSLE (n = 23) p value AUC

NAAG∗∗∗ 1:242 ± 0:161 0:559 ± 0:118 0.002 0.673

NAA+NAAG 1:272 ± 0:214 1:010 ± 0:223 0.255 0.598

NAA+NAAG/Cr+PCr∗ 10:263 ± 0:725 9:027 ± 0:449 0.003 0.735

mI∗ 11:241 ± 0:256 9:843 ± 0:341 0.002 0.60

mI/Cr+PCr∗ 8:411 ± 0:204 6:993 ± 0:349 0.002 0.779

Cho+PCh∗∗ 10:063 ± 0:258 8:924 ± 0:224 0.002 0.685

Cho+PCh/Cr+PCr 7:884 ± 0:328 7:748 ± 0:465 0.929 0.435

Glu+Gln∗ 10:173 ± 0:233 8:251 ± 0:492 0.001 0.548

Glu+Gln/Cr+PCr 8:047 ± 1:213 9:348 ± 0:544 0.615 0.629

RLN

Cr∗ 9:868 ± 0:231 8364 ± 0:362 0.005 0.648

PCr∗∗∗ 10:409 ± 0:309 8:383 ± 0:389 0.001 0.673

Cr+PCr∗∗ 1:394 ± 0:098 1:555 ± 0:068 0.478 0.5

NAA 1:501 ± 0:055 1:556 ± 0:068 0.359 0.5

NAAG 1:163 ± 0:024 1:112 ± 0:029 0.515 0.5

NAA+NAAG 1:508 ± 0:047 1:410 ± 0:047 0.225 0.5

NAA+NAAG/Cr+PCr 1:323 ± 0:066 1:215 ± 0:079 0.478 0.5

mI∗ 1:170 ± 0:029 1:044 ± 0:058 0.036 0.5

mI/Cr+PCr 1:118 ± 0:172 1:358 ± 0:077 0.701 0.603

Cho+PCh∗∗∗ 1:801 ± 0:032 1:611 ± 0:048 0.003 0.588

Cho+PCh/Cr+PCr∗∗∗ 1:800 ± 0:067 1:461 ± 0:067 0.003 0.598

Glu+Gln 5:246 ± 0:447 4:649 ± 0:582 0.231 0.482

Glu+Gln/Cr+PCr∗∗ 5:429 ± 0:512 5:604 ± 0:313 0.836 0.432

LLN

Cr 4:839 ± 0:442 5:584 ± 0:395 0.107 0.457

PCr∗ 4:220 ± 0:296 5:574 ± 0:390 0.008 0.641

Cr+PCr 3:167 ± 0:687 4:850 ± 0:692 0.076 0.501

NAA 5:630 ± 0:443 5:205 ± 0:608 0.953 0.504

NAAG 3:816 ± 0:642 5:529 ± 0:545 0.124 0.526

NAA+NAAG 5:370 ± 0:249 5:819 ± 0:503 0.722 0.557

NAA+NAAG/Cr+PCr 5:729 ± 0:304 5:901 ± 0:366 0.88 0.651

mI∗ 0:703 ± 0:055 5:674 ± 0:071 0.894 0.5

mI/Cr+Cr∗∗ 0:708 ± 0:628 5:838 ± 0:034 0.036 0.478

Cho+PCh∗∗∗ 0:655 ± 0:061 0:883 ± 0:061 0.007 0.601

Cho+PCh/Cr+PCr∗∗∗ 0:610 ± 0:038 0:844 ± 0:055 0.001 0.541

Glu+Gln 0:480 ± 0:094 1:033 ± 0:395 0.132 0.435

Glu+Gln/Cr+PCr 0:611 ± 0:029 0:667 ± 0:085 0.344 0.5

RI

Cr∗ 0:532 ± 0:095 0:786 ± 0:062 0.005 0.603

PCr 0:944 ± 0:037 1:109 ± 0:067 0.193 0.5

Cr+PCr 0:982 ± 0:047 1:016 ± 0:044 0.478 0.5

NAA∗ 1:322 ± 0:093 1:179 ± 0:072 0.023 0.457

NAAG 1:667 ± 0:050 1:548 ± 0:078 0.124 0.5

NAA+NAAG 2:107 ± 0:071 2:051 ± 0:019 0.615 0.5

NAA+NAAG/Cr+PCr∗∗ 1:983 ± 0:061 1:893 ± 0:063 0.261 0.5

mI 1:561 ± 0:094 1:668 ± 0:012 0.209 0.466
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are plotted in a box diagram in Figure 4. The box plot dem-
onstrates that the model is capable of unseeing samples in
each run.

