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In medical magnetic resonance imaging, parallel radio frequency excitation pulses have to respect a large number of specific
absorption rate constraints. Geometrically, each of these constraints can be interpreted as a complex, centered ellipsoid.We propose
to replace a collection of such constraints by the single constraint which corresponds to the associated maximum volume inscribed
ellipsoid and implies all original constraints. We describe how to compute this ellipsoid via convex programming. Examples show
that this reduction has very short computation times but cuts away parts of the feasible power domain.

1. Introduction

Parallel radio frequency (RF) excitation pulses for magnetic
resonance imaging (MRI) deposit energy in the irradiated
tissue. In the affected areas this creates an amount of heat
which depends on the strength and duration of the super-
imposed RF fields and the conductivity and density of the
irradiated tissue. Specific absorption rate (SAR) constraints
are responsible for restricting this heating to a harmless level.
Current International Electrotechnical Commission [1, 2]
and Food and Drug Administration [3] regulations define a
large number of local SAR constraints, i.e., one for each 10
gram volume equivalent. Medical RF excitation pulses not
only have to produce the desired target magnetization with
the scanner hardware capabilities, but also must make sure
that every mandated SAR constraint is respected.

Physics dictates that the thermal energy deposited in a
specific volume by oscillating electromagnetic fields is given
by a time-homogeneous quadratic functional applied to the
RF excitation waveforms; compare equation (4) in [4] or
equation (1) in [5]. A SAR constraint sets an upper bound for
a particular quadratic functional as in definition (2) below.
The parameters for this representation can be obtained by
measurements [6–8].

In the case of a single RF excitation coil the SAR con-
straints can easily be reduced to the single constraint which
belongs to the most affected specific volume. However this
is not possible in the case of parallel excitation with more
than one coil, where the most affected specific volume can
depend on the utilized coil voltages and phases. In this case
the SAR constraints can present a serious additional burden
for the design of RF waveforms, especially because of their
large number. This obstacle might not only increase pulse
design computation time, but also impact the quality of the
calculated excitation pulse.

Special algorithms have been developed for coping with
parallel RF pulse design problems in the presence of SAR con-
straints. In [4] the pulse design problemwith SAR constraints
is addressed via a quadratic small tip angle approximation
[9] and a dimension-reduction method. However, only three
SAR constraints are addressed in the numerical example. In
[10], Sbrizzi et al. suggest a reduction of the number of SAR
constraints through a selection via largest eigenvalues and
clustering by a sufficiently large correlation of the associated
eigenvectors. The remaining 12 to 36 SAR constraints in the
pulse design examples are dealt with by Lagrange multipliers
and a conjugate gradient algorithm in a small tip angle
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approximation. Guerin et al. [11] have implemented a primal-
dual interior point algorithm for optimizing parallel RF sinc-
pulses with 8 channels, up to 11 spokes and about 1300 SAR
constraints. Several types of nonlinear algorithms also suited
for large flip angles have been investigated by Hoyos-Idrobo
et al. [12]. They were capable of handling RF pulse design
problems with 8 parallel channels for 5 and 7 𝑘𝑇 points and
about 500 SAR constraints. That work has been extended to
also include the optimization of the 𝑘𝑇 points in [13]. All
mentioned algorithms have in common that they initially
reduce the number of SAR constraints, in order to arrive at
a number of constraints which is manageable by the utilized
pulse design algorithm.Thedominant technique for handling
the remaining SAR constraints is Lagrange multiplier, which
are updated during the RF pulse optimization. A notable
exception is the algorithm in [14] which minimizes the
maximum relative SAR energy subject to restrictions for the
mean square error of the excited magnetization profile in
several slices without a reduction of the SAR constraints.

