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A mathematical model incorporating exogenous reinfection and primary progression infection processes is proposed. Global
stability is examined using the geometric approach which involves the generalization of Poincare-Bendixson criterion for
systems of n-ordinary differential equations. Analytical results show that for a Susceptible-Exposed-Infective-Recovered (SEIR)
model incorporating exogenous reinfection and primary progression infection mechanisms, an additional condition is required
to fulfill the Bendixson criterion for global stability. That is, the model is globally asymptotically stable whenever a parameter
accounting for exogenous reinfection is less than the ratio of background mortality to effective contact rate. Numerical
simulations are also presented to support theoretical findings.

1. Introduction

Mathematical models, in particular, models tracking dynam-
ics of infectious diseases, are of utmost importance due to
their application in the assessment of public health policies
by national and international agencies. In such models, one
of the intriguing aspects that often occurs is when modellers
need to know whether the disease will disappear or will per-
manently remain in the population. This question is
answered mainly through investigating the asymptotic stabil-
ity of the disease-free equilibrium (DFE) as well the endemic
equilibrium. It is already known that if the DFE is globally
asymptotically stable, then the disease eradication is assured
regardless of the initial number of infected individuals in
the population [1]. An influx of infected cases may trigger
an isolated epidemic outbreak, but they may not make the
disease endemic in the population [2]. In contradiction to
DFE, if the endemic equilibrium is globally asymptotically
stable (GAS) and a few infected individuals are initially intro-
duced, then, the disease will be permanently present in the
population.

In the sequel, there are two major methods used in the
analysis of global stability of endemic equilibrium: Lyapunov
direct method and geometric method. Although the Lyapu-
nov direct method is often used in proving global stability
of infectious diseases models, it is sometimes difficult to use
because it requires an auxiliary function which is hard to con-
struct. This is because there are no existing general methods
for constructing such Lyapunov functions. Moreover,
Lyapunov functions for models with parameter(s) that
induce bistability phenomena may not even exist. The second
method, sometimes referred to as geometric approach to
global stability, is a generalization of the Poincare-
Bendixson criterion for systems of n ordinary differential
equations. This method was developed by Li and Muldowney
[3, 4] in midnineties to address problems encountered with
the Lyapunov direct method. The technique is extensively
being used to analyze global properties of mathematical
models emanating in mathematical epidemiology as well as
in other biomathematical contexts. For instance, its applica-
tions can be seen in toxicant-population interaction models,
Lotka-Volterra models incorporating delay [5, 6], and
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mathematical epidemic models modelling dynamics of HIV
in a human host [7]. Due to mathematical technicalities
involved with the geometric approach, it seems to work quite
well with low-dimensional mathematical models such as SIR
(Susceptible-Infective-Recovered) and SIRS (Susceptible-
Infective-Recovered-Susceptible) which can be reduced to
bidimensional models (i.e., n = 2). Moreover, this method
has also been found to be more appropriate in SEIR-like
(Susceptible-Exposed-Infective-Recovered) which are repre-
sented by a system of four ordinary differential equations
(ODEs). This is because their dynamics can be reduced to a
three-dimensional system (see [3, 7–11]).

Li and Muldowney [3] proved global stability of a SEIR-
like model. However, there are some special cases of SEIR-
like models that may not be entirely explained by the global
thresholds obtained in [3]. Thus, building on the work of Li
and Muldowney, we consider new dynamics that may alter
the global stability conditions. For, instance if individuals in
incubation period which in this case in compartment E expe-
rience reinfection, then, new dynamics are likely to arise
which may alter the global conditions. Several diseases such
as SARS (Severe acute respiratory syndrome), HIV (Human
immunodeficiency virus), Ebola, malaria, influenza, and
tuberculosis (TB) have an incubation period, and during this
stage of infection, individuals can be reinfected by the same
or a new strain of the disease (exogenous reinfection).

Castillo-Chavez and Song [12] reviewed the earliest
mathematical models of TB dynamics that appeared in the
1960s. Their review investigated several epidemiological fac-
tors that are pertinent to TB transmission dynamics. These
included the role played by close and casual contacts on TB
dynamics, the role of demographic factors (births and
deaths), and the role played by intervention strategies imple-
mented to mitigate TB. Further, they extended their review
by considering other models such as cell-based models for
TB transmission at the immune system level as well as
Markov chain models primarily focusing on TB projection.
Although these authors considered a SEIT (Susceptible-
Exposed-Infective-Treated) model to analyze the local stabil-
ity of the disease-free equilibrium in the neighbourhood of
R0 = 1, using the famous Castillo-Chavez method derived in
[12], they never considered the global properties of the per-
sistent equilibrium. Again, the SEIT proposed model did
not incorporate the primary progression pathway in the anal-
ysis of the local stability using the Castillo-Chavez method.