4. Discussions

In this study, we retrospectively analysed the diagnosis of the
NPSLE using multivoxel 1H-MRS. Each metabolic feature
hardly identified the NPSLE patients from the HCs precisely
and was even insignificant to NPSLE. We introduced a sup-
port vector machine-based deep-stacked network to quanti-
tatively analyse the metabolic features. The result has

shown that this model has good robustness, even there were
several missing values of metabolic features caused by the
noise of spectra. Furthermore, this model can accurately dis-
tinguish NPSLE patients from the HCs, although individual
feature does not even manifest statistics significantly, which
is better than any single metabolic feature. The results indi-
cated that this model can be a helpful noninvasive
computer-aided diagnostic tool for quantitative analysis of
NPSLE.

The clinical complications of NPSLE severely affect the
patients in their quality of work and life, which also consume
a large amount of money. Therefore, the examination

Table 5: Continued.

Brain region Metabolites HCs (n = 16) NPSLE (n = 23) p value AUC

mI/Cr+PCr 2:285 ± 0:696 2:153 ± 0:131 0.626 0.5

Cho+PCh∗∗ 1:496 ± 0:240 1:872 ± 0:138 0.329 0.603

Cho+PCh/Cr+PCr 2:056 ± 0:088 1:895 ± 0:098 0.425 0.5

Glu+Gln 2:127 ± 0:068 2:034 ± 0:076 0.461 0.5

Glu+Gln/Cr+PCr 0:176 ± 0:012 0:201 ± 0:011 0.359 0.5

RPWM

Cr 0:220 ± 0:008 0:232 ± 0:008 0.442 0.5

PCr∗ 0:292 ± 0:007 0:330 ± 0:011 0.008 0.5

Cr+PCr 0:292 ± 0:006 0:292 ± 0:005 0.859 0.5

NAA 0:253 ± 0:011 0:261 ± 0:018 0.657 0.5

NAAG 0:260 ± 0:006 0:274 ± 0:017 0.274 0.5

NAA+NAAG 0:201 ± 0:030 0:263 ± 0:013 0.174 0.5

NAA+NAAG/Cr+PCr 0:381 ± 0:015 0:372 ± 0:018 0.723 0.5

mI 0:369 ± 0:012 0:355 ± 0:013 0.329 0.5

mI/Cr+PCr 15:876 ± 1:396 14:623 ± 0:850 0.165 0.622

Cho+PCh 15:208 ± 1:396 14:357 ± 0:687 0.132 0.495

Cho+PCh/Cr+PCr∗∗∗ 15:249 ± 0:636 11:941 ± 1:002 0.01 0.576

Glu+Gln 11:651 ± 0:901 13:566 ± 0:755 0.261 0.432

Glu+Gln/Cr+PCr∗∗ 8:923 ± 1:758 12:151 ± 1:041 0.104 0.535

LPWM

Cr∗ 17:459 ± 0:726 14:326 ± 1:757 0.005 0.726

PCr∗∗ 10:796 ± 1:628 14:001 ± 0:975 0.375 0.735

Cr+PCr 11:579 ± 0:701 10:167 ± 0:996 0.79 0.704

NAA 11:621 ± 0:585 11:756 ± 0:604 0.813 0.457

NAAG∗ 2:113 ± 0:163 2:569 ± 0:145 0.036 0.5

NAA+NAAG∗∗ 2:028 ± 0:149 2:267 ± 0:138 1 0.5

NAA+NAAG/Cr+PCr∗∗ 2:089 ± 0:083 1:855 ± 0:154 0.225 0.5

mI∗ 1:668 ± 0:119 2:094 ± 0:116 0.033 0.516

mI/Cr+PCr 1:526 ± 0:288 1:788 ± 0:147 0.679 0.548

Cho+PCh 2:007 ± 0:097 1:875 ± 0:244 0.132 0.603

Cho+PCh/Cr+PCr 1:499 ± 0:236 1:996 ± 0:117 0.091 0.603

Glu+Gln 2:004 ± 0:077 1:925 ± 0:159 0.515 0.5

Glu+Gln/Cr+PCr 2:028 ± 0:079 2:153 ± 0:158 0.813 0.5
∗Metabolites with significant difference (p < 0:05). ∗∗Metabolites for our model. ∗∗∗Metabolites for our model and metabolites with significant difference
(p < 0:05).
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(a) (b)

(c) (d)

Figure 1: Continued.
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methods of early diagnosis and prediction of NPSLE have
aroused wide attention; increasingly, laboratory biomarkers
and neuroimaging tools have been proposed [31–34].

The production of autoantibodies was used to be a diag-
nostic biomarker of SLE, and 116 autoantibodies had been