A popular SAR reduction technique was introduced by
Eichfelder and Gebhardt in [15]. The SAR matrices are
sorted by eigenvalues and -vectors. Families of comparable
SAR matrices are replaced by dominating virtual observation
points VOPs. Formally these VOPs are identical to SAR
constraints, but they are not necessarily connected to a
physical heating of a specific volume of the irradiated tissue.
In this work we will call them virtual SAR constraints. Lee et
al. [5] have further refined this reduction technique. These
reductions typically yield several hundreds of virtual SAR
constraints, depending on the choice of an overestimation
parameter. This overestimation parameter controls the max-
imum RF power reduction for the (dominating) virtual SAR
constraints compared to the (dominated) original ones.

In this work we present a novel pure and extreme
reduction technique. Geometrically, the quadratic functional
defining a SAR constraint can be interpreted as a complex,
centered ellipsoid with a dimension corresponding to the
number of RF excitation coils. We propose to replace a
collection of SAR constraints by the single virtual SAR
constraint, which is associated with the maximum volume
inscribed ellipsoid (MVIE).This singleMVIE SAR constraint
implies all original SAR constraints. The maximum volume
characteristic makes sure that maximum room remains for
the RF pulse design after this reduction. This intuitive idea
has the appealing mathematical property that the parameters
of the MVIE SAR constraint can be obtained as the solution
of a convex optimization problem. We take advantage of this
fact to develop methods for a quick numerical calculation of
the parameters of the MVIE SAR constraint. The developed
“implicit active constraints selection” heuristic in the itera-
tions of an interior point algorithm shows particularly short
numerical run times.

Besides these algorithmic aspects, this work focuses on
the mathematics, which underlies theMVIE SAR constraints
reduction. To this end we strengthen relevant theoretical
results for MVIEs from the real-valued case to the complex-
valued one, as required in our application; see the Appendix.
Noticeable is the result that blowing up the complex MVIE
ellipsoid by a factor corresponding to the square root of its

Figure 1: Maximum surface inscribed ellipse for three ellipses
in light gray. Cut away difference between this ellipse and the
intersection of the original ellipses in dark gray. Contact points are
marked with circles and cut away corners with squares.

dimension yields an ellipsoid, which contains the intersection
of all original ellipsoids, which, to the best of our knowledge,
has not been proved for the complex case before.

We present only few tentative numerical results. The two
main examples consist of collections of 448480 and 111939
SAR constraints for 2 and 8 RF excitation coils, respectively.
These examples show not only the feasibility of our method,
but also its speed: it only takes seconds to reduce the example
SAR constraint collections to the MVIE SAR constraint on a
standard personal computer.

As drawback of our method we have to mention the
missing ability to control how much power the MVIE SAR
constraint is cutting away from the feasible RF space of the
original SAR constraints. Such a reduction can impact the
achieved flip angle or lead to an increased inhomogeneity
of the magnetization (compare Figure 7 in [5]). The MVIE
has contact points with the border of the intersection of the
original SAR ellipsoids (see Theorem A.2 in the Appendix
and Figure 1). However, away from these contact points, the
MVIE does not allow as much RF power as the original
SAR constraints. One can show that this power reduction is
upper bounded by the number of excitation coils (see display
(12) and Theorem A.3 in the Appendix). Figure 1 gives the
visual impression that the practical average and maximum
power reductionsmight bemuch smaller than this theoretical
bound. However in our examples, a sampling method for the
estimation of the practically incurred power reduction yields
disappointingly large values; compare Table 2. Nevertheless
there might exist specific pulse design applications, where
the advantage of the reduction of the large number of
SAR constraints to a single one outweighs the reduction
of the feasible RF power in the associated RF pulse design
problems. We demonstrate this possible advantage with an
example of [12], in which the reduction of their 491 local and
global SAR constraints to the single MVIE SAR constraint
can substantially reduce the RF pulse optimization time
without a perceivable deterioration of the obtained pulse
quality.

An overview of this work is as follows: we formally
introduce SAR constraints in Section 2.1 and present the
maximum volume inscribed ellipsoid reduction technique
in Section 2.2. The numerical implementation of the logdet
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objective function is discussed in Section 3.1 and of the posi-
tive semidefiniteness constraints are discussed in Section 3.2.
Section 3.3 shows how the large number of constraints in the
optimization problem can be dealt with. In Section 4.1 we
present several MVIE SAR calculations and in Section 4.2
we exemplify the influence of the SAR reduction on a pulse
optimization problem. We conclude the work in Section 5.
In the Appendix we extend the theory of maximum volume
inscribed ellipsoids from the real to the complex case.