It is imperative to note that the Castillo-Chavez et al. [12]
method for local stability is used to verify whether a dynam-
ical system exhibits the phenomenon of backward bifurca-
tion. The SEIT model reviewed in [12] obtained a condition
for backward bifurcation which is different from the one
obtained in the model studied here simply because they omit-
ted the primary progression pathway. The exclusion of pri-
mary progression pathway and lack of investigating the
global properties of the persistent equilibrium motivated us
to attempt to understand the global properties of a SEIR
model. Moreover, the model studied here goes beyond
understanding the phenomenon of backward bifurcation
which is well documented in literature (see [13–18] and the
references therein); instead, we attempt to investigate the

global properties of a SEIR model incorporating both exoge-
nous reinfection and primary progression infection pathways
which was not studied in [12]. The global stability analysis of
the persistent equilibrium performed on the proposed SEIR
model using the geometric approach is the central feature
that distinguishes our model from Castillo-Chavez and
Song’s [12] paper.

Many infectious diseases in particular those caused by
bacterial and viral infections do not render permanent
immunity after recovering from the first episode. As a result,
they are characterized by partial or complete loss of immu-
nity and subsequent exogenous reinfection. Exogenous
reinfection can occur in diseases such as tuberculosis (TB)
and flu. Often upon initial infection, individuals pass through
different stages before they reach the symptomatic stage
where they manifest disease symptoms. Some individuals
may pass through a latent stage or dormant state (as in TB
or COVID-19) where the disease stays inactive for a specified
period of time while some may progress directly to the infec-
tious stage (fast progression or primary progression). An
individual infected with TB can either pass through a latent
stage or progress directly to the infectious stage (primary
progression).

The novelty of this study is the incorporation of
exogenous reinfection and primary progression infection
mechanisms which were excluded in previous three-
dimensional SEIR-like models used to study global stability
(see [3, 7, 11, 19]). Thus, our main task is to investigate global
properties of a SEIR model including exogenous reinfection
and primary progression infection processes using geometric
approach. According to our knowledge, the global stability
results deduced in this model have not been previously
obtained.

2. Mathematical Model

The host population is partitioned into four compartments,
the susceptible, exposed (latent), infective, and recovered,
with subpopulations denoted by S, E, I, and R, respectively.
The total population at time t is represented by NðtÞ = SðtÞ
+ EðtÞ + IðtÞ + RðtÞ. We assume a frequency-dependent inci-
dence rate (standard incidence rate)

λ = cβI tð Þ
N tð Þ , ð1Þ

as the force of infection. Here, c represents the host-host con-
tact, β is the probability that a contact results in transmission,
and IðtÞ/NðtÞ is the prevalence of infection, sometimes
referred to as the “frequency” of infection [20]. After initial
infection, a proportion q of susceptible individuals can move
directly to the infectious stage (primary progression) while
the rest move to latent compartment (slow progression),
while in latent compartment, individuals are assumed to be
exogenously reinfected, hence moving to the infectious stage
at a rate pλE. Precisely, the subpopulation of susceptibles is
generated by recruitment through births and immigration
at a rate Λ. The population is decreased due to contact
with infectious individuals at a rate λS. The exposed
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subpopulation is generated due to slow progression of the
disease at a rate ð1 − qÞλS. Moreover, individuals leave the
exposed subpopulation due to exogenous reinfection and
endogenous reactivation at rates pλE and kE, respectively.
The infected subpopulation is generated by both fast pro-
gression and exogenous reinfection at rates qλE and pλE:
It is diminished when individuals recover from disease
due to therapy at rate γI and disease-related death rate
μd . The recovered subpopulation is generated by recovery
of infected individuals at a rate γ. All individuals in each
subpopulation experience natural death at the same rate
through the background mortality rate μ: The equation
representing transfer of individuals among the compart-
ments is now given by

S′ =Λ − λS − μS,
E′ = 1 − qð ÞλS − pλE − k + μð ÞE,
I ′ = qλS + pλE + kE − μ + γ + μdð ÞI,
R′ = γI − μR:

ð2Þ

3. Existence of the Equilibria

For mathematical tractability, we transform model equa-
tion (2) in terms of proportions of the individuals in each
compartment. Thus, we define s = S/N , e = E/N , i = I/N ,
and r = R/N as proportions for the compartments S, E, I,
and R, respectively. Now differentiating the corresponding
proportions with respect to time, it is not difficult to
deduce that s, e, i, r, and N satisfy the following differen-
tial equations:

s′ = Λ

N
−

Λ

N
− μdi

� �
s − cβis,

e′ = 1 − qð Þcβis − pcβie −
Λ

N
− μdi

� �
e − ke,

i′ = qcβis + pcβie + ke −
Λ

N
− μdi

� �
i − γ + μdð Þi,

r′ = γi −
Λ

N
− μdi

� �
r,

s + e + i + r = 1,

N ′ = Λ

N
− μ + μdið Þ

� �
N:

ð3Þ

where Ω = fðs, e, i, r,NÞ ∈ℝ5
+ : 0 ≤ s, 0 ≤ e, 0 ≤ i, 0 ≤ r, s + e

+ i + r ≤ 1,N ≤Λ/μg.
It is easy to observe that the variable r in equation (3)

does not affect other equations; thus, we can drop the fourth
equation. Again, all equations in (3) depend on N . So replac-
ing Λ/N = μ + μdi into the first, second, and third equations,
we have the following reduced system:

s′ = μ + μdi − μ + cβið Þs,
e′ = 1 − qð Þcβis − pcβie − μ + kð Þe,
i′ = qcβis + pcβie + ke − μ + γ + μdð Þi:

ð4Þ

It is easy to show that the region Ω = fðs, e, iÞ ∈ℝ3
+ : 0

≤ s, 0 ≤ e, 0 ≤ i s + e + i ≤ 1g, where the model equation (4)
is biologically feasible is positively invariant, whereℝ3

+ repre-
sents the nonnegative cone of ℝ3. In the absence of disease,
the model equation (4) has an intrinsic equilibrium point
P0 = ð1, 0, 0Þ. This equilibrium is the disease-free equilibrium
point (DFE).

The basic reproduction number is defined as the number
of secondary infections generated by one newly infected indi-
vidual when introduced into an entirely susceptible popula-
tion at the disease-free equilibrium point during its mean
infective period [1]. The basic reproduction number denoted
by R0 is calculated following the next-generation operator
method as developed in Van den Driessche and Watmough
[1]. Note that the nonlinear term with new infections F

and the transition term V are, respectively, given by

F =
1 − qð Þcβis
qcβis

 !
,

V =
μ + kð Þe

μ + γ + μdð Þi − ke

 !
:

ð5Þ

The linearized matrices F andV computed at the disease-
free equilibrium P0 yield

F =
0 1 − qð Þcβ
0 qcβ

 !
,

V =
μ + kð Þ 0
−k μ + γ + μdð Þ

 !
:

ð6Þ

Hence, the next generation matrix is

K = FV−1 =

k 1 − qð Þcβ
μ + kð Þ μ + γ + μdð Þ

1 − qð Þcβ
μ + γ + μdð Þ

kqcβ
μ + kð Þ μ + γ + μdð Þ

qcβ
μ + γ + μdð Þ

0
BBBB@

1
CCCCA:

ð7Þ

One of the eigenvalue of the above matrix is zero while
the other (dominant eigenvalue) gives the basic reproduction
number. Thus, the basic reproduction number is given as

R0 =
cβ k + μqð Þ

μ + kð Þ μ + γ + μdð Þ : ð8Þ

It is easy to see that R0 does not contain parameter p
which accounts for exogenous reinfection. This indicates that

3Computational and Mathematical Methods in Medicine



R0 alone may not sufficiently explain dynamics of model sys-
tem (4); rather, additional restrictions are needed. Now, we
proceed to obtain the nonzero steady states when disease is
present in the population. Setting the equations of system
(4) to zero and simplifying lead to the following expressions
written in terms of i∗

s∗ = μ + μdi
∗

μ + cβi∗
,

e∗ = 1 − qð Þcβi∗ μ + μdi
∗ð Þ

μ + cβi∗ð Þ pcβi + μ + kð Þ :
ð9Þ

Substituting expression (9) into the third equation of
system (4) leads to the following:

p i∗ð Þ = i∗ d2i
∗2 + d1i

∗ + d0
� �

= 0, ð10Þ

where

d2 = μ + γð Þpc2β2,

d1 = μpcβ μ + γ + μdð Þ + cβ μ + γð Þ μ + kð Þ
+ cβμμd 1 − qð Þ − μpc2β2,

d0 = μ μ + kð Þ μ + γ + μdð Þ 1 − R0ð Þ: ð11Þ

The root i∗ = 0 corresponds to a scenario where there is
no disease in the population (DFE). The other nonzero roots
of model system (4) can be obtained by solving for i∗ from

p1 i∗ð Þ = d2i
∗2 + d1i

∗ + d0 = 0 ð12Þ

and substituting them in (9).
From equation (12), it is not difficult to see that d2 is

always positive, d0 > 0⇔ R0 < 1, and d0 < 0⇔ R0 > 1: Now,
by Descartes Rule of Signs, it follows that there is a unique
endemic equilibrium whenever d0 < 0: two positive endemic
equilibria if d0 > 0, d1 < 0, d21 − 4d0d2 > 0 and no positive
endemic equilibria otherwise. Moreover, a bifurcation point
occurs when d0 > 0, d1 < 0, and d21 − 4d0d2 = 0 (i.e., the point
where the two positive endemic equilibria collide, leaving the
DFE as the only equilibrium point). At the point where the
two positive equilibria (which we shall denote by Rc

0) collide,
R0 = Rc

0. The quantity Rc
0 given in the appendix equation

(A.2) can be easily obtained by setting d21 − 4d0d2 = 0 (see
the appendix for detailed derivation). Now taking into
account the above discussion on equation (12), we deduce
Lemma 1.

Lemma 1.