found in a literature review using the keywords autoanti-
bodies and systemic lupus erythematosus [35]. Various auto-
antibodies are reported that can be used as diagnostic
biomarkers, since one of these autoantibodies had a signifi-
cant difference between NPSLE and SLE patients and healthy
controls. Most studies were explorative studies, which were
short of repeatability. Segovia-Miranda et al. [36] have con-
firmed that the antiribosomal P (RP) antibody is related to
cognitive dysfunction and other diffuse neuropsychiatric

manifestations of NPSLE by altering glutamatergic synaptic
transmission in the hippocampus. However, there was a
recent study conflicted with their results, which suggested
that the anti-P ribosomal antibodies have limited diagnostic
value for NPSLE [37].

In this case, advanced neuroimaging technologies were
needed urgently. In vivo multivoxel MRS allows simulta-
neously measuring the level of metabolites in several brain
regions within a single slice [8] However, a standard for the
choice of metabolites and brain regions is not available until
now. Single metabolite or the ratio between two metabolites
have been used to diagnose NPSLE in most studies [22, 38–
40]. There will be numerous exploratory biomarkers for diag-
nosing NPSLE by applying the previous laboratory and

(e) (f)

(g) (h)

Figure 1: (a) and (b) are the axial view of the basal ganglion slice obtained by multivoxel MRS fromHCs, whereas (c) and (d) are fromNPSLE
patients. (e) and (f) are the attained spectra of the volumes by LCModel from HCs corresponding to the axial view (a) and (b), respectively,
whereas (g) and (h) are from NPSLE patients corresponding to the axial view (c) and (d), respectively. NAA is the abbreviation for N-
acetylaspartate, NAAG is the abbreviation for N-acetylaspartylglutamate, Cho is the abbreviation for choline, tCr is the abbreviation for
total creatine, mI is the abbreviation for myo-inositol, and Glx is the abbreviation for glutamine+glutamate. The chemical shift values in
(e)–(h) ranging from 4.0 ppm (leftmost) to 0.2 ppm (rightmost) are divided into 38 equally spaced intervals, e.g., 1 ppm per interval. From
(a) to (h), the visual differences of the axial view of the basal ganglion slices and the spectra of the volumes from NPSLE patients and HCs
are subtle.
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neuroimaging methods. However, accuracy needs to be fur-
ther improved. Thus, more advanced machine learning
methodologies are urgently required.

Broad learning systems are an alternative way to address
the time-consuming training process and nonconvex issues,
especially when the structure is insufficient to model the sys-
tem [28]. Support vector machines are a succinct model with
convexity optimization property to learn sample-limited data
with complicated features [27]. We rethink the potential of
SVM in diagnosing NPSLE, and we reconstruct the broad
learning system to increase the diversity of features that the
SVMs learned. To demonstrate the advantage of SVM-
based broad learning systems for diagnosing NPSLE, we
compared the BL-SVM with traditional statistical methods
that were frequently used for diagnosing NPSLE. Guillen-
Del Castillo et al. [41] suggested that the increased mI in nor-

mal parietal white matter and parietal white matter demon-
strates a strong relationship to the deteriorated prognosis in
NPSLE. In our study, the best accuracy of mI in parietal white
matter was only 51.6%. For other single metabolites
described in previous studies, such as NAA [42], Cho, and
Cr [43], used in our model, the best accuracy was 75% in
the right DT, 72% in the left PWM, and 77% in the right
DT, respectively. It is also not known whether metabolite
ratios could improve diagnostic accuracy. Cagonoli et al. pro-
posed that NAA/Cr ratios and Glu/Cr ratios in RI might be
biomarkers for NPSLE patients [44]. However, in our study,
the accuracy of NAA/Cr ratios and Glu/Cr ratios in RI was
both only 50%. Overall, thirty-three features were selected
using conventional statistical methods, and the best accuracy
among them was only 77%, whereas the BL-SVM system
with the metabolic features from multivoxel 1H-MRS
achieved 95% AUC, 95.8% sensitivity, and 93% specificity,
respectively. To confirm that no overfitting occurred in our
experiment, we performed 3-fold cross-validation to demon-
strate the generalization ability of our BL-SVM system. It is
worth noting that there were 26 features of eight brain
regions of NPSLE patients that showed the optimal perfor-
mance to diagnose NPSLE. So we should realize that single
1H-MRS may not suitably be used to diagnose NPSLE,
because it was restricted to one small region, which missed
important pieces of information. What is more, our study
confirmed that not only should the absolute concentration
of metabolites be considered but also the combination
between them, such as NAA+NAAG, Glu+Gln/Cr+Pcr, and
mI/Cr+Pcr. The BL-SVM system with the metabolic features
from multivoxel 1H-MRS as a novel tool should be popular-
ized in the diagnosis of NPSLE, though some studies have
combinedmachine learning and 1H-MRS to increase the sen-
sitivity and specificity for distinguishing diseases [14, 45, 46].
However, to the best of our knowledge, the current study is
the first to use machine learning-based metabolic features
to improve the accuracy of 1H-MRS to diagnose NPSLE.
Our BL-SVM has achieved a specific performance for the fol-
lowing reasons. First, the kernels map the features into a
higher dimensional space to empower the SVMs to split the
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samples linearly [47], which enables the BL-SVM system to
distinguish NPSLE patients from HCs. Secondly, the BL-
SVM system can learn to deal with the unavoidable absent
metabolic feature value caused by patients moving, partial-
volume effect, and overlapping among metabolites, which
demonstrated the good robustness of our model. The BL-
SVM learning system is general and can be extended to other
applications, such as intelligent transportation systems [48–
55], intelligent computing [56, 57], and emotion computing
[58–60].

4.1. Limitations.However, there were some limitations in our
study. First, the samples are limited. Although the number of
samples is important for evaluating the generalization ability
of a model, cross-validation is one of the alternative tech-
niques by resampling to evaluate the generalization capacity
of a machine learning model, when we have limited samples.
We apply 3-fold cross-validation to evaluate the performance
of the presented model 50 times. The results indicate the pro-
posed model capable of unseeing samples. Besides, we have
been collecting new samples to evaluate our model and
develop new models. Secondly, other advanced medical
imaging technologies should be considered to combine with
1H-MRS in this system, such as voxel-based morphometry,
diffusional kurtosis imaging, and chemical exchange satura-
tion transfer [61–65].

5. Conclusion

In this retrospective study, we confirm that the metabolic fea-
tures obtained by multivoxel proton magnetic resonance
spectroscopy can be used to diagnose neuropsychiatric sys-
temic lupus erythematosus by a well-trained support vector
machine broad learning system. The support vector machine
broad learning system achieves satisfactory AUC, sensitivity,
and specificity as 95%, 95.8%, and 93%, respectively. We have
also found that the support vector machine broad learning
system can even leverage the metabolic features that were
not regarded as statistically significant to distinguish the

NPSLE patients from HC ones. Furthermore, our support
vector machine broad learning system overcame the situa-
tion of limited samples with missing metabolic feature values.

In conclusion, the multivoxel proton magnetic resonance
spectroscopy enhanced by our support vector machine broad
learning system may brighten the computer-aided noninva-
sive diagnostic instrument for neuropsychiatric systemic
lupus erythematosus in vivo.
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