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We modeled the magnetic field up to the quadrupole term to investigate not only the average susceptibility (dipole), but also the
susceptibility distribution (quadrupole) contribution. Expanding the magnetic field up to the 2nd order provides the quadrupole
(0th: monopole, 1st: dipole). Numerical simulations were performed to investigate the quadrupole contribution with subvoxel
nonuniformity. Conventional dipole and our dipole + quadrupole models were compared in the simulation, the phantom and
human brain. Furthermore, the quadrupole field was compared with the anisotropic susceptibility field in the dipole tensor
model. In a nonuniformity case, numerical simulations showed a nonnegligible quadrupole field contribution. Our study showed
a difference between the two methods in the susceptibility map at the edges; both the phantom and human studies showed sharper
structural edges with the dipole + quadrupole model. Quadrupole moments showed contrast mainly at the structural boundaries.
The quadrupole moment field contribution was smaller but nonnegligible compared to the anisotropic susceptibility contribution.
Nonuniform and uniform source distributions can be separately considered by quadrupole expansion, which were mixed together
in the dipole model. In the presence of nonuniformity, the susceptibility maps may be different between the two models. For a
comprehensive field model, the quadrupole might need to be considered along with susceptibility anisotropy and microstructure
effects.

1. Introduction

Quantitative susceptibility mapping (QSM) is a magnetic
resonance imaging (MRI) technique that deconvolves the
nonlocal field to reveal local tissue magnetic properties [1–
7]. A wide range of clinical applications of QSM have been
demonstrated, including calcifications and hemorrhages [8,
9], iron overload [10–14], cerebral microbleeds [15], Parkin-
son disease [16], and oxygen consumption [17–20]. The
dipole field model, usually used in QSM, has the following
implicit assumption: each voxel is considered uniform, and
the corresponding magnetic field induced by each voxel is
approximated as the field due to a single dipole. Under this
assumption, the ill-posed field-source inverse problem has
beenwell solved usingmultiple sample orientation [21, 22], or
tissue structure guided regularization with the clinical single
orientation [1, 2, 5, 23–25].

It is well known that dipole-approximation is accurate
onlywhen the observation point is far from the sources [5, 21].

When close to the sources, a higher order multipole field
needs to be considered [26, 27], which can be substantial
when the susceptibility distribution inside the voxel is not
uniform. P-space imaging has been proposed to study neu-
ral architecture caused by quadrupoles [28]. However the
definition of the quadrupoles in the p-imaging is the field
inhomogeneity not the inhomogeneity of the susceptibility
within a voxel. We introduce here the classical image-space
quadrupole formulation [26, 27] that is explicitly defined
by the susceptibility inhomogeneity at the voxel scale. This
model expansion might improve the QSM accuracy and
provide the information regarding subvoxel source distribu-
tion. We validate this quadrupole inclusion in QSM using
numerical simulation and imaging of gadolinium balloon
phantoms and human brains.

2. Materials and Methods
2.1. �eory. For an isotropic tissue with a volume magnetic
susceptibility distribution 𝜒𝑀 under the polarization of the
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Figure 1: The dipole and quadrupole kernels in image- (top) and k-space (bottom).The kernels in image-space are based on (3) and (4), and
those in k-space are based on (6) and (7). In image-space, all the kernels are real. The dipole kernel (d) decays as 1/|𝑥|3, and the quadrupole
kernel (gm) decays as 1/|𝑥|4. The dipole kernel, therefore, affects a wider range than the quadrupole kernel. In k-space, the dipole kernel (D)
is real. The quadrupole kernel (Gm) is purely imaginary and proportional to km. The magnitude of the quadrupole kernels, hence, increases
as the k-coordinate increases.

main MRI field 𝐵0, the tissue gains a magnetic dipole density𝜇0𝐵0𝜒𝑀 pointing along the 𝐵0 or z direction. We define the
zeroth moment (dipole, 𝜒) and first moment (quadrupole
𝑞) of susceptibility in a voxel occupying space �𝑟 as [27]
(appendix):

𝜒 = ∫�𝑟/2

−�𝑟/2
𝑑3𝑟𝜒𝑀

𝑞 = ∫�𝑟/2

−�𝑟/2
𝑑3𝑟𝜒𝑀𝑟

(1)

For a uniform susceptibility distribution, the voxel
quadrupole moment 𝑞 = 0. This definition of quadrupole by
the first moment of susceptibility distribution clearly reflects
the nonuniform susceptibility, especially asymmetric source
distribution, on a voxel scale, typically on themillimeter scale
in human imaging. Microscopic variations at the molecular
(∼nm) and cellular (∼ 𝜇m) scales are averaged out with a null
contribution from the quadrupole moments.

Then, with accounting for the Lorentz sphere correction,
the z-component of the tissue magnetic field 𝐵𝑧(𝑥) is sensi-
tized in the MR signal phase at voxel 𝑥, and can be expressed
in the following discretized form:

𝐵𝑧 (𝑥)𝐵0 ≡ 𝑏 (𝑥) = 𝑑 ∗ 𝜒 (𝑥) + 3∑
𝑚=1

𝑔𝑚 ∗ 𝑞𝑚 (𝑥) (2)

where 𝑚 represents Cartesian coordinates. 𝑑 is the dipole
kernel (𝐻(𝑦) = 0 ∀𝑦 ≤ 0; 1∀𝑦 > 0),

𝑑 = 14𝜋 3𝑥23 − |𝑥|2
|𝑥|5 𝐻 (|𝑥|) (3)

and 𝑔𝑚 is the quadruple kernel component [29].

𝑔𝑚 = − 34𝜋
𝑥𝑚 (|𝑥|2 − 5𝑥32)

|𝑥|7 𝐻 (|𝑥|) − 15 𝛿 (𝑥)𝑥𝑚
+ 𝛿𝑚3 {− 64𝜋 𝑥3|𝑥|5𝐻 (|𝑥|) − 25 𝛿 (𝑥)𝑥3 }

(4)

The corresponding k-space expression is

𝐵 (𝑘) = 𝐷 (𝑘) ⋅ Χ (𝑘) + 3∑
𝑚=1

𝐺𝑚 (𝑘) ⋅ 𝑄𝑚 (𝑘) (5)

where the dipole and quadrupole kernels in k-space are

𝐷 = 13 − 𝑘23𝑘2 (6)

𝐺𝑚 = −𝑖𝜋𝑘𝑚𝑘2 (𝑘2 − 5𝑘23) + 𝑖𝜋25𝑘𝑚
+ 𝛿𝑚3 {−𝑖𝜋2𝑘3 + 𝑖𝜋45𝑘3}

(7)

and the dipole and quadrupole kernels are illustrated in
Figure 1.

The formulation above assumes that the main field is
along z. If the main field is along 𝑛 = [𝑛1, 𝑛2, 𝑛3]𝑇, the dipole
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kernel (𝐷), quadrupole kernel (𝐺𝑚), and quadrupolemoment
(𝑄 = [𝑄1, 𝑄2, 𝑄3]𝑇) are changed correspondingly as follows:

D (k) 󳨀→ D (Rk)
𝐺𝑚 (k) 󳨀→ 𝐺𝑚 (Rk)

𝑄 (k) 󳨀→ R𝑄 (k)
(8)

where R is the rotation matrix, 𝑧̂ = R𝑛

R =
[[[[[[
[

𝑛3 + 𝑛221 + 𝑛3 − 𝑛1𝑛21 + 𝑛3 −𝑛1
− 𝑛1𝑛21 + 𝑛3 𝑛3 + 𝑛211 + 𝑛3 −𝑛2

𝑛1 𝑛2 𝑛3

]]]]]]
]

(9)

To solve the four unknowns in (5), multiple orientation
measurements are needed.

𝐵𝑗 (𝑘) = D (𝑅𝑗𝑘) ⋅ 𝜒 (𝑘) + 3∑
𝑚=1

𝐺𝑚 (𝑅𝑗𝑘) ⋅ 𝑅𝑗𝑄𝑚 (𝑘) (10)

where 𝐵𝑗(𝑘) is the local field in the jth orientation in k-space,
and 𝑅𝑗 denotes the jth rotation. The first term on the right of
(10) represents the dipole field dependence on rotation, and
the second term represents the quadrupole field dependence
on rotation.

2.2. Numerical Simulations. To investigate the quadrupole
contribution to the field, numerical simulation was per-
formed (Figure 2). In a high resolution (matrix size = [240× 240 × 240], voxel size = [1 × 1 × 1 mm]), a dipole
field was generated by a spherical susceptibility input source
with continuous boundary (Input 𝜒 in Figure 2 and (11)).
This is considered as ground truth field (black curve in
Figure 2). Based on this high-resolution susceptibility input,
the susceptibility and quadrupole moments (𝜒, 𝑄1, 𝑄2, and𝑄3) at lower resolutions (larger voxels) were calculated via
(1) in image-space. Then, the dipole and dipole + quadrupole
field were calculated with the low-resolution susceptibility
and quadrupolemoments, respectively (red and blue curve in
Figure 2) via (5).The two fields were compared to the ground
truth field. Note that the downsampling means making the
voxel larger, not downsampling the high-resolution field. By
increasing the downsampling factors (making the voxel size
larger), we expect that the effect of the nonuniform source
distribution within a voxel will increase. We used 2, 4, and 6
as downsampling factors (making voxel 23, 43, and 63 times
larger).

𝜒 =
{{{{{{{{{

1 𝑟 < 𝑅𝑆
1 − 𝑟 − 𝑅𝑠𝑅𝐿 − 𝑅𝑠 𝑅𝑆 ≤ 𝑟 < 𝑅𝐿
0 𝑟 ≥ 𝑅𝐿

(11)

where 𝑟 is the distance from the origin, 𝑅𝑆 is the inner sphere
radius (12mm), and 𝑅𝐿 is the outer sphere radius (20mm).

To investigate the effect of quadrupole inclusion inmodel
fitting, a second simulation was performed using a numerical
brain phantom from the Cornell MRI research group
(http://weill.cornell.edu/mri/pages/qsm.html) (Figure 3).
The multi-echo gradient echo signal was simulated at a
high resolution by the dipole model, and then the signal
was downsampled to lower resolutions to mimic actual
experiments with larger voxels. At the lower resolutions,
the susceptibility was reconstructed with the dipole and
dipole + quadrupole model, respectively, to compare which
model provides more accurate susceptibility map. The
detailed steps are as follows. First, the 𝜒33 in the dataset
was upsampled to a higher resolution [480 × 480 × 480]
by zero-padding k-space. The resulting susceptibility map𝜒T was then considered as the ground truth. To simulate
a high-resolution gradient echo signals, the resolution was
set to 1 × 1 × 1 mm3 and twenty 𝐵0 directions (taken from
the 12 acquired in the human subject 1 and 8 from the
phantom acquisition as detailed below) were used. For each𝐵0 direction n̂k (k= 1, . . . , 20), 𝜒T was rotated to set the𝐵0 direction from n̂k to ẑ to mimic an actual experiment.
High-resolution fields fHk were then generated with the fixed𝐵0 direction [0 0 1] by convolving each rotated susceptibility
map with the dipole kernel. Subsequently, gradient echo
signals were set to Meif

H
k TE for each TE (2.6:2.6:28.6 ms)

and each orientation, with M = 1. Then, downsampling was
performed on these signals by taking the average over 2 × 2 ×
2 (downsampling factor 2) or 4 × 4 × 4 (downsampling factor
4) voxel blocks. The downsampled signal was then used to fit
the lower resolution field, which was then rotated back (𝐵0
direction: ẑ 󳨀→ n̂k). Finally, the lower resolution field was
fitted with the dipole and dipole + quadrupole models ((12),
with the identity field SNR weighing, 𝑤 = 1), respectively.

2.3. Phantom Experiment. A 1% agarose phantom was con-
structed with five balloons: one filled with tap water and four
filled with gadolinium solutions with susceptibility values of
3.26, 1.63, 0.82, and 0.41 ppm. For data acquisition, all exper-
iments were conducted on a 3.0T clinical Siemens scanner
with multi-echo gradient echo sequence. The resolution was
set to 1 × 1 × 1 mm3, TR to 27 ms, bandwidth to 260 Hz/pixel,
and flip angle to 15∘. Four TEs were used: 6.2, 11.5, 16.9, and
22.2 ms. The phantom was rotated with respect to the main
magnetic field. Eight different rotations were acquired at the
COSMOS optimal angles (0, 60, 120, and 270∘) in the xy and
yz planes (B0 in z-axis) [21]

2.4. Human Subject Study. Human subject study was per-
formed with approval from our institutional review board.
Two volunteers, a 25 year old female (subject 1) and a 32
year old male (subject 2), were recruited to be scanned on
a 3T clinical MR scanner (General Electric Excite HD; GE
Healthcare, Waukesha, WI, USA) with a transmit/receive
head coil to allow for rotation. For subject 1, a total of
12 𝐵0 orientations were acquired using a combination of
neutral, left-, right-, forward-, and backward-leaning orienta-
tions in the supine and prone positions (shown in Figure 8).
For each orientation, a gradient echo sequence (GRE) with
the following imaging parameters was performed: 11 echoes
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Figure 2: Numerical simulation of the quadrupole contribution to the magnetic field. The field profile of the gray line in the Input 𝜒 (top
left) is plotted as blue (dipole + quadrupole, D+Q), red (dipole, D), and black line (ground truth) in the field graphs (right). Increasing the
downsampling factor, effectively equivalent to increasing voxel size, the dipole + quadrupole field (blue) remains closer to the ground truth
(black). This is especially notable for downsampling factors 4 and 6, where the dipole + quadrupole field (blue) captures the field peak at the
boundary of the input sphere, whereas the dipole field (red) shows a noticeable drop.

with TE spacing of 2.64 ms, TR of 46.94 ms, and 0.9 ×
0.9 × 1.5 mm3 resolution. A 2D echo planar imaging (EPI)
dual spin echo DTI sequence was used to acquire diffusion
tensor data in the neutral position with a resolution of
2×2×2.4 mm3, with the following parameters: 33 directions,
b value of 1000 s/mm2 , 22cm FOV, acquisition matrix of
110×110, 2.4 mm slice thickness, 17s TR, 85.3 ms TE, and
bandwidth of 1953.12 Hz/pixel. For subject 2, a total of 8 𝐵0
orientations were acquired. For each orientation, a GRE with
the following imaging parameters was performed: 11 echoes
with TE spacing of 2.97 ms, TR of 36.1 ms, and 1.2 × 1.2 × 1.2
mm3 resolution. A 2D echo planar imaging (EPI) dual spin
echo DTI sequence was used to acquire diffusion tensor data
in the neutral position with a resolution of 0.86×0.86×2.6
mm3, with the following parameters: 33 directions, b value
of 1000 s/mm2 , 22 cm FOV, acquisition matrix of 256×256,
2.6 mm slice thickness, 17s TR, 107.4 ms TE, and bandwidth
of 1953.12 Hz/pixel. DTI results are registered to QSM via the
FSL FLIRT algorithm [30, 31].

2.5. Data Processing. For the phantom and human data post-
processing, phase unwrapping and background field removal
were used to obtain the local field for each orientation [32].

The local fields were coregistered into the first orientation,
and the rotation matrices (𝑅) were obtained using the FSL
FLIRT algorithm [30, 31] with 6 degrees of freedom (3 rota-
tion + 3 translation). Then, the susceptibility and quadrupole
moment were fitted by the dipole (D) or dipole + quadrupole
(D+Q) model as follows.

𝑥 = argmin
𝑥

󵄩󵄩󵄩󵄩󵄩𝑤I
−1 (𝐴I𝑥 − I𝑏)󵄩󵄩󵄩󵄩󵄩22 (12)

where 𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝑁]𝑇 is the field SNR weighting
[5], I indicates Fourier transform, and 𝑏 = [𝑏1, 𝑏2, . . . , 𝑏𝑁]𝑇
represents registered local fields. N is the total number of 𝐵0
directions.

For the dipole (D) model,

𝐴 =
[[[[[[[[
[

𝐷 (𝑅1𝑘)
𝐷 (𝑅2𝑘)

...
𝐷 (𝑅𝑁𝑘)

]]]]]]]]
]
𝑥 = 𝜒 (13)

For the dipole + quadrupole (D+Q) model,



Concepts in Magnetic Resonance Part A 5

Axial

Sagittal

Coronal

Axial

Sagittal

Coronal

Susceptibility Quadrupole Moment

x
y

z
y

xxx
yyyy

zzz
yyyy

Down-sampling factor 2

Down-sampling factor 4

ppm
0.2

0.1

0

-0.2

-0.1

ppm × mm
0.4

0.2

0

-0.4

-0.2

x
y

z
x

z
y

Q1 Q2 Q3

Q1 Q2 Q3

ＮＬＯＮＢDipole + Quadrupole (Ｋ)Dipole (＞)

ＮＬＯＮＢDipole + Quadrupole (Ｋ)Dipole (＞)

Figure 3: Numerical simulation of the quadrupole inclusion effect in model fitting. The dipole + quadrupole model provides sharper
boundaries in the susceptibility maps (𝜒𝑞) than the dipole only model (𝜒𝑑). The Q1, Q2, and Q3 maps become greater in magnitude as the
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𝐴 =
[[[[[[[[[[[
[

𝐷 (𝑅1𝑘) ∑
𝑖

𝐺𝑖 (𝑅1𝑘) 𝑅1𝑖1 ∑
𝑖

𝐺𝑖 (𝑅1𝑘) 𝑅1𝑖2 ∑
𝑖

𝐺𝑖 (𝑅1𝑘) 𝑅1𝑖3
𝐷 (𝑅2𝑘) ∑

𝑖

𝐺𝑖 (𝑅2𝑘) 𝑅2𝑖1 ∑
𝑖

𝐺𝑖 (𝑅2𝑘) 𝑅2𝑖2 ∑
𝑖

𝐺𝑖 (𝑅2𝑘) 𝑅2𝑖3
...

𝐷 (𝑅𝑁𝑘)
...

∑
𝑖

𝐺𝑖 (𝑅𝑁𝑘) 𝑅𝑁𝑖1
...

∑
𝑖

𝐺𝑖 (𝑅𝑁𝑘) 𝑅𝑁𝑖2
...

∑
𝑖

𝐺𝑖 (𝑅𝑁𝑘) 𝑅𝑁𝑖3

]]]]]]]]]]]
]

𝑥 = [[[[[
[

𝜒
𝑄1𝑄2𝑄3

]]]]]
]

(14)

We applied a right preconditioning technique [33] to
improve convergence speed and reduce error propagation
in the solution for the quadrupole model. This is similar to

recent work in quantitative susceptibility mapping that deals
with a large dynamic range [34], and QSM-based cerebral
metabolic rate of oxygen (CMRO2) mapping that obtains
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two parameters in different scales, oxygen extract rate and
non-blood susceptibility, simultaneously [18]. The system of
equations was refined as 𝐴∗I𝑥∗ = I𝑏, where 𝐴∗ = 𝐴𝑃
and 𝑥∗ = 𝑃−1𝑥. 𝑃 is the preconditioner defined as 𝑃 =
diag(1, 𝑝1, 𝑝2, 𝑝3), where𝑝1,2,3 are scaling factors chosen such
that the elements of 𝑥∗ have a similar order of magnitude.𝑝𝑙 = max(𝜒)/max(∇𝑙𝜒 ⋅ (�𝑥𝑙2/12)), where 𝑙 = 1, 2, 3 (x, y,
z direction) and �𝑥𝑙 and ∇𝑙𝜒 are voxel size and gradient of
susceptibility in 𝑙th direction, respectively. The dipole model
of susceptibility was used to calculate the preconditioning
factors. We set this preconditioning constant based on the
assumption that the susceptibility profile is linear as in 𝜒(𝑟) =𝜒(𝑟
0
) + ∇𝜒 ⋅ 𝑟, which provides the susceptibility of 𝜒(𝑟

0
) and

the quadrupole moment of ∇𝑙𝜒 ⋅ (�𝑥𝑙2/12) with (1) and (2).
We used the conjugate gradient (CG) algorithm to solve (12).
The maximum number of iterations was set to 40, similar to
COSMOS [21].

In the second numerical simulation (the numerical brain
phantom), we measured the sharpness at the white mat-
ter boundary. The white matter mask was constructed by
thresholding the QSM value at -0.1 ppm. The boundary
mask was constructed by subtracting the dilated whitematter
mask by the eroded mask (∼ 2 voxel thickness) (Supporting
Figure S1). For lower resolutions, the boundary mask was
downsampled by cropping k-space, followed by thresholding
at 0.5, resulting in boundary mask 𝐵. To measure the
sharpness at the structure boundary in the susceptibility
maps, we calculated the average norm of the susceptibility

gradient in the boundary region, ∑V∈𝐵 ||∇𝜒V||2/|𝐵|, where
V is the voxel index and |𝐵| is the total number of voxels
in the boundary region. A higher value indicates sharper
edges.

In the phantom study, we performed ROI analysis and
estimated the boundary sharpness in susceptibility maps.
For the ROI analysis, the balloons were segmented by
thresholding the norm of every echo magnitude image,
and eroded 2 voxels. The susceptibility of each gadolinium
balloon was measured relative to the average susceptibility
of a water balloon. To obtain the boundary mask, we dilated
and eroded the balloon masks, and the dilated mask was sub-
tracted by the eroded mask, ∼ 2 voxel thickness (Supporting
Figure S1).

In the human study, we first used the same method
described above in the numerical simulation to measure
the sharpness at the white matter boundary on suscepti-
bility maps. The white matter mask was constructed by
thresholding the DTI fractional anisotropy (FA) value at
0.3. The boundary mask was again constructed by sub-
tracting the dilated white matter mask by the eroded mask
(∼ 2 voxel thickness). Second, we measured the contri-
bution of the quadrupole moments to the magnetic field
using a forward model calculation, starting from the results
in subject 1 with 𝐵0 in the z direction, and compared
it with 𝜒23, 𝜒13, and 𝜒33 obtained following a conven-
tional susceptibility tensor imaging (STI) reconstruction
[35–37]:

𝑏 =
[[[[[[[
[

𝐷11 (𝑅1𝑘) 𝐷12 (𝑅1𝑘) 𝐷13 (𝑅1𝑘) 𝐷22 (𝑅1𝑘) 𝐷23 (𝑅1𝑘) 𝐷33 (𝑅1𝑘)
𝐷11 (𝑅2𝑘) 𝐷12 (𝑅2𝑘) 𝐷13 (𝑅2𝑘) 𝐷22 (𝑅2𝑘) 𝐷23 (𝑅2𝑘) 𝐷33 (𝑅2𝑘)

...
𝐷11 (𝑅𝑁𝑘) 𝐷12 (𝑅𝑁𝑘) 𝐷13 (𝑅𝑁𝑘) 𝐷22 (𝑅𝑁𝑘) 𝐷23 (𝑅𝑁𝑘) 𝐷33 (𝑅𝑁𝑘)

]]]]]]]
]

[[[[[[[[[[[
[

𝜒11𝜒12𝜒13𝜒22𝜒23𝜒33

]]]]]]]]]]]
]

(15)

where 𝐷𝑖𝑗 = (1/3)𝐵𝑖𝐵𝑗 − 𝑘𝑇𝐵̂(𝑘𝑖𝐵𝑖/𝑘2) (𝑖 = 𝑗) and 𝐷𝑖𝑗 = (2/
3)𝐵𝑖𝐵𝑗 − 𝑘𝑇𝐵̂((𝑘𝑖𝐵𝑗 + 𝑘𝑗𝐵𝑖)/𝑘2) (𝑖 ̸= 𝑗). A conjugate gradient
solver with a maximum of 40 iterations was used to solve this
system.

Third, we investigated the possibility of susceptibility
anisotropy and white matter microstructure contributions to
the quadrupole moment. A scatter plot between quadrupole
moment and white matter fiber tract orientation by the
independent DTI measurement was obtained, and linear
regression was subsequently performed. Fourth, we inves-
tigated the effect of the number of 𝐵0 orientations on 𝜒,
Q1, Q2, and Q3 maps in subject 1. The optimization was
performed with 4, 6, 8, and 12 𝐵0 orientations. 4 was set as the
minimum number of B0 orientations required for the model
inversion of D+Q, which has four unknowns. Additionally, 6
and 8 B0 orientations were used to investigate how much the
accuracy of result (𝜒, Q1, Q2, Q3) increases as orientations

are added. For a given number N (equal to 4, 6 or 8), we
considered all the possible groups of N 𝐵0 selections, e.g.,( 124 ) = 495 groups for N = 4, and, for each group, computed
the average inner product of the 𝐵0 directions within that
group. A large average inner product for a group indicates
that the 𝐵0 directions in that group tend to be parallel and are
likely to provide a high condition number in inverse problem.
A small average inner product group indicates that the 𝐵0
directions in that group tend to be orthogonal to each other
and present a small condition number.We then selected the 3
groups of 𝐵0 orientations with the minimum, maximum, and
mean average inner products. The relative result difference
between N = 4, 6, or 8 orientations and 12 orientations,‖𝑥12 − 𝑥𝑁‖22/‖𝑥12‖22, was calculated in the three 𝐵0 groups.
Then, the mean and standard deviation were obtained. The
same stopping criteria of a maximum of 40 iterations were
used for all cases.



Concepts in Magnetic Resonance Part A 7

Susceptibility Quadrupole Moment

ppm
0.5

0

-0.5

ppm
3

2

1

0

-1

0.05

0

-0.05

ppm×mm

z

x
y

x

z
y

Dipole + Quadrupole (Ｋ)Dipole (＞) -Ｋ ＞ Q1 Q2 Q3

Figure 4: Comparison between dipole and dipole + quadrupole model in a phantom. Each row shows axial, sagittal, and coronal views,
respectively. There are no significant differences in the susceptibility maps between the two models except at the balloon edges (left). The
quadrupole moments are apparent mainly at the balloon boundaries (right).

3. Results
3.1. Numerical Simulations. Figure 2 shows the ground truth
(black), dipole (red), and dipole + quadrupole fields (blue)
at different downsampling factors, i.e., different degrees of
nonuniformity. These fields are plotted along the z-axis from
the center of the object (gray line in the input 𝜒 in Figure 2).
The same ground truth (black) is plotted at all downsampling
factors. There is no significant difference in the fields when
the downsampling factor is 2, but as it is increased to 4 and
6, the dipole + quadrupole field remains closer to the ground
truth than the dipole field.Notably, the field peak at the object
boundary is captured by the dipole + quadrupole field (blue),
whereas a noticeable drop is observed in the dipole field
(red).

Figure 3 shows the reconstructed susceptibility maps in
lower resolutions (downsampling factors 2 and 4) with the
dipole (D) and dipole + quadrupole (D+Q) models. D+Q
provides a sharper susceptibility map than the D model.
For a downsampling factor of 2, the average norm of the
susceptibility gradient in the white matter boundary region
was 6.78×10−3, 1.32×10−2, and 1.32×10−2 ppm/mm forD,D+Q,
and the ground truth, respectively. For a downsampling factor
of 4, it was 3.60×10−3, 6.51×10−3, and 7.33×10−3 ppm/mm
for D, D+Q, and the ground truth, respectively (Table 1).
The quadrupole moments (𝑄1, 𝑄2, 𝑄3) become greater in
magnitude for the downsampling factor of 4 as compared to
a factor of 2.

3.2. Phantom Experiment. Figure 4 shows the susceptibility
(𝜒) and quadrupolemoments (𝑄1, 𝑄2, 𝑄3) of the phantom for
the D and D+Q models. There are no significant differences
in 𝜒 maps between two models except for the balloon edges:
For balloons with susceptibility values of 3.26, 1.63, 0.82, and
0.41 ppm, the susceptibility values from the D model are
3.05±0.03, 1.43±0.02, 0.75±0.01, and 0.36±0.01 ppm, respec-
tively, and the values from the D+Q model are 3.04±0.04,
1.43±0.02, 0.76±0.01, and 0.35±0.01 ppm, respectively. The

susceptibility map shows slightly sharper balloon edges with
the D+Q model (Figure 4 and Table 1); the average norm
of the susceptibility gradient in the highest susceptibility
balloon boundary is 1.36 for D+Q and 1.31 ppm/mm for the D
model (Table 1). The quadrupole moments are apparent only
at the balloon boundaries.

3.3. Human Study. Figure 5 shows the susceptibility (𝜒) and
quadrupole moments (𝑄1, 𝑄2, 𝑄3) of human brains for the
D+Q model. In both subjects, the D+Q model (𝜒𝑞) shows
sharper boundaries between gray and white matter than the
D model (𝜒𝑑). Consequently, detailed structures are shown
more clearly (indicated by yellow arrows in susceptibility
maps). The average norm of the susceptibility gradient in
the white matter boundary region is 1.60×10−2 for D+Q and
1.13×10−2 ppm/mm for theDmodel in subject 1; and 1.58×10−2
for D+Q and 1.19×10−2 ppm/mm for D model in subject 2
(Table 1).

Quadrupolemoments are generally nontrivial at the brain
structure boundaries (yellow arrow in axial 𝑄1), but lack
contrast at some boundaries (red arrow in axial 𝑄1). They
also show nonzero contrast at nonboundary regions. In
addition, in axial𝑄2, the same brain structures show opposite
contrast between the left and right brain side, as seen in the
boundary between the Putamen and Globus pallidus (yellow
arrows in axial 𝑄2). By comparing the quadrupole moment
maps between subjects 1 and 2, the contrast strength appears
different even though the signs are matched (Figure 5). For
instance, compared to subject 2, subject 1 shows a smaller
contrast in 𝑄1 and 𝑄2, but greater contrast in 𝑄3.

Figure 6 shows the field generated by each of the
quadrupole moments in the D+Qmodel and the field gener-
ated by the anisotropic susceptibility tensor components (left
column). Additionally, a histogram of each field contribution
across the brain is shown in the right column.Thequadrupole
contributions (red) to the fieldwere substantially smaller than
the isotropic susceptibility contribution (black), and smaller
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Figure 5: Comparison between dipole and dipole + quadrupole model in the human brain. The susceptibility map from the dipole +
quadrupole model shows sharper edges between white and gray matter than the map from the dipole model for both subjects 1 and 2.
Consequently, the detailed structures are more clearly shown by the dipole + quadrupole model, as indicated by the yellow arrows (left).
The quadrupole moment generally looks obvious at the brain structure boundaries (yellow arrow in axial Q1), but lacks contrast at some
boundaries (red arrow in axial Q1). Also, in Q2, the boundary between the Putamen and Globus pallidus (yellow arrows in axial Q2) is bright
on the left brain side, whereas right brain side appears dark.

Table 1: Sharpness measurement at the structural boundaries. Average norm of the susceptibility gradient in the boundary regions
(ppm/mm). The value is calculated as in ∑V∈𝐵 ‖∇𝜒V‖2/|𝐵|, where V is a voxel index and |𝐵| is the total number of voxels in the boundary
region (Supporting Figure S1). The higher the value, the sharper the edge. DS: down-sampling factor.

Numerical brain phantom Phantom Human
DS 2

Truth: 1.32×10−2 DS 4
Truth: 7.33×10−3 Balloon1

(3.26 ppm)
Balloon2
(1.63 ppm)

Balloon3
(0.82ppm)

Balloon4
(0.41 ppm) Subject 1 Subject 2

D+Q 1.32×10−2 6.51×10−3 1.36 0.66 0.32 0.15 1.60×10−2 1.58×10−2
D 6.78×10−3 3.60×10−3 1.31 0.63 0.32 0.16 1.13×10−2 1.19×10−2

but nonnegligible compared to the off-diagonal anisotropy
tensor contributions (blue) in magnitude. The standard
deviation of the fields generated by 𝑄1, 𝑄2, 𝑄3, 𝜒13 , 𝜒23, and𝜒33 were 0.0020, 0.0020, 0.0039, 0.0055, 0.0062, and 0.0119
ppm, respectively.

Figure 7 shows the scatter plot between the quadrupole
moment and white matter fiber tract orientation as measured
by DTI. The quadrupole moment did not show a significant
linear dependence on orientation (R2 = 6.4×10−4, 8.7×10−5,
4.0×10−4 for 𝑄1, 𝑄2, and 𝑄3, respectively).
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Figure 7: The relationship between the quadrupole moment and fiber tract orientation in white matter. To investigate the possibility that
susceptibility anisotropy andmicrostructure in whitemattermight affect the quadrupole moment, scatter plots between quadrupole moment
andwhitematter fiber tract orientation by independentDTImeasurementwere generated.The quadrupolemoment did not show a significant
dependency on orientation.

Figure 8 shows the effect of the number of included 𝐵0
orientations on the 𝜒,𝑄1,𝑄2, and𝑄3maps in subject 1. As the
number of 𝐵0 orientation increased, both susceptibility and
quadrupole moment maps appeared more similar to those
obtained using 12 𝐵0 orientations. With 𝑁 = 4, 6, and 8
orientations, the difference ‖𝜒12 − 𝜒𝑁‖22/‖𝜒12‖22 with respect
to the 12 orientation result was 56.3 ± 14.2%, 24.9± 11.9%, and
15.0 ± 5.6%, respectively. The quadrupole moment difference

(1/3) ∑𝑖=1,2,3(‖𝑄12𝑖 − 𝑄𝑁𝑖 ‖22/‖𝑄12𝑖 ‖22) was 71.8 ± 15.4%, 50.6 ±
15.1%, and 32.1 ± 11.3% for 𝑁 = 4, 6, and 8 orientations,
respectively.

4. Discussion

The quadrupole formulated in the image-space can be
added to the standard dipole model of QSM to account for
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Figure 8:The effect of the number of 𝐵0 orientations on 𝜒, Q1, Q2, and Q3 maps in subject 1. Optimization was performed with 4, 6, 8, and 12
different𝐵0 orientations. As the number of 𝐵0 orientation increased, both susceptibility and quadrupolemomentmaps appearedmore similar
to those obtained using 12 𝐵0 orientations. The 𝜒, Q1, Q2, and Q3 maps were obtained from the group of 𝐵0 directions with the minimum
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standard deviation of the relative result difference (‖𝑥12 − 𝑥𝑁‖22/‖𝑥12‖22) over three different groups of 𝐵0 orientations (the maximum, mean,
and minimum average inner product within that group) were shown below each map.
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nonuniform susceptibility distribution in a voxel. Our data
confirm that the quadrupole terms are substantial in regions
of nonuniform susceptibility, such as the gray-white matter
interface. Also, the field contribution by the quadrupole
moment in our dipole + quadrupole (D+Q) model was not
negligible compared to the anisotropic susceptibility field in
the dipole tensor model (Figure 6). This suggests that the
quadrupole expansion might need to be considered along
with susceptibility tensor imaging and microstructure effect
to construct a comprehensive field model.

The standard quadrupole definition from classic electro-
dynamics is used in this work [26, 27]. In the previous p-
space imaging, multipole expansion was also used to capture
spatial variations of the phase or magnetic field in a voxel
[28]. The major difference is that the quadrupole here is
defined on the spatial inhomogeneity of the susceptibility in a
voxel, while p-imaging is defined on the field inhomogeneity.
P-imaging data allows reconstruction of the water proton
magnetization distribution within a voxel, the phase of which
allows estimation of the field distribution within the voxel.
If QSM is applied on this phase to generate susceptibility
distribution in the voxel, we can then compute the classic
quadrupole moment as defined by (1). Because a strong
susceptibility source in a neighboring voxel can also generate
field variation, p-imaging without applying QSM to field
distribution within a voxel can be confounded by sources in
neighboring voxels or blooming artifacts.

The susceptibility values estimated by the dipole (D) and
dipole + quadrupole (D+Q) models were not different for
Gd doped water balloons (Figure 4), an expected result due
to the uniform distribution of paramagnetic Gd inside the
balloons. The edges in the D+Qmap were sharper than those
in the D map (Figure 4 and Table 1). In the human study,
the D+Q susceptibility map showed sharper edges between
white and gray matter as compared to the D susceptibility
map (Figure 5 and Table 1). The numerical brain simulation
showed that for several image resolutions the inclusion of
the quadrupole could provide a sharper susceptibility map
in D+Q as compared to the D model (Figure 3), similar to
the sharpness of the ground truth. This indicates that partial
volume artifact in QSM may be alleviated by inclusion of
quadrupole moment.

The quadrupole moments appeared to be substantial
at structural boundaries in both the phantom and human
brains, as expected. However, nonzero contrast was also
observed at nonboundary regions (Figure 5), which might
reflect actual subvoxel susceptibility variations. In white
matter, variations in myelin concentration from anterior to
posterior corpus callosum have been observed in recent
myelin water fraction [18, 38] and histology [39, 40] studies,
thus implying that the quadrupolemomentwithinwhitemat-
ter may be nonzero. Further studies are needed to investigate
myelin nonuniformity and quadrupole moments in depth.
Another possible cause is the effects of microstructures and
susceptibility anisotropy in white matter. To investigate their
effects on the estimated quadrupolemoments inwhitematter,
we attempted to find a relationship between these moments
and the local fiber orientation independently obtained using
DTI analysis, but found no significant correlation (Figure 7).

This suggests that the quadrupole moment does not result
from fitting to the fields by the microstructure or suscepti-
bility anisotropy in a significant manner.

The definition of the quadrupole moment (1) explains
the positive/negative signs of the quadrupole moments as
the susceptibility value increases/decreases along an axis
(Figures 4 and 5). For example, the 𝑄2 at the boundary of
the Putamen and Globus pallidus showed a positive contrast
on the left brain side, but a negative contrast on the right
brain side (yellow arrows in axial 𝑄2, Figure 5), indicating
that the Putamen has a lower susceptibility than Globus
pallidus. Within the boundary voxel on the left brain side,
the subvoxel susceptibility increases as y increases, thus
providing a positive quadrupole moment, 𝑄2 based on (1).
On the contrary, the subvoxel susceptibility decreases as y
increases on the right brain side, which provides a negative
quadrupole moment. In terms of the quadrupole moment
comparison between subjects 1 and 2, subject 1 showed
smaller contrast in 𝑄1 and 𝑄2 but greater contrast in 𝑄3.This
is likely due to voxel size differences between the two subjects
because the quadrupole moment is a function of voxel size.
For instance, if the susceptibility profile within a voxel is
linear, the quadrupole moment is linearly proportional to the
square of voxel linear dimension (1). The data from subject
1 has smaller in-plane voxel size (0.9 vs 1.2 mm) but a larger
voxel size in the z direction (1.5 vs 1.2 mm), which is constant
with smaller contrast in𝑄1 and𝑄2, and greater contrast in𝑄3 .
Additionally, 12 and 8 𝐵0 directions were used for subjects 1
and 2, respectively, which might result in more accurate 𝑄
maps for subject 1.

Despite the advantage of quadrupole inclusion, the mul-
tiple orientations in data acquisition needed to determine
quadruple moments are difficult to perform on research
volunteers and impractical to perform in clinical practice.
Fewer orientations, e.g., 4 or 6, could generate maps, but they
would be relatively inaccurate (Figure 8). Tissue structural
information may be used to regularize the inverse problem
for (5), conceptually similar to the morphology enabled
dipole inversion [1, 41] and the DTI guided susceptibil-
ity tensor imaging [37, 42]. Also, only isotropic (scalar)
susceptibility distributions are considered here. A tensor
model that could cope with existing field models such as
the generalized Lorentz tensor approach might be needed
[35, 37, 43, 44]. In addition, larger datasets, e.g., more human
subjects and animal disease models, are needed to confirm
the observations in this study.

5. Conclusion

In summary, tissue magnetic susceptibility sources can be
expressed in a multipole expansion, and the dipole model in
current QSM may be improved by including the quadrupole
moments, defined as the first moment of susceptibility
distribution within a voxel. In regions with nonuniform
susceptibility distribution such as gray-white matter inter-
faces, the quadrupole moments can be substantial and their
field contribution is nonnegligible compared to susceptibil-
ity anisotropy field contributions. The quadrupole moment
might need to be considered for a comprehensive fieldmodel.
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Appendix

For derivation of (2), we start with the “H” field that has
a scalar potential Φ solution to the magnetostatics problem
[26].

∇ × H = 0,
∇ ⋅ H = −∇ ⋅ M. (A.1)

H = −∇Φ (A.2)

Φ (𝑥) = 14𝜋 ∫ ∇󸀠 ⋅ M (𝑥󸀠)󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠󵄨󵄨󵄨󵄨 𝑑3𝑥󸀠 (A.3)

This Φ has singularity at the origin where the measure-
ment point (𝑥) and source location (𝑥󸀠) are identical. To
facilitate calculus on 1/|𝑥 − 𝑥󸀠|, the origin has to be excluded
[29].

Φ (𝑥) = lim
𝜖󳨀→0

14𝜋 ∫ ∇󸀠 ⋅ M (𝑥󸀠)󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠󵄨󵄨󵄨󵄨 𝐻 (󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠󵄨󵄨󵄨󵄨󵄨 − 𝜖) 𝑑3𝑥󸀠 (A.4)

where H is the Heaviside function defined by the follow-
ing.

𝐻 (󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠󵄨󵄨󵄨󵄨󵄨 − 𝜖) = {{{
0, 󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖
1, 󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠󵄨󵄨󵄨󵄨󵄨 > 𝜖 (A.5)

The term 𝐻(|𝑥 − 𝑥󸀠| − 𝜖)/|𝑥 − 𝑥󸀠| can be expanded up to
the 2rd order with Taylor expansion in powers of 𝑥󸀠 with the
localized source condition [26]. This leads to (A.6) with the𝐵0 along 𝑧̂.

Φ (𝑥) = 𝐵0𝜇0 (𝐷Φ𝜒 + 3∑
𝑚=1

𝑔𝑚Φ𝑄𝑚) (A.6)

where the dipole interaction, 𝐷Φ, and the susceptibility,𝜒, are as follows.

𝐷Φ = lim
𝜖󳨀→0

1
4𝜋 |𝑥|2 { 𝑥3|𝑥|𝐻 (|𝑥| − 𝜖) − 𝑥3𝛿 (|𝑥| − 𝜖)} (A.7)

The quadrupole interaction, 𝑔mΦ, and the quadrupole
moments, 𝑄𝑚, are as follows.

𝑔mΦ = {{{{{{{
lim
𝜖󳨀→0

1
4𝜋 |𝑥|4 {3𝑥𝑚𝑥3|𝑥| 𝐻 (|𝑥| − 𝜖) − 4𝑥𝑚𝑥3𝛿 (|𝑥| − 𝜖)} , 𝑖 = 1, 2

lim
𝜖󳨀→0

1
4𝜋 |𝑥|4 {3𝑥32 − |𝑥|2|𝑥| 𝐻 (|𝑥| − 𝜖) − (4𝑥32 − |𝑥|2) 𝛿 (|𝑥| − 𝜖)} , 𝑖 = 3 (A.8)

The H field z-component can be obtained as follows,
based on (A.6).

H𝑧 (𝑥) = −𝜕𝑧Φ (𝑥) (A.9)
TheB field in (2) can be obtained with = 𝜇0(H+𝑀).The𝜖 limit to 0 was also taken to the 𝜕𝑧𝐷Φ and 𝜕𝑧𝑔iΦ terms in

(A.9) [29].

Data Availability

Phantom and human subject data come from Wang lab
[41] and are available on request. Reconstruction MAT-
LAB codes regarding local field estimation are available at
http://pre.weill.cornell.edu/mri/pages/qsm.html.D andD+Q
model reconstruction codes are available on request.
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Supplementary Materials

Supporting Figure S1. The boundary mask for measuring
sharpness. For the numerical brain phantom, the white
matter mask was constructed by thresholding the QSM value
at -0.1 ppm. For the phantom, the balloons were segmented
by thresholding the normof every echomagnitude image. For
the human subjects, the white matter mask was constructed
by thresholding the DTI FA value at 0.3. The boundary
mask was constructed by subtracting the dilated mask by the
erodedmask (∼2 voxel thickness). (Supplementary Materials)
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