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One of the current challenges faced by health centers is to reduce the number of patients who do not attend their appointments.
The existence of these patients causes the underutilization of the center’s services, which reduces their income and extends
patient’s access time. In order to reduce these negative effects, several appointment scheduling systems have been developed.
With the recent availability of electronic health records, patient scheduling systems that incorporate the patient’s no-show
prediction are being developed. However, the benefits of including a personalized individual variable time slot for each
patient in those probabilistic systems have not been yet analyzed. In this article, we propose a scheduling system based on
patients’ no-show probabilities with variable time slots and a dynamic priority allocation scheme. The system is based on the
solution of a mixed-integer programming model that aims at maximizing the expected profits of the clinic, accounting for
first and follow-up visits. We validate our findings by performing an extensive simulation study based on real data and
specific scheduling requirements provided by a Spanish hospital. The results suggest potential benefits with the
implementation of the proposed allocation system with variable slot times. In particular, the proposed model increases the
annual cumulated profit in more than 50% while decreasing the waiting list and waiting times by 30% and 50%, respectively,
with respect to the actual appointment scheduling system.

1. Introduction

One of the current problems faced by health centers is the
existence of patients who do not attend their appointments.
These patients, commonly known as no-shows, cause dam-
age which includes a drastic reduction in the health cen-
ter’s income and extend patients’ access to medical care.
No-show rates ranging from 4 to 79.2% [1] and losses reach-
ing 150 million dollars only in the United States [2] have
been reported.

In order to reduce these numbers, health centers use
reminders and sanctions. However, several studies have
shown that these strategies only achieve a slight or moderate
reduction in the no-show rates [3, 4]. Moreover, it has been

pointed out that sanctions may limit access to patients with
limited income to medical centers [5], and automatic
reminder systems might have an important economic impact
on the health centers [6].

An alternative to these active strategies is the use of
appointment scheduling systems. These systems aim at
obtaining an allocation of the patients that reduce given
performance measures, such us patient overtime or doctor
idle time. The development of these patient scheduling
systems is a very active field. Literature review articles cover-
ing seminal and more recent approaches include [7-9]. This
vast productivity is a consequence of the large variety of
peculiarities of the health centers that cause the systems to
be practically tailor-made. In general terms, these systems
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can be differentiated according to (1) online vs. offline; (2)
single vs. multiple servers; (3) appointment rules; (4) perfor-
mance measures; (5) inclusion of environmental factors; and
(6) modeling approach.

Regarding the first classification, systems can consider
online (sequential) and offline (simultaneous) scheduling.
Primary care centers usually assign the appointment at the
time the patient requests it (online scheduling), while special-
ties assign it days later, after checking the doctors’ availability
and analyzing the required resources (offline scheduling)
[10]. Online systems are more common in practice; however,
they are more difficult to model. On the other hand, offline
systems are becoming increasingly important as requests
can be made automatically, and patients are notified later.

With respect to the second category, queuing theory
allows the classification of these systems into single-server or
multiple servers according to the number of providers being
modelled at a time. The single-server assumption is usually
associated with the fact that each doctor has their own set of
patients associated. However, it is known that models based
on multiple servers are more efficient, and in some cases, such
as laboratories or x-rays tests, they are also optimal [7].

In terms of appointment rules, two parameters have to be
considered. Firstly, the number of patients scheduled in each
time slot (block-size), where the number of patients to be seen
in the first slot (initial-block), is usually studied separately.
Secondly, the time length of each slot (appointment interval)
is being studied also. Each combination of these parameters
describes an appointment rule. For example, individual-
block/variable-interval describes the rule that assigns only
one patient to each slot with variable time length.

Regarding performance measures, these are used to
describe the objective pursued when creating a particular
scheduling system. Most of the models are built from an opti-
mization problem seeking to achieve the best allocation of
patients; although, in some cases, heuristic rules are created
that are then validated by simulation. These measures are
usually associated with the cost of patient waiting time, or
the doctor’s idle time, the revenues of attending a patient,
or a combination of them.

The inclusion of environmental factors into scheduling
systems is still underdeveloped and a large consensus exists
on it being one of the most promising lines to explore in future
research. Cayirli and Veral [7] point out the importance of
including no-shows, walk-in, urgent patient, emergencies,
and second consultations in appointments scheduling sys-
tems. Although these factors can be addressed separately,
through the center’s policies, taking them into account can
lead to better results. Gupta and Denton [8] add to these late
cancellations, which are often classified along with no-shows,
and patient preferences. More recently, Ahmadi et al. [9] add
another environmental factor such as patient lack of punctual-
ity, physician lateness, service interruption, random service
time, and other patient appointment requirements.

As for the mathematical model used for the solution,
most scheduling systems make use of stochastic optimization
or dynamic stochastic programming scheduling, because
these are more robust to random arrivals and random service
times. However, the recent availability of Electronic Health
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Records (EHR) and advances in data science have made it
possible to obtain more accurate predictions about these
two factors, random arrivals and service times, making the
use of deterministic planning systems possible. Most of the
deterministic models are formulated using integer or mixed
linear programming models aiming at optimizing some per-
formance measure of the scheduling. This type of model is
widely used in specialties, where deterministic service times
and near-zero no-show probabilities are assumed [9].

In this paper, we propose a deterministic integer linear
programming (ILP) model for offline scheduling of patients
in the presence of heterogeneous no-shows and variable
times services in a specialty service of a public health center.
To the best of our knowledge, this is the first offline schedul-
ing model that considers both heterogeneous patient no-
shows and length variable appointment intervals. The system
aims to maximize the expected revenues of the clinic consid-
ering the different show-rates of each patient during a whole
week. The model is designed as a single-server given the fact
that each doctor is assumed to have their own list of patients.
The appointment rule used is individual-block/variable-
interval, with no initial-block, for which only one patient is
assigned to each variable time length slot.

In order to validate the model, experiments are carried
out to reproduce the routine of the psychiatric department
of the Fundacién Jiménez Diaz Hospital in Madrid, Spain,
for an entire year. In this sense, patient show rates are esti-
mated, and three different appointment intervals with infor-
mation provided by the center are incorporated into the
proposed model. We also take into account other environ-
mental factors such as large waiting lists, major revenues
from scheduling new patients, and the dynamic priority
assignment scheme. The performance of the model is com-
pared with other scheduling systems, including the one pro-
posed by Ruiz-Hernandez et. al [11], which is currently
implemented at the psychiatric department of this hospital,
showing a considerable improvement.

The rest of the article is structured as follows. In Section
2, we present a literature review in scheduling systems in
health centers with heterogeneous no-show probabilities.
Next, in Section 2, the probabilistic patient scheduling prob-
lem with time-variable slots is introduced. In Section 3, the
specific characteristics of scheduling in the health center
basis for this study are described. In Section 5, the numerical
experiments carried out to evaluate the model are presented
and discussed. Finally, the article ends in Section 6 with the
conclusions of the results obtained.

2. Literature Review

In this section, we review appointment scheduling systems
that take into account variable appointment intervals and
heterogeneous no-shows. First, we discuss models that con-
sider different appointment intervals. Then, we move on to
models with heterogeneous no-show probabilities. Finally,
we will present the contributions of our proposal. A sum-
mary with the most recent works compared with the pro-
posed method is presented in Table 1.
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It is important to point out the difference between the
appointment interval and the service time. The former is the
scheduled length of an appointment, while the latter is the
actual time the patient spends at the appointment. In works
considering different appointment intervals, it is usually
assumed that the service time is deterministic but unknown,
so it can be estimated. Cayirli et al. [12] simulate different
sequence and appointment rules on a variety of environmental
factors, such as different service times for new and follow-up
patients and the presence of homogeneous absences. Huang
and Verduzco [13] reclassify patients into different types of
visits and determine appointment length by incorporating
performance measures such as patient waiting time and physi-
cian downtime, in order to converge with the optimal appoint-
ment length for each class. Bentayeb et al. [14] developed a
new appointment scheduler based on a time-of-service predic-
tion model, which is developed using the data mining method.
They use classification and regression trees to predict service
times with 84% accuracy. They then simulate different sched-
uling rules to obtain a better sequence of patients. To the best
of our knowledge, there are no research articles addressing
variable appointment intervals that use an optimization
approach for optimal patient assignment.

On the other hand, systems that take into account hetero-
geneous no-show probabilities usually follow a stochastic
programming approach in terms of the randomness of
arrivals and service times. This means that, regardless of the
appointment interval (fixed or variable), the service time is
assumed to follow a certain probability distribution. These
models are computationally intensive, which means that
instead of using the probabilities directly, the appointment
is normally split according to no-show probabilities. For
example, Ratcliffe et al. [15] builds a dynamic stochastic
scheduler that maximizes profits by controlling two classes
of patients with different show rhythms. They develop ana-
lytical bounds and approximations that lead to partially opti-
mal scheduling rules. Muthraman and Lawley [16] create a
sequential scheduling model with exponential service times
and multiple patient no-show probabilities, yet the appoint-
ment interval is constant. Zacarias et al. [10] study the analyt-
ical properties of accounting for different class probabilities
and different appointment intervals in the scheduling of a full
day. For example, they conclude that in the presence of
homogeneous probabilities and variable appointment times,
the patient should be scheduled according to the rule of the
shortest processing time first (SPT). Yan et al. [17] develop
a model for scheduling sequential appointments considering
patient choice and service fairness simultaneously. They use
stochastic programming that uses distinct groups of patients
grouped by no-show probabilities and homogeneous
appointment intervals. Samorani and Harris [18] determine
the impact of the probabilistic classifier in scheduling
appointments with no-shows. They try several classifiers to
obtain N classes of patients in terms of their probabilities of
no-shows. They then use a stochastic mixed-integer sched-
uler with random arrivals and service time and appointment
interval determinants and constants.

An alternative idea to the use of stochastic optimization
could be to predict the no-show rates and assume determin-
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istic arrivals and service times. The recent availability of Elec-
tronic Health Records (EHR) and advances in data science
has made it possible to improve this wide variety of schedul-
ing systems. This is because modern predictive techniques
applied to EHRs are capable of estimating the probability of
patient no-show, which can be used to improve the sched-
uling system [4]. Regarding deterministic systems, Savels-
bergh and Smilowitz [19] are the first to define the
probabilities of no-shows for six different categories of
patients depending on their preferences (strong or weak)
for three different time windows (AM, noon, or PM). These
environmental conditions were integrated into an online
linear integer program to optimize patient allocation. Later
on, Ruiz Hernadndez et al. [11] proposed a mixed determin-
istic integer program. The model is probabilistic in the
sense that it incorporates the expected income of the center
weighted by the probabilities of no-show predicted for each
patient. This was the first model to incorporate no-show
rates, rather than using an N class approach to obtain dif-
ferent classes of patients in terms of no-show. The present
paper proposes an offline scheduling system that extends
Ruiz Herndndez’s work by including the variable appoint-
ment interval required for each patient. As it will be seen
in the experiments, the inclusion of this information allows
to improve considerably the performance of the system.
The contributions of this paper are the following: (1) the
inclusion of further heterogeneous probabilities that consider
information’s about the patient, day and time of the appoint-
ment, month, and the indirect waiting time (lead time); (2)
the inclusion of the variable appointment interval in a linear
binary deterministic problem for an online scheduling sys-
tem; (3) the development of a model for a weekly scheduling
system with dynamic prioritization and differentiation for
new patients that maximizes the expected revenue of the cen-
ter and indirectly minimizes the doctor’s idle time; (4) the
application of the model to a health center in Madrid that
potentially mitigates the effects of patient no-shows.

3. The Probabilistic Patient Scheduling
Problem with Time Variable Slots

In this section, the mathematical formulation of the proposed
patient scheduling model is presented. As discussed above, it
takes into account the patients’ no-show probabilities and the
consultation times required by each patient. The goal of the
model is to maximize the center’s expected revenue through
the reduction of no-shows. The model distinguishes between
two types of patients (first visits and show-up visits). In addi-
tion, it takes into account the time the patient has been wait-
ing for an appointment to assign a priority parameter that is
updated every week. It also takes into account some policy
requirements that set the minimum proportion of first visits
that have to be scheduled each week.

Before describing the model, the notation that will be
used is presented:

Sets:

I: days of the week;

T: time slots in any given day;
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K: set of patients to be scheduled for an appointment
during the reference week.

Parameters:

q: proportion of the number of available slots that must
be allocated to first visits;

d,: binary parameter indicating if a patient k € K has high
(d, =0) o low (d; = 1) priority;

Z,: binary parameter indicating if a patient k € K is a first
visit (Z; = 1) or follow-up (Z, = 0).

P,,: probability that patient k € K will show-up to an
appointment in {i, ¢}, forallie I and t € T;

w,: revenue obtained either from a first visit (z=1) or
follow-up (z=0).

t,: number of time slots required by the patient in their
consultation.

h,: slack parameter for the minimum number of slots
that can be allocated in one day.

h,: slack parameter for the maximum number of slots
that can be allocated in one day.

Variables:

X binary variable that takes the value 1 if the patient
k € K is assigned to slot {i,t}, forallie I and t € T;

x{: binary variable that takes the value 1 if the patient k
€ K is referred back to the waiting list.

With this notation, taking into account that the operator
[] denotes the ceiling function (minimum integer not
below), the model is formulated as follows:

max ) Y Y xiPi(Zw, + (1= Z)w,), (1)

i€l teTkeK

s.t Z Z xitkS I,ViEI,tE T, (2)
keK teT|t=t>t-t,
Zintk +x£= 1,Vk e K, (3)
iel teT

Z z Z Xigkt Ly = by (4)

iel teTkeK

ZZ intktk<1 —dy) 2 bs, (5)

i€l teTkeK

)

keK teT|t>t>1-1,

Xitg 2 Z Z Xitl>

keK teT|t+12t>t+1—t

Viel,teT\|T|,
(6)
DY Xty 2 |T| +hyViel, 7)
keKteT
D Xt < |T| +hyViel, (8)
keKteT
Xy Xt €{0,1},VieL,te T,keK, 9)

where

by =min { > Ziio [alT]| T }

keK

(10)
bs = min {Z (1-d)t |1)|T| - b4}

keK

The objective function maximizes the clinic’s expected
revenue. Note that when w, = w, = w, the objective function
maximizes the expected show-up rate; that is, it maximizes
the weighted show-up rate. The set of constraints (2) ensures
that only one patient is seen at a time. The constraints (3)
guarantee that if the patient does not schedule in the refer-
ence week, they are sent back to the waiting list. As we are
working with binary variables, it is also ensured that each
patient is not scheduled more than once in a week. Con-
straint (4) ensures at least the minimum time is used for
new patients (first visits). Constraint (5) grants that low pri-
ority patients are not scheduled until all high priority patients
have been scheduled. Constraints (6) force the next slots of
the day to be empty if one slot is. This ensures that either
all slots are filled continuously or the rest of the day’s slots
remain empty. Finally, constraints (7) force the time spent
in a day to be within acceptable limits.

It should be noted that this model is an extension of the
probabilistic model developed in. That study proposed a
model to maximize the expected revenues based on no-
show probabilities. It considered the distinction between
new (first visits) and old patients and imposed priority for
patients with long waiting times. However, the model did
not take into account scheduling different appointment
times, which can help to attend more patients in a week.
Mathematically, this difference is seen in a change from the
unit of time of appointment to a 5-minute slot. Moreover,
the meaning of assigning a slot to the patient, k € K, changes.
In this case, it means that the patient is programmed to enter
the appointment in that time slot, while the subsequent ¢, — 1
slots must all be equal to zero (see equation (2)). Constraints
(4) and (5), which are weighted by the time the patient
spends in an appointment, also change. Another contribu-
tion of our model is that it forces the assigner not to leave
empty slots with the set of constraints (6). Finally, as in our
proposal, doctor’s working time is not restricted to the num-
ber of appointments; constraints are added (7) to ensure that
the time limits are not exceeded.

4. The Scheduling Process

The scheduling process in the reference health facility used
in this study, and for which the model is proposed, works
as follows:

(1) A waiting list is available with the patient’s informa-
tion for the appointment, including the number of
weeks on the waiting list (sojourn), whether the
patient is a first (new) visit or not, and the patient’s
consultation time. New patients are added to the list



Computational and Mathematical Methods in Medicine

Waiting
list

Request again

Non-scheduled with p=0.3

patients

No-show

[ Patient ] [ Bgffer ]——[Scheduling]—-[Attendance
request list

FIGURE 1: Flow chart of the experimental setup.

at the time the appointment is requested and the
sojourn is initialized at one

(2) The list of patients (referred to as a buffer) to be
passed to the scheduler each week is constructed as
follows:

(a) The system first selects the patients with the longest
waiting time (sojourn) and assigns them high priority
(d, = 0). This group contains both first visits (Z, = 1)
and follow-up visits (Z, = 0)

(b) If the legal minimum number of slots dedicated to
follow-up  patients has not been filled
([(1=¢g)|I||T]]), the system sequentially adds
patients in decreasing order of sojourn until the pre-
vious condition is met (or the waiting list is left
empty). In all but the last iteration, patients are
assigned high priority (d, =0). This group contains
both first visits (Z; = 1) and follow-up visits (Z; =0)

(c) Finally, if the number of first visits in the buffer is
below the legal requirements ([q|I||T|]), the system
sequentially adds first visits in decreasing order of
sojourn until the legal requirements are met or there
are no first visits left to include. These patients have
low priority (d, = 1) and are first visits (Z, = 1).

(3) After the buffer is selected, the system passes the lists
of candidates to be scheduled to the probabilistic
model with variable time (1). Once the appointment
schedule is obtained, the patients who did not receive
an appointment are sent back to the waiting list with
their original sojourn values

5. Numerical Experiments

In order to evaluate the performance of our model, an exper-
iment has been conducted that reproduces the routine of the
psychiatric department of the Fundacién Jiménez Diaz hos-
pital in Madrid.

5.1. Probabilities Estimation. To estimate the probabilities of
no-show for each patient, we used a database with 76,658
appointments belonging to 5261 patients. The average no-
show rate on the dataset is 14.05%. Each appointment was
described by 97 predictors commonly used to predict no-
shows [1]. This set of predictors contained demographic var-

iables, a set of variables that characterize the patient’s previ-
ous attendance behavior, variables about the patient’s
condition, and variables related to the appointment. A logis-
tic regression model with L1 regularization was used to
obtain the no-show probabilities. This model, commonly
known as Lasso Regression, has been previously used to pre-
dict no-shows because of its ability to automatically select
variables and because of its interpretability [20]. The vari-
ables included in the model contain the day of the week, time,
and lead time, which allowed to obtain specific and differen-
tiated probabilities for each patient, day of the week, month,
time, and sojourn value.

5.2. Experimental Setup. We now describe the procedure used
to reproduce the scheduling process during a week in the
reference center (presented in Section 3). For an illustra-
tion of this process, see Figure 1: flow chart of the exper-
imental setup.

The experiment simulates 48 weeks of a doctor attending
patients for six hours from Monday to Friday. These hours
are equivalent to 72 slots of 5 minutes each day for a total
of 360 slots to be covered throughout the week. Therefore,
it is assumed that the doctor does not use extra slots (param-
eter h,=0). Each appointment lasts between 20 and 30
minutes, which means that each patient requires between 4
and 6 slots per consultation. Consequently, each week, the
doctor attends between 60 and 90 patients with an average
of 75 if the probabilistic model with variable time proposed
is adopted.

The experiment assumes that the center has a list of
patients where those who have been waiting for the longest
have waited 8 weeks. This list is generated at random. The
simulation is performed as follows:

(i) At the beginning of each week, a set of patients () is
generated who ask for an appointment. This is done
by generating a random number according to a dis-
crete uniform distribution in [62, 66]. This number is
used to randomly select patients from the database
so that the proportion of first visits is respected.
The selected patients are added to the end of the
waiting list with a sojourn value of one. These
patients are common to all the scheduling
approaches. In the case of model with variable time
slots, we assume that times follow a discrete uniform
distribution in [4, 6].

(ii) As described above, the buffer of patients to be
passed to the scheduler is obtained from the wait-
ing list
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TABLE 2: Parameter of the simulation.

Parameters Values
q 0.3
w, 70
wy 50
hy 3

h, 0
[T 5
IT| 72
b, 03
t U[4, 6]
ol U[62, 66]

(iii) The probabilistic model with variable time (1)
assigns the day and time of the appointment to dif-
ferent patients in the buffer. Those patients not
assigned return to the waiting list

(iv) Attendance is simulated for each patient, based on
their estimated show-up probabilities. If a patient
attends the appointment, the center obtains the cor-
responding profit (70 € per new patient, 50 € per fol-
low-up), and the patient is removed from the waiting
list. Otherwise, the patient can request an appoint-
ment again with a probability of 0.3, denoted by p,,
or leave the waiting list definitively with a probability
of 0.7. If the patient reschedules, they are returned to
the waiting list with a sojourn value of zero. At the
end of the week, the sojourn value of all patients is
increased by one

Parameter values are summarized in Table 2. It is impor-
tant to point out that these values have been provided by
the health center basis for this study. In this way, simula-
tion experiments reproduce the expected performance of
the center if the proposed system was implemented during
an entire year.

5.3. Results. We now present the results obtained in the
experiment. The performance of the proposed model is
compared with the following: (i) the system currently
implemented in the health center which assigns the patient
to the first available slot with a fixed duration of 30
minutes (FIFO constant); (ii) the system which would
assign each patient to the first available slot but would
use the estimate of the number of slots they would need
(FIFO variable); and (iii) the model proposed by Ruiz-
Hernandez et al. [11] that assigns patients based on their
probabilities using patient constant appointment time
(Time constant). Our model will be referred to as time
variable. All models are coded with CPLEX Solver for
mathematical optimization in MATLAB R2020a, and the
experiments have been conducted in a PC with an Intel
Core 19 (2.6-4.5) GHz and 32 GB RAM processor.

Table 3 shows the average results of the simulation over
the 48 weeks, including computing times of the different
methods. As can be seen, the proposed model achieves better
results in terms of the number of patients in the queue and
indirect waiting times. Similarly, the center’s profit and the
doctor’s idle time are increased and reduced, respectively,
with this approach. These results are achieved while keeping
no-show rates at acceptable levels, just behind those of the
time constant scheduling model. With respect to the comput-
ing time, our model exceeds the time required for existing
methods. Nonetheless, the total computing time for allocat-
ing all the patients in a week (~32 seconds) is perfectly
assumable for an offline scheduling system.

For a more graphic assessment of the results, the cumu-
lated performance measures over the course of each week
are presented. Figure 2(a) shows the number of people on
the waiting list for each week. In constant time models, since
no more than 60 appointments can be assigned per week, the
number of people on the waiting list increases over time. On
the other hand, if we compare the variable time models, we
can see that the probabilistic model presents better results,
by making an assignment that minimizes the effects of the
no-shows. It is important to note that the proposed model
does not manage to keep the waiting list steady. This is due
to the fact that the number of patients is too small in relation
to the number that can be assigned. This could be solved
either by increasing the number of patients arriving each
week or by reducing the center’s operating times.

Figure 2(b) shows the sojourn value, i.e., the average number
of weeks a patient has to wait before being scheduled for an
appointment. As in the previous graph, in constant time systems,
the average waiting time for patients increases over the weeks.
This is a consequence of not having enough capacity to assign
all patients. In contrast, the variable FIFO model remains stable
over time but fails to reduce the sojourn value throughout the
simulation. Finally, the probabilistic model with variable time
not only decreases the time but takes it to the minimum values.

Figure 2(c) shows the cumulated profits. Probabilistic
models have higher benefits than the rest. Of these, the model
with variable time obtains better revenues, since under this
approach, a greater number of patients can be seen and their
attendance probability is maximized.

Figure 2(d) shows the cumulated doctor’s inactivity time.
It should be noted that the constraint added in the probabilis-
tic model ensures that no slots can be left empty throughout
the day unless subsequent appointments are not scheduled,
see (7). The same applies to the FIFO model. This means that
the inactive time of the doctors is highly associated with the
number of no-shows. The other factor with direct impact in
the doctor inactive time is the difference between the deter-
ministic service time and the scheduled time, which directly
affects constant-time models. As in the previous graph, vari-
able time systems offer better results, as they take into account
the real patient service times. Among them, the proposed
model has a lower cumulative doctor inactive time.

The same pattern can be seen in Figure 2(e), which shows
the number of cumulated no-shows. The models with vari-
able time present fewer no-shows, and within them, the
model with constant time presents less cumulated no-shows.
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TaBLE 3: Average weekly simulation results.

FIFO constant FIFO variable Time constant Time variable
Patient in the queue 688.449 532918 672.979 356.143
Average sojourn value (weeks) 9.951 7.787 9.824 5.089
Center’s profit 2703.673 3199.184 3434.286 4130.612
Doctor inactive time (minutes) 484.695 210.920 417.145 154.695
No-show rate 0.124 0.120 0.081 0.085
Computing time (seconds) 0 0.002 17.554 32.332
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FI1GURE 2: Weekly simulation results.

Finally, Figure 2(f) presents the complementary of the
previous graphic, that is, the number of assigned patients
who showed up. Again, models with variable time present
better indicators over time since they can allocate a larger
number of patients.

6. Conclusions

In this article, we have addressed the problem of no-shows in
health centers. This problem causes significant damage to the

centers, ranging from increased waiting times for patients to
severe financial losses. To solve this problem, we have
proposed a scheduling system based on a probabilistic sched-
uling with variable time model together with dynamic prior-
ity allocation scheme. The system is based on the solution of
a mixed-integer programming model that maximizes the
expected profits of the clinic, differentiating between first
and follow-up visits. The model minimizes the impact of
no-shows on the expected revenues based on the patient’s
show probabilities and their appointment time.
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The model is based on individual estimates of patients’
show appointment probabilities. These probabilities have
been estimated by using a logistic regression model with L1
regularization (lasso), because of its ability to select variables
automatically. In addition, the model can handle different
patient appointment times. These values have been simulated
based on information provided by the health center from
which the data were extracted.

The experiments show that while both the waiting list
and the waiting times are increased in the models with con-
stant time, the proposed model is able to reduce the waiting
list by 30% and the waiting times by 50% with respect to their
values at the beginning of the simulation. The proposed
model is also capable of increasing the cumulated earnings
by more than 50%, while reducing the cumulated doctor’s
idle time by more than 40%, with respect to the current sys-
tem used at the health center.

There are several opportunities for future research. The
first is to extend the probabilistic model with variable time
developed to allow overbooking. Similarly, the model could
be extended to more environmental factors affecting
scheduling such as walk-in, early cancelations, and patient
preferences. Finally, appointment times could be esti-
mated, just as the attendance probabilities, in order to
obtain more realistic results.

To conclude, the proposed model is capable of working in
a way that minimizes the probability of a patient missing an
appointment, while allowing for more patients to be seen. It
has proven to dramatically outperform models with constant
time, as well as the variable time extension of the current hos-
pital system.

Data Availability

Answer: No. Comment: The data used to support the find-
ings of this study were supplied by the Jimenez Diaz Hospital
under license and so cannot be made freely available.
Requests for access to these data should be made to Enrique
Baca-Garcfa.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

Acknowledgments

The authors would like to thank David Garcia-Heredia for
his helpful suggestions to the model. This work was partly
funded by Carlos IIT (ISCIII PI16/01852), American Foun-
dation for Suicide Prevention (LSRG-1-005-16), the Madrid
Regional Government (B2017/BMD-3740 AGES-CM 2CM;
Y2018/TCS-4705 PRACTICO-CM), MINECO/FEDER
(‘(ADVENTURE’, id. TEC2015-69868-C2-1-R), MCIU
Explora Grant ‘aMBITION (id. TEC2017-92552-EXP),
and MICINN (‘CLARA’, id. RTI2018-099655-B-100). We
would like to thank Angel Blanco, Pablo Jose Ruiz Arcones,
Alberto Pardo, Marta Moratilla, Alberto Cid Carrillo, Anto-
nio Herrero Gonzalez, and Juan Jose Serrano Garcia-Ortega

who assisted with the preparation of data. The author is also
grateful for the collaboration of the board of directors Juan
Antonio Alvaro de la Parra, Raquel Barba Martin, Ana Leal
Orozco, Marta Sanchez Menam, and Adolfo Bermudez de
Castro.

References

[1] L. F. Dantas, J. L. Fleck, F. L. Cyrino Oliveira, and
S. Hamacher, “No-shows in appointment scheduling-a sys-
tematic literature review,” Health Policy, vol. 122, no. 4,
pp. 412-421, 2018.

[2] J. Gier, “Missed appointments cost the US healthcare system
$150 B each year,” Health Management Technology, vol. 2,
2017.

[3] V. Chariatte, A. Berchtold, C. Akré, P.-A. Michaud, and J.-
C. Suris, “Missed appointments in an outpatient clinic for ado-
lescents, an approach to predict the risk of missing,” Journal of
Adolescent Health, vol. 43, no. 1, pp. 38-45, 2008.

[4] D. Carreras-Garcia, D. Delgado-Gémez, F. Llorente-Fernan-
dez, and A. Arribas-Gil, “Patient No-Show Prediction: A Sys-
tematic Literature Review,” Entropy, vol. 22, no. 6, p. 675,
2020.

[5] J. Daggy, M. Lawley, D. Willis et al., “Using no-show modeling
to improve clinic performance,” Health Informatics Journal,
vol. 16, no. 4, pp. 246-259, 2011.

[6] P. E. Hasvold and R. Wootton, “Use of telephone and SMS
reminders to improve attendance at hospital appointments: a
systematic review,” Journal of Telemedicine and Telecare,
vol. 17, no. 7, pp. 358-364, 2011.

[7] T. Cayirli and E. Veral, “Outpatient scheduling in health care:
a review of literature,” Production and Operations Manage-
ment, vol. 12, no. 4, pp. 519-549, 2003.

[8] D. Gupta and B. Denton, “Appointment scheduling in health
care: challenges and opportunities,” IIE Transactions, vol. 40,
no. 9, pp. 800-819, 2008.

[9] A. Ahmadi-Javid, Z. Jalali, and K. J. Klassen, “Outpatient
appointment systems in healthcare: a review of optimization
studies,” European Journal of Operational Research, vol. 258,
no. 1, pp. 3-34, 2017.

[10] C. Zacharias and M. Pinedo, “Appointment scheduling with
no-shows and overbooking,” Production and Operations Man-
agement, vol. 23, no. 5, pp. 788-801, 2014.

[11] D. Ruiz-Herndndez, D. Garcia-Heredia, D. Delgado-Gémez,
and E. Baca-Garcia, “A probabilistic patient scheduling model
for reducing the number of no-shows,” Journal of the Opera-
tional Research Society, vol. 71, no. 7, pp. 1102-1112, 2020.

[12] T. Cayirli, E. Veral, and H. Rosen, “Designing appointment
scheduling systems for ambulatory care services,” Health Care
Management Science, vol. 9, no. 1, pp. 47-58, 2006.

[13] Y. Huang and S. Verduzco, “Appointment template redesign
in a women’s health clinic using clinical constraints to improve
service quality and efficiency,” Applied clinical informatics,
vol. 2, no. 6, p. 271, 2015.

[14] D. Bentayeb, N. Lahrichi, and L.-M. Rousseau, “Patient sched-
uling based on a service-time prediction model: a data-driven
study for a radiotherapy center,” Health Care Management
Science, vol. 22, no. 4, pp. 768-782, 2019.

[15] A. Ratcliffe, W. Gilland, and A. Marucheck, “Revenue manage-
ment for outpatient appointments: joint capacity control and



10

[16]

(17]

(18]

(19]

[20]

overbooking with class-dependent no-shows,” Flexible Services
and Manufacturing Journal, vol. 24, no. 4, pp. 516-548, 2012.

K. Muthuraman and M. Lawley, “A stochastic overbooking
model for outpatient clinical scheduling with no-shows,” IIE
Transactions, vol. 40, no. 9, pp. 820-837, 2008.

C. Yan, J. Tang, B. Jiang, and R. Y. K. Fung, “Sequential
appointment scheduling considering patient choice and ser-
vice fairness,” International Journal of Production Research,
vol. 53, no. 24, pp. 7376-7395, 2015.

M. Samorani and S. Harris, The Impact of Probabilistic Classi-
fiers on Appointment Scheduling with No-Shows, Fortieth
International Conference on Information Systems, Munich,
2019.

M. Savelsbergh and K. Smilowitz, “Stratified patient appoint-
ment scheduling for mobile community-based chronic disease
management programs,” IIE Transactions on Healthcare Sys-
tems Engineering, vol. 6, no. 2, pp. 65-78, 2016.

X. Ding, Z. F. Gellad, C. Mather III et al., “Designing risk pre-
diction models for ambulatory no-shows across different spe-
cialties and clinics,” Journal of the American Medical
Informatics Association, vol. 25, no. 8, pp. 924-930, 2018.

Computational and Mathematical Methods in Medicine



	A Probabilistic Patient Scheduling Model with Time Variable Slots
	1. Introduction
	2. Literature Review
	3. The Probabilistic Patient Scheduling Problem with Time Variable Slots
	4. The Scheduling Process
	5. Numerical Experiments
	5.1. Probabilities Estimation
	5.2. Experimental Setup
	5.3. Results

	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