(i) For d1 > 0, then, the model equation (4) admits no
positive real equilibria whenever R0 < Rc

0 < 1

(ii) For d1 < 0, then, the model equation (4) admits two
positive endemic equilibria P1 and P2 whenever Rc

0
< R0 < 1

(iii) For d1 < 0, then, the model equation (4) admits a
unique positive endemic equilibrium P∗ whenever
R0 ≥ 1

The occurrence of two positive endemic equilibria when
R0 < 1 hints the possibility of backward bifurcation phenom-
enon. Hence, the next section of the work is dedicated on
detemining the type of bifurcation exhibited by model
equation (4).

4. Proof of Existence of Backward Bifurcation

Define

pc = k + μq
μ 1 − qð Þ
� �

μμd 1 − qð Þ + μ + kð Þ μ + γð Þ
μ μ + γ + μdð Þ

� �
: ð13Þ

Then, Theorem 2 follows:

Theorem 2.

(i) The model equation (4) exhibits backward bifurcation
at R0 = 1 whenever p > pc

(ii) The model equation (4) exhibits forward bifurcation
at R0 = 1 whenever p < pc

Proof. To show that model system (4) exhibits backward
bifurcation phenomena, we apply the Center Manifold
approach as outlined by Castillo-Chavez and Song in [12].
For clarity and understanding of the center manifold theory,
the model equation (4) variables are transformed as follows:
y1 = s, y2 = e, y3 = i, and the total population n =∑3

j=1 yj.

Define Y = ðy1, y2, y3ÞT (T denotes transpose), such that the
model equation (4) can be rewritten as dY/dt = FðyÞ, where
F = ð f 1, f 2, f 3Þ. Hence, it follows

y1′ = μ + μdy3 − μy1 − cβy1y3 = f 1,
y2′ = 1 − qð Þcβy1y3 − pcβy2y3 − μ + kð Þy2 = f 2,
y3′ = qcβy1y3 + pcβy2y3 + ky2 − μ + γ + μdð Þy3 = f 3:

ð14Þ

Now, let cβ = ~β and choose ~β as the bifurcation parame-
ter. Note that at R0 = 1,

~β = β∗ = μ + kð Þ μ + γ + μdð Þ
k + μqð Þ : ð15Þ

Then, the Jacobian matrix of equation (14) evaluated at
DFE is given as

J P0ð Þ =
−μ 0 μd − β∗

0 − μ + kð Þ 1 − qð Þβ∗

0 k qβ∗ − μ + γ + μdð Þ

0
BB@

1
CCA: ð16Þ
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With ~β = β∗, the transformed system (14) has a hyperbolic
equilibrium point (i.e., it has a simple eigenvalue with zero real
part, and all other eigenvalues are negative). Hence, we can
apply the center manifold theory in [12] to analyze dynamics
of the transformed system (14) near ~β = β∗. It is easy to obtain
the right and left eigenvectors of the Jacobian matrix JðP0Þ,

respectively, denoted by v = ðv1, v2, v3ÞT and w = ðw1,w2,w3Þ.

Right eigenvectors : v1 =
μd − β∗

μ
v3, v2

= 1 − qð Þβ∗

μ + k
v3, v3 = v3 > 0,

Left eigenvectors : w1 = 0,w2 =
k

μ + k
w3 w3 =w3 > 0: ð17Þ

Now, we proceed to obtain the associated bifurcation
parameters, a and b, as described in Theorem 4.1 of [12], where

a = 〠
3

k,i,j=1
wkvivj

∂2 f k 0, 0ð Þ
∂yi∂yj

,

b = 〠
3

k,i=1
wkvi

∂2 f k 0, 0ð Þ
∂yi∂β

∗ :

ð18Þ

To obtain the associated bifurcation coefficient a, we first
obtain the nonvanishing partial derivatives of model system
(14) evaluated at DFE. Hence, it follows that

∂2 f 1 0, 0ð Þ
∂y1∂y3

= −β∗,

∂2 f 2 0, 0ð Þ
∂y1∂y3

= 1 − qð Þβ∗,

∂2 f 2 0, 0ð Þ
∂y1∂y3

= −pβ∗,

∂2 f 3 0, 0ð Þ
∂y1∂y3

= qβ∗,

∂2 f 3 0, 0ð Þ
∂y2∂y3

= pβ∗,

ð19Þ

so that

a =w1v1v3
∂2 f 1 0, 0ð Þ
∂y1∂y3

+w2v1v3
∂2 f 2 0, 0ð Þ
∂y1∂y3

+w2v2v3
∂2 f 2 0, 0ð Þ
∂y2∂y3

+w3v1v3
∂2 f 3 0, 0ð Þ
∂y1∂y3

+w3v2v3
∂2 f 3 0, 0ð Þ
∂y2∂y3

,

= μ 1 − qð Þβ∗2w3v3v3
μ + kð Þ2 p −

k + μq
μ 1 − qð Þ
� �

μμd 1 − qð Þ + μ + kð Þ μ + rð Þ
μ μ + γ + μdð Þ

� �� �
,

= μ 1 − qð Þβ∗2w3v3v3
μ + kð Þ2 p − pcð Þ,

ð20Þ

where

pc = k + μq
μ 1 − qð Þ
� �

μμd 1 − qð Þ + μ + kð Þ μ + γð Þ
μ μ + γ + μdð Þ

� �
: ð21Þ

Moreover, the nonvanishing partial derivatives associated
with b are

∂2 f 2 0, 0ð Þ
∂y3∂β

∗ = 1 − qð Þβ∗,

∂2 f 3 0, 0ð Þ
∂y3∂β

∗ = qβ∗,
ð22Þ

so that

b =w2v3
∂2 f 2 0, 0ð Þ
∂y3∂β

∗ +w3v3
∂2 f 3 0, 0ð Þ
∂y3∂β

∗ = β∗v3w3 k + μqð Þ
μ + k

> 0:

ð23Þ

The stability of the model system (4) switches at the tran-
scritical point R0 = 1: According to Theorem 4.1 of [12], it is
stated that if both bifurcation coefficients a and b are positive,
then the system exhibits backward bifurcation. Notice that a
> 0 if and only if p > pc implying that if this condition hold then
the model equation (4) will enter into a bistability regime where
there is coexistence of two positive endemic equilibria when
R0 < 1, (i.e., backward bifurcation). If p < pc, then themodel will
have forward bifurcation at R0 = 1.

The type of bifurcation that occurs at R0 = 1 is primarily
determined by exogenous reinfection parameter p whenever
it exceeds a certain critical value denoted by pc. Thus, the dis-
ease can persist even though the reproduction number is less
than one. In such case, the disease can only be eliminated if
the basic reproduction number is decreased below a certain
threshold. That is, R0 < Rc

0 < 1. Figures 1(a) and 1(b) show
the associated forward bifurcation and backward bifurcation,
respectively. It is clear that incorporation of exogenous rein-
fection does induce new dynamics in model system (4) when
R0 < 1.

It is imperative to mention that in the presence of exoge-
nous reinfection, global stability of the endemic equilibrium
P∗ when R0 > 1 may not be automatically guaranteed. The
next section of the work is dedicated on finding under what
condition the endemic equilibrium point P∗ is globally
asymptotically stable whenever R0 > 1:

5. Global Stability Using the Poincare-
Bendixson Property

Since our objective is to establish global stability of the
unique endemic equilibrium P∗ when R0 > 1 in the presence
of exogenous reinfection parameter p, we first briefly outline
the general mathematical framework of the procedure as
developed in M. Li and J. Muldowney [3, 19].
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Suppose the map y↦ f ðyÞ is a C1 function for y in an
open subset D ⊂ℝn, and consider the following autonomous
dynamical system:

y′ = f yð Þ: ð24Þ

Let yðt, y0Þ be the solution to equation (24) satisfying
yð0, y0Þ = y0. Now, we make the following basic assumptions:

(H1) D is simply connected.

(H2) There exists a compact absorbing set K ⊂D.

(H3) Equation (24) has a unique equilibrium y∗ in D.

Now under the stated assumptions (H1)–(H3), y∗ is said
to be globally stable in D if it is locally stable and all trajecto-
ries inD converge to the same equilibrium y∗. That is, system
(24) has no nonconstant periodic solutions. It is important to
mention that the major role for global stability is determined
by the Bendixson criteria. For n ≥ 2, a Bendixson criterion
refers to a condition satisfied by field f which precludes the
existence of nonconstance periodic solutions of equation
(24). When n = 2 (i.e., the planar case), the classical results
(Poincare-Bendixson theorem and Dulac criteria; see [21])
adequately provide such global conditions. For n ≥ 3, a
remarkable approach for proving global stability can be
traced in the work due to Li and Muldowney [3, 4, 19]. In
their paper, they showed that if conditions (H1)–(H3) hold
and differential equation (24) fulfills a Bendixson criterion
that is robust under C1 local ε − perturbations of f at all non-
equilibrium nonwandering points for system (24), then y∗ is
globally stable in D provided it is stable. Note that a function
g ∈ C1ðD→ℝnÞ is called a C1 local ε − perturbation of f at
y0 ∈D if there exists an open neighbourhoodU of y0 inD such
that the support sup ð f − gÞ ⊂U and j f − gjC1 < ε, where

j f − gjC1 = sup f∣f ðyÞ − gðyÞ∣+∣f yðyÞ − gyðyÞ∣ : y ∈Dg. Also,
a point y0 ∈D is said to be nonwandering for system (24) if
for any neighbourhood U of y0 in D and there exists arbitrary
large t such that U ∩ yðt,UÞ ≠∅. An example is any equilib-
rium, alpha limit point, or omega limit point which is non-
wandering. We now state the new Bendixson criterion
robust under C1 local ε − perturbations and based on the
use of the Lozinski measure as developed in [19]. Now, con-
sider the differential equation (24) under the stated assump-

tions (H1)–(H3). Let PðyÞ be a n
2
× n

2
matrix-valued

function which is C1 for y ∈D, and consider

A = Pf P
−1 + PJ 2½ �P−1, ð25Þ

where Pf is the directional derivative of P in the direction of
the vector field f in system (24) and is defined as

pi,j yð Þ
� 	

f
= ∂pi,j yð Þ/∂x
� 	T

:f yð Þ = ∇pi,j:f yð Þ ð26Þ

and J ½2� represents the second additive compound matrix J
(that is, Df ðyÞ = JðyÞ). In [22] where relation of compound
matrices to differential equations is established, it is shown

that for an arbitrary n × n matrix J = Ji,j, J
½2� is a n

2
× n

2
matrix. For a special case n = 3, the second additive compound
matrix J ½2� can be obtained as

J 2½ � =
J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33

0
BB@

1
CCA: ð27Þ

𝛽

0.44 0.442 0.444 0.446 0.448 0.45

i⁎

× 10–4
3.5

3

2.5

2

1.5

1

0.5

0

(a)

𝛽
𝛽⁎ = 0.444

0.42 0.425 0.4350.43 0.44 0.445 0.45

i⁎

× 10–3
1.5

0.5

0

1

(b)

Figure 1: Illustration of type of bifurcation. (a) Represents forward bifurcation. Parameters used include μ = 0:016, μd = 0:1, k = 0:001,
γ = 2, q = 0:05, c = 45, β ∈ f0:42,0:45g, and p = 0:1245 < pc = 0:1252: (b) Represents backward bifurcation. Parameters used are the same
as in (a) except p = 0:15 > pc = 0:1252. β∗ = 0:444 corresponds to R0 = 1. In both figures, the red solid line represents unstable
equilibria while the blue solid line represents stable equilibria.
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Now consider the following quantity �q2 given as

�q2 = lim
t→∞

sup sup
y0∈Ω

1
t

ðt
0
ρ A s, y0ð Þð Þds, ð28Þ

where ρðAÞ is the Lozinski measure of Awith respect to vector

norm ∣· ∣ in ℝN , N =
n

2

 !
, and is defined as

ρ Að Þ = lim
h→0+

∣1 + hA∣−1
h

, ð29Þ

(see [23, 24]). In the paper [19], they proved that if conditions
(H1) and (H2) are satisfied, then �q2 < 0, indicating that there
are no orbits giving rise to simple closed rectifiable curve in
D that is invariant for system (24), (that is, periodic orbits,
homoclinic orbits, and heteroclinic cycles). Furthermore, it
has been remarked in [19] that under the stated assumptions
(H1)–(H3), quantity �q2 < 0 implies the local stability of equi-
librium point y∗. As a result, Theorem 2 is true.

Theorem 3 (see [19]). Assuming that conditions (H1)–(H3)
hold, then, the equilibrium point y∗ is globally asymptotically
stable in D if a function PðyÞ and a Lozinski measure ρ exist
such that quantity �q2 < 0.

It is straightforward to see that whenever R0 > 1, there
exist unique and positive endemic equilibria P∗ (see Lemma
1) for model system (4). The method outlined above requires
that (i) the endemic equilibrium P∗ is unique in the interior
of Ω (i.e., condition H3 holds) and (ii) in the interior of Ω
there exists an absorbing compact set (condition H2 holds).
The model equation (4) studied here with the assumption that
R0 > 1 fulfills conditions H1–H3. It is easy to prove that when
R0 > 1, the disease-free equilibrium P0 is unstable (see [1]).
The instability of the disease-free equilibrium P0 combined
with P0 ∈ δΩ signals uniform persistence [25]. That is, there
exists a positive constant k0 > 0 such that for every solution
ðsðtÞ, eðtÞ, iðtÞ, rðtÞÞ of system (4) with ðsð0Þ, eð0Þ, ið0Þ, rð0ÞÞ
in the interior of biologically feasible region, Ω satisfies

lim
t→∞

inf ∣s tð Þ, e tð Þ, i tð Þ, r tð Þ∣ ≥ k0: ð30Þ

Because of boundedness of the region Ω, uniform persis-
tence is equivalent to the existence of a compact set in the
interior of Ω which is absorbing for (4) (see [26]). Hence,
condition H1 is satisfied. Also, it is shown that whenever
R0 > 1 the model system (4) has only one equilibrium P∗
in the interior of Ω, so that condition H3 is verified.

Theorem 4. Supposing the conditions R0 > 1 and 0 < p < μ/cβ
are satisfied, then the unique endemic equilibrium P∗ corre-
sponding to the differential equation (4) is globally asymptot-
ically stable with respect to solutions of (4) originating in the
interior of Ω.

Proof.Now, for our model system (4), the task involves show-
ing that quantity �q2 is less than zero or establishing condi-

tion(s) that may lead to �q2 < 0. In the interior of the
biologically feasible region Ω, suppose conditions
(H1)–(H3) hold and let y = ðs, e, iÞ. Let f ðyÞ be the vector field
of system (4). The Jacobian matrix J = ∂f /∂y associated with
a general solution yðtÞ of our system (4) can be obtained as

J =
− μ + cβið Þ 0 μd − cβs

1 − qð Þcβi − pcβi + μ + kð Þ 1 − qð Þcβs − pcβe

qcβi pcβi + k qcβs + pcβe − μ + γ + μdð Þ

2
664

3
775:

ð31Þ

The second additive compound matrix J ½2� of J is given as

J 2½ � =
J11 1 − qð Þcβs − pcβe − μd − cβsð Þ

pcβi + k J22 0
−qcβi 1 − qð Þcβi J33

2
664

3
775,

ð32Þ

where

J11 = − 2μ + k + cβi + pcβið Þ,
J22 = qcβs + pcβe − 2μ + γ + μd + cβið Þ,
J33 = qcβs + pcβe − 2μ + γ + μd + k + pcβið Þ:

ð33Þ

Now based on the model system (4), we choose a suitable
vector norm ∣· ∣ in ℝ3 and a 3 × 3 matrix-valued function
PðyÞ. We set P as

P s, e, ið Þ =

1 0 0
0 e

i
0

0 0 e
i

2
66664

3
77775: ð34Þ

It follows that

Pf P
−1 = diag 0, e

′
e
−
i′
i
, e

′
e
−
i′
i

 !
,

PJ 2½ �P−1 =

J11 −pcβi + 1 − qð Þcβis
e

cβs − μdð Þ i
e

k + pcβið Þ e
i

J22 0

−qcβe 1 − qð Þcβi J33

0
BBBBB@

1
CCCCCA:

ð35Þ
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The matrix A = Pf P
−1 + PJ ½2�P−1 is thus obtained as

A =

J11 −pcβi + 1 − qð Þcβs i
e

cβs − μdð Þ i
e

k + pcβið Þ e
i

J22 +
e′
e
−
i′
i

0

−qcβe 1 − qð Þcβi J33 +
e′
e
−
i′
i

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð36Þ

Now, matrix A can be rewritten in block form as

A =
A11 A12

A21 A22

" #
, ð37Þ

where

A11 = − 2μ + k + cβi + pcβi½ �,

A12 = −pcβi + 1 − qð Þcβs i
e
, cβs − μdð Þ i

e

� �
,

A21 =
k + pcβið Þ e

i

−qcβe

2
664

3
775,

A22 =
J22 +

e′
e
−
i′
i

0

1 − qð Þcβi J33 +
e′
e
−
i′
i

2
666664

3
777775:

ð38Þ

Following [19], we let ðu, v,wÞ represent the vectors in

ℝ3 ≅ℝ
3 2 . Now, for the norm j·j in ℝ3, select

u, v,wj j =max uj j, vj j + wj jf g, ð39Þ

and let ρ represent the Lozinskii measure with respect to
this norm. Applying the method of approximating the
ρðAÞ as given in [24], we have

ρ Að Þ ≤ sup g1, g2f g, ð40Þ

where

g1 = ρ1 A11ð Þ + A12j j,
g2 = A21j j + ρ1 A22ð Þ:

ð41Þ

Note that in equation (41), jA12j and jA21j are operator
norms of A12 and A21 with respect to the l1 vector norm
when they are regarded as mapping from ℝ2 to ℝ and
ℝ2 to ℝ, respectively. ρ1ðA22Þ represents the Lozinskii

measure of the 2 × 2 matrix A22 with respect to the l1
norm in ℝ2. To obtain ρ1ðA22Þ, we sum the absolute value
of the off-diagonal elements to the diagonal one in each
column of A22 and then take the maximum of two sums.
Now, it follows that

ρ1 A11ð Þ = − 2μ + k + cβi + pcβið Þ,

ρ1 A22ð Þ = qcβs + pcβe + 1 − qð Þcβi

+ e′
e
−
i′
i
− 2μ + γ + μd + cβið Þ,

∣A12∣ =max cβsi
e

−
qcβsi
e

− pcβi, cβsi
e

−
μdi
e

� �

= cβsi
e

−min pcβi + qcβsi
e

, μdi
e


 �
,

∣A21∣ =max k + pcβið Þ e
i
, − qcβe

h iT
= k + pcβið Þ e

i
: ð42Þ

Now we have

g1 =
cβsi
e

− 2μ + k + cβi + pcβið Þ −min pcβi + qcβsi
e

, μdi
e


 �
,

g2 = k + 2pcβið Þ e
i
+ qcβs + e′

e
−
i′
i
− qcβi − 2μ + γ + μdð Þ:

ð43Þ

Note that in system (4), second and third equations
can, respectively, be written as

e′
e
−
cβis
e

+ qcβis
e

= − pcβi + μ + kð Þ,

i′
i
+ μ + γ + μdð Þ = pcβe + qcβs + ke

i
:

ð44Þ

Now substituting equality (44) into equation (43) and
equality (44) into equation (43) leads to

g1 =
e′
e
− μ − cβi −min pcβi, μdi

e


 �

≤
e′
e
− μ,

g2 =
e′
e
− μ − qcβi + pcβe,

≤
e′
e
− μ + pcβe,

≤
e′
e
− μ + pcβ because 0 < s, e, i ≤ 1ð Þ:

ð45Þ
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Figure 2: Illustration of nonexistence of periodic solutions when condition p < μ/cβ holds true. The corresponding R0 with the given
parameter values is R0 = 1:5118 > 1.
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Figure 3: Illustration of existence of periodic solutions when p > μ/cβ. The corresponding R0 with the given parameter values is
R0 = 1:5118 > 1.
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Thus, we have

ρ Að Þ ≤ sup g1, g2ð Þ ≤ sup e′
e
− μ, e

′
e
− μ + pcβ

( )

≤
e′
e
− μ + pcβ:

ð46Þ

Hence, we now have

ρ Að Þ ≤ e′
e
− μ + pcβ: ð47Þ

Integrating both sides of equation (47) at the same
time for t >�t, we get

�q2 =
1
t

ðt
0
ρ Að Þds = 1

t

ð�t
0
ρ Að Þds + 1

t

ðt
�t
ρ Að Þds,

≤
1
t
log e tð Þ

e �tð Þ + 1
t

ð�t
0
ρ Að Þds − μ − pcβð Þ,

⇒�q2 = lim
t→∞

supsup 1
t

ðt
0
ρ Að Þds < − μ − pcβð Þ < 0:

ð48Þ

and the Bendixson criterion given by equation (28) is
verified. Observe that �q2 < 0 under condition that 0 < p <
μ/cβ: Thus, the proof of Thoerem (3) is complete.

6. Numerical Analysis

Numerically, it is possible to verify the validity of Theorem 4.
Recalling that for model equation (4) to be globally stable, the
condition 0 < p < μ/cβmust be fulfilled. Now, we numerically
investigate two scenarios numerically: that is, where condi-
tion p < μ/cβ and where p > μ/cβ.

(i) By choosing the following set of hypothetical
parameters, μ = 0:017, μd = 0:1, k = 0:001, γ = 2, q =
0:05, p = 0:0005, c = 60,β = 0:519 and initial condi-
tions s = 1, e = 0, i = 0:00001, with these parameter
values, condition p < μ/cβ is satisfied. That is, p =
0:0005 < μ/cβ = 0:00055: Figure 2 shows that model
system (4) is globally asymptotically stable whenever
condition p < μ/cβ is satisfied. That is, there are no
periodic solutions

(ii) Now, we choose another set of parameter values that
satisfy the condition p > μ/cβ, namely, μ = 0:017,
μd = 0:1, k = 0:001, γ = 2, q = 0:05, p = 0:135, c = 60,
β = 0:519, and k0 = 0:019: The initial conditions
used are the same as in Case (i) above. Figure 3
depicts that model system (4) has sustained periodic
solutions if condition p > μ/cβ

7. Conclusion

A mathematical model is proposed, and its global stability
property is analyzed using the geometric approach. The

model incorporated exogenous reinfection and primary
progression infection processes which were excluded in
previous SEIR-like models used to investigate global stabil-
ity through the Bendixson criterion. The analysis of
endemic equilibrium points reveals that the model exhibits
backward bifurcation phenomena where two positive
endemic equilibria coexist when basic reproduction number
is below one.

To investigate global stability, we applied geometric
approach and found that the Bendixson criterion cannot be
satisfied unless the exogenous reinfection parameter p is less
than the ratio of background mortality rate (μ) to effective
contact rate ðcβÞ. Interestingly, the primary progression
parameter q does not impact the condition for global stability
for a disease model that follows Susceptible-Exposed-Infec-
tive-Recovered stages. Numerically, we verified the validity
of global asymptotic stability condition in Theorem 4 and
found that it does act as the stability condition for the pro-
posed SEIR model with exogenous reinfection and primary
progression infection processes.

Appendix

A. Computation of Rc
0

For simplification, we first rewrite equation (12) coefficients
as d1 = βðb1 − b2βÞ, d0 = c1 − c2β, and d2 = dβ2, where

b1 = μpc μ + γ + μdð Þ + c μ + γð Þ μ + kð Þ + cμμd 1 − qð Þ,
b2 = μpc2,
c1 = μ μ + kð Þ μ + γ + μdð Þ,
c2 = μc k + μqð Þ,
d = μ + γð Þpc2:

ðA:1Þ

Then, choosing β as the bifurcation parameter and
setting Δ = d21 − 4d0d2 = 0, we obtain the following equation
in terms of β:

Δ βð Þ = b22β
2 + 2β 2dc2 − b1b2ð Þ + b21 − 4c1d = 0: ðA:2Þ

Solving equation (A.2), we obtain

βc =
b1b2 − 2dc2ð Þ + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c22 + db2 c1b2 − c2b1ð Þ

q
b22

> 0: ðA:3Þ

Finally, replacing β with βc in R0 (see equation (8)), we
obtain

Rc
0 =

cβc k + μqð Þ
μ + kð Þ μ + γ + μdð Þ : ðA:4Þ
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