2. Theory

2.1. SAR Constraints. We let𝐶 ∈ N be the number of RF exci-
tation coils. We let H be the set of 𝐶-dimensional, complex
Hermitianmatrices, that is, matrices𝑀 ∈ C𝐶×𝐶 which satisfy𝑀𝑖,𝑗 = 𝑀∗𝑗,𝑖 for every 𝑖, 𝑗 ∈ {1, . . . , 𝐶}, where 𝛼∗ denotes
the conjugate of a complex number 𝛼 ∈ C. For a column
vector V ∈ C𝐶 we let V∗ be the corresponding row vector with(V∗)𝑖 := (V𝑖)∗ for every 𝑖 ∈ {1, . . . , 𝐶}. We use the notation𝑢∗V as a shorthand for the complex scalar product of two
vectors 𝑢, V ∈ C𝐶. A matrix𝑀 ∈H is positive semidefinite, if
for every vector V ∈ C𝐶

V∗𝑀V fl
𝐶∑
𝑖,𝑗=1

V∗𝑖𝑀𝑖,𝑗V𝑗 ≥ 0 (1)

(since 𝑀 is Hermitian, the value of the sum is real). The
matrix 𝑀 is positive definite, if additionally “>” holds in
this display whenever V ̸= 0. We denote the set of positive
semidefinite (resp., positive definite) matrices inH withH+
(resp.,H++).

We let 𝑇 > 0 be the duration of the excitation pulse.
A complex 𝐶-dimensional vector-valued function 𝑤 : [0,𝑇] 󳨀→ C𝐶 is called RF waveform. It specifies the amplitude
and phase for each time point and RF coil of the excitation
pulse.

We consider 𝑆 ∈ N SAR constraints. Each SAR constraint𝑠 ∈ {1, . . . , 𝑆} is characterized by a positive definite Hermitian
matrix 𝐴(𝑠) ∈ H++. An RF waveform 𝑤 satisfies SAR
constraint 𝑠 ∈ {1, . . . , 𝑆} if

∫𝑇
0
𝑤 (𝑡)∗ 𝐴 (𝑠) 𝑤 (𝑡) 𝑑𝑡 ≤ 1. (2)

Here we have scaled the matrix 𝐴(𝑠) in such a way that the
upper bound has the value one. An RF waveform 𝑤 will be
called SAR-compliant if it satisfies (2) for every 𝑠 ∈ {1, . . . , 𝑆}.
More background on SAR constraints can be found in [4, 5,
15].

The RF pulse design problem is to find a SAR-compliant
RF waveform, which accurately produces the desired mag-
netization and also respects the physical capabilities of the
scanner hardware; see [12, 16] and the example of Section 4.2.

If value and speed of an RF waveform 𝑤 are scaled by
a factor 𝛼 > 0 (i.e., 𝑤(𝑡) is replaced by 𝛼𝑤(𝛼𝑡) and 𝑇 by𝑇/𝛼) the SAR power on the left hand side of (2) becomes𝛼 times its previous value. If the gradient trajectory during
this RF pulse is analogously scaled, the excited magnetiza-
tion profile remains unchanged (under the condition that

B0-inhomogeneity and T1- and T2-relaxations are negligi-
ble). In this way one can reduce SAR power at the expense
of an increased RF pulse duration.

2.2. Maximum Volume Inscribed Ellipsoid. For a positive
definite Hermitian matrix𝐻 ∈ H++ we define an associated𝐶-dimensional, complex, centered ellipsoid E(𝐻) ⊂ C𝐶 by

E (𝐻) fl {V ∈ C𝐶 : V∗𝐻V ≤ 1} . (3)

For twomatrices𝐺,𝐻 ∈H++ the ellipsoidE(𝐺) is contained
in E(𝐻) if and only if 𝐺 − 𝐻 is positive semidefinite, i.e.,

E (𝐺) ⊂ E (𝐻) ⇐⇒ 𝐺 −𝐻 ∈H+. (4)

For later use we also note the equivalence

𝐺 − 𝐻 ∈H++ ⇐⇒ 𝐻−1 − 𝐺−1 ∈H++. (5)

If an RF waveform 𝑤 and a matrix𝑋 ∈H++ satisfy
∫𝑇
0
𝑤 (𝑡)∗𝑋𝑤 (𝑡) 𝑑𝑡 ≤ 1, (6)

andE(𝑋) ⊂ E(𝐴(𝑠)) for an 𝑠 ∈ {1, . . . , 𝑆}, then𝑤 satisfies SAR
constraint 𝑠. This follows from equivalence (4). In particular,
if the RF waveform𝑤 and thematrix𝑋 ∈H++ satisfy (6) and

E (𝑋) ⊂ 𝑆⋂
𝑠=1

E (𝐴 (𝑠)) , (7)

then𝑤 is SAR-compliant. Condition (7) says that the ellipsoid
associated with 𝑋must be contained in each ellipsoid which
is associated with one of the SAR matrices 𝐴(𝑠) for 𝑠 ∈{1, . . . , 𝑆}.

It is well known that there exists a unique MVIE for each
closed compact convex set with a nonempty interior [17–19].
In the Appendix we tersely state and justify the necessary
underlying theoretical results because the complex set-up
which is needed in our work seems not to be covered by the
literature.The intersection⋂𝑆𝑠=1E(𝐴(𝑠)) of the SAR ellipsoids
is such a set. Since it is symmetric, itsMVIE is also symmetric
and can be represented as E(𝑋) for a matrix 𝑋 ∈ H++.
The main idea of this work is to calculate this MVIE SAR
matrix 𝑋 and use it to replace the 𝑆 SAR constraints (2)
in the RF pulse design problem by the single virtual SAR
constraint (6). The “maximum volume” property makes sure
that there is maximumpossible room for the RF pulse design.
In Figure 1 this idea is illustrated for three two-dimensional
real ellipsoids.

For amatrix𝐻 ∈H++ the volume of the ellipsoidE(𝐻) is
given by the expression (compare, e.g., [19] equation (12.5))

𝑉 (𝐻) fl 𝑉𝐶√det (𝐻−1), (8)

where 𝑉𝐶 is the volume of the 𝐶-dimensional complex unit
ball.

Finding the maximum volume ellipsoid can be casted
as a convex optimization problem: Since the negative of the
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concatenated functions log and det is convex on the convex
setH++ [18], the followingmathematical program is a convex
optimization problem:

maximize log (det (𝑌)) (9)

subject to 𝑌 ∈H++, (10)

𝐴 (𝑠)−1 − 𝑌 ∈H+ for 𝑠 ∈ {1, . . . , 𝑆} . (11)

According toTheorem A.1 in the Appendix below, this prob-
lem possesses a unique solution which we denote 𝑌MVIE ∈
H++. Its inverse 𝑋MVIE fl 𝑌−1MVIE ∈ H++ has property
(7). This follows from condition (11) and the equivalence
(5). Moreover the ellipsoid E(𝑋MVIE) of this matrix has
the maximum volume among all such matrices, since the
objective function (9) is a strictly increasing function of the
volume 𝑉(𝑌−1) of the ellipsoid which is associated with 𝑌−1.

It is interesting to note that when the maximum volume
inscribed ellipsoid E(𝑋MVIE) is blown up by the factor √𝐶
then it encompasses the intersection of all original SAR
ellipsoids,

√𝐶E (𝑋MVIE) = E(𝑋MVIE𝐶 ) ⊃ 𝑆⋂
𝑠=1

E (𝐴 (𝑠)) . (12)

This statement is proved in Theorem A.3 in the Appendix
below. By performing an RF pulse design with the single SAR
constraint corresponding to 𝑋MVIE/𝐶 and comparing it to
the one with 𝑋MVIE, one can obtain an upper bound for the
loss of the magnetization quality owing to the passage from
the original SAR constraints (2) to the single MVIE SAR
constraint (6).

3. Implementation

3.1. logdet-Function for Positive Definite Matrices. We unify
the objective function (9) and condition (10) into the concave
function logdet :H 󳨀→ R ∪ {−∞} by setting

logdet (𝐻) fl {{{
log (det (𝐻)) if 𝐻 ∈H++,
−∞ otherwise. (13)

Our numerical implementation of the calculation of
logdet(𝐻) firstly attempts a Cholesky decomposition of the
matrix𝐻. When this decomposition fails the matrix𝐻 is not
positive definite and the value of logdet(𝐻) is −∞. Otherwise
the Cholesky decomposition yields a lower triangular matrix𝐿 ∈ C𝐶×𝐶 with has strictly positive real diagonal elements
and satisfies 𝐿𝐿∗ = 𝐻. Thus the value of logdet(𝐻) can be
calculated by

logdet (𝐻) = log (det (𝐿) det (𝐿∗)) = 2 𝐶∑
𝑖=1

log (𝐿 𝑖,𝑖) . (14)

The lower triangular matrix 𝐿 can be inverted by forward
substitutions.Thus the inverse of𝐻 can be obtained as𝐻−1 =𝐿−1(𝐿−1)∗. This inverse is important for the calculation of the
first- and second-order derivatives of logdet [18, 20, 21].

The calculation of logdet(𝐻) for a matrix 𝐻 ∈ H++
requires less than (4/3)𝐶3 multiply, add, or subtract opera-
tions, plus 𝐶 square roots, inversions, and logarithms. The
calculation of the 𝐶2 first-order derivatives of logdet(𝐻)
requires less than (8/3)𝐶3 additional multiply, add, or sub-
tract operations and 𝐶 inversions. The calculation of the𝐶2(𝐶2 + 1)/2 second-order derivatives of logdet(𝐻) takes
about 4𝐶4 additional multiply, add, or subtract operations.

We note that the numerical calculation of the inverses𝐴(𝑠)−1 for 𝑠 ∈ {1, . . . , 𝑆} appearing in condition (11) can
also be done via a Cholesky decomposition, inversion of the
resulting lower triangular matrix, and product of this trian-
gular matrix with its transpose; compare [22].

3.2. Handling of Positive Semidefiniteness Constraints. The
idea for dealing with convex positive definiteness or semidef-
initeness constraints𝐻 ∈H+ or𝐻 ∈H++ as in (10) and (11)
is to replace them by the stronger convex constraint

logdet (𝐻) ≥ 𝐶 log (𝜖) , (15)

where 𝜖 > 0 is a small number.The logdet-function frequently
acts as a barrier function for positive semidefinite constraints
[20, 21].

By modifying constraints (11) in this way we obtain the
nonlinear convex optimization problem with individual SAR
constraint approximations

maximize logdet (𝑌) (16)

subject to logdet (𝐵 (𝑠) − 𝑌) ≥ 𝐶 log 𝜖
for 𝑠 ∈ {1, . . . , 𝑆} . (17)

If 𝐵(𝑠) ∈H++ for every 𝑠 ∈ {1, . . . , 𝑆}, this problem has again
a unique solution. The inclusion,

{𝐻 ∈H : logdet (𝐻) ≥ 𝐶 log (𝜖)} ⊂H++, (18)

shows that by setting

𝐵 (𝑠) fl 𝐴 (𝑠)−1 for 𝑠 ∈ {1, . . . , 𝑆} (19)

this problem is a strengthening of problem (9). Its solution is
denoted by 𝑌𝜖 and we set𝑋𝜖 fl 𝑌−1𝜖 .

The converse inclusion,

H+ ⊂ {𝐻 ∈H : logdet (𝐻 + 𝜖𝐼) ≥ 𝐶 log (𝜖)} , (20)

shows that by setting

𝐵 (𝑠) fl 𝐴 (𝑠)−1 + 𝜖𝐼 for 𝑠 ∈ {1, . . . , 𝑆} (21)

in (17) we obtain a relaxation of problem (9). Its solution is
denoted by 𝑌󸀠𝜖 . Thus we get

logdet (𝑌󸀠𝜖) ≥ logdet (𝑌MVIE) ≥ logdet (𝑌𝜖) , (22)

which implies with𝑋󸀠𝜖 fl (𝑌󸀠𝜖 )−1
logdet (𝑋󸀠𝜖) ≤ logdet (𝑋MVIE) ≤ logdet (𝑋𝜖) , (23)
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and converse inequalities for the volumes of the associated
ellipsoids. In this way, we can assess the fraction of the
maximumvolume ellipsoidwhich is lost by the strengthening
from𝑋MVIE to𝑋𝜖 and adjust the parameter 𝜖. We found

𝜖 fl 1100
𝑆

min
𝑠=1

trace (𝐵 (𝑠)) (24)

to be a suitable value in the examples of Section 4. As usual
trace(⋅) denotes the sum of the diagonal elements of a square
matrix.

3.3. Reduction of Slack Variables. Interior point algorithms
[18], which are well suited for solving convex optimization
problems in general, introduce a slack variable for each of
the 𝑆 constraints. Thus, an augmented linear system with𝐶2 + 𝑆 variables must be solved in each iteration. This system
contains first- and second-order derivatives at the current
iterate. Since 𝑆 can be much larger than 𝐶2 the solution of
these linear problems can dominate the overall solution time.
In order to reduce computation time we therefore propose
two variants of the nonlinear program (16).

In the first variant we replace the 𝑆 SAR constraints (11)
by a single SAR constraint approximation:

maximize logdet (𝑌) (25)

subject to
𝑆∑
𝑠=1

logdet (𝐵 (𝑠) − 𝑌) ≥ 𝑆𝐶 log 𝜖. (26)

This is a convex optimization problem with 𝐶2 variables and
one constraint. The step computation thus becomes much
faster, but, as a drawback of this variant, we observed more
step-backs of the solver, that is, step size reductions in order
to ensure that every matrix 𝐵(𝑠)−𝑌 remains positive definite.
Clearly, condition (17) implies (26) which implies (11) for𝐵(𝑠) fl 𝐴(𝑠)−1. If 𝑌󸀠󸀠𝜖 is the solution of this problem we
therefore have

logdet (𝑌MVIE) ≥ logdet (𝑌󸀠󸀠𝜖 ) ≥ logdet (𝑌𝜖) . (27)

Again, converse inequalities can be obtained for the volumes
of the associated ellipsoids.

The second variant is what we call an external active
constraint selection. Here we fix a number 𝑆󸀠 much smaller
than 𝑆, but in the order of the number of variables 𝐶2. For
instance, in the examples we use

𝑆󸀠 = min {4𝐶2, 𝑆} . (28)

The nonlinear solver is told that there are only 𝑆󸀠 ≤ 𝑆 con-
straints. For a given iterate 𝑌 ∈H++ during the optimization
process, we calculate the values logdet(𝐵(𝑠) − 𝑌) for every𝑠 ∈ {1, . . . , 𝑆}. The constraints are sorted by these values
and the solver gets values and derivatives of the first 𝑆󸀠
constraints in ascending order.

The 𝑆󸀠 constraints which are closest to being infeasible
thus become the active constraints, but the solver is not aware
that the active constraints might leave, enter, or exchange

positions.The active constraints are selected externally. If the
solver converges to a feasible solution, this solution satisfies
all 𝑆 original constraints.

Since, after the evaluation and sorting steps, 𝑆 − 𝑆󸀠
constraints are discarded, first- and second-order derivatives
donot have to be calculated for themwhich reduces computa-
tion time.Moreover, in the step computations the augmented
linear system has only 𝐶2 + 𝑆󸀠 rather than 𝐶2 + 𝑆 variables. In
the examples of Section 4.1, this algorithm variant calculates a
numerical approximation of the MVIE SAR parameters with
the shortest computation time.This heuristic might be useful
in other applications with a large number of constraints and
a small number of variables, but there is no guarantee that it
converges.

4. Examples

The following numerical examples show that MVIE SAR
parameters can be calculated quickly and that an overall
approach consisting of the calculation of the MVIE SAR
constraint and its subsequent utilization in an RF pulse opti-
mization can reduce the overall computation time without
affecting the excitation quality. However, these examples are
not comprehensive enough tomake statements to whichMRI
applications these observations can be carried over.

The calculation timeswhichwe report in this section have
been obtainedwith an Intel(R)Core(TM) i7-4800MQCPUat
2.70 GHz.We are using the interior point solver IpOpt [23] as
workhorse for solving the considered nonlinear optimization
problems.

In order to assess how much RF power can be lost
by reducing ⋂𝑆𝑠=1E(𝐴(𝑠)) to E(𝑋MVIE) (or its numerical
approximations) we define the power loss 𝑓V(𝑋) in direction
V ∈ {𝑢 ∈ C𝐶, 𝑢∗𝑢 = 1} for𝑋 ∈H++ as

𝑓V (𝑋) fl min𝑆𝑠=1V
∗𝐴 (𝑠) V

V∗𝑋V . (29)

From these fractions we deduce the corresponding maxi-
mum, average, and minimum power losses by setting

𝑓max (𝑋) fl sup
V∈C𝐶,V∗V=1

𝑓V (𝑋) , (30)

𝑓avg (𝑋) fl ∫
{V∈C𝐶,V∗V=1}

𝑓V (𝑋) 𝜇 (𝑑V) , (31)

𝑓min (𝑋) fl inf
V∈C𝐶,V∗V=1

𝑓V (𝑋) , (32)

where 𝜇 denotes the uniform probability distribution on the
complex unit ball {𝑢 ∈ C𝐶, 𝑢∗𝑢 = 1}. From the properties of𝑋MVIE we know

1 = 𝑓min (𝑋MVIE) ≤ 𝑓avg (𝑋MVIE) ≤ 𝑓max (𝑋MVIE)
≤ 𝐶. (33)

Since there are no general closed form expressions for these
quantities we are going to estimate them by taking the
maximum (resp., average, resp., minimum) of 𝑓(V) fractions
of a large number of directions V sampled from 𝜇.
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4.1. Reduction of SAR Matrices. Here we consider three
example sets of SAR matrices:

(1) A Siemens internal example with 𝐶 = 2 RF coils and𝑆 = 448480 SAR constraints.
(2) An example of Nicolas Boulant with 𝐶 = 8 RF coils

and 𝑆 = 111939 SAR constraints.
(3) The example fromHoyos-Idrobo et al. [12] with𝐶 = 8

RF coils and 𝑆 = 491 SAR constraints.

In Section 4.2, the rather small example (3) is further utilized
to investigate how a pulse design optimization behaves when
the original SAR constraints are replaced by the MVIE SAR
constraint.

For each of these exampleswe calculate a virtual SAR con-
straint with each of the three different methods of Section 3:

(1) By solving the convex optimization problem (16) with
the individual SAR constraints approximation (17).

(2) By solving variant (25) with the single SAR constraint
approximation (26).

(3) As the first method, but with the external active
constraint selection for 𝑆󸀠 = 4𝐶2 active constraints as
explained in Section 3.3.

Each of these methods delivers an approximation 𝑋 of
the MVIE SAR parameters which imply the original SAR
constraints.This has been checked by performing a Cholesky
decomposition of 𝐴(𝑠) − 𝑋 for every 𝑠 ∈ {1, . . . , 𝑆}. The
utilized value of 𝜖 in these approximations is given in (24).
The optimization is stopped after atmost 100 iterations.These
and further characteristics of the calculations are gathered in
Table 1.

In examples (1) and (2) with a large number of SAR
matrices the solution of the problem with individual SAR
constraints utilizes most of the computation time for the
symbolic factorization of the Hessian matrix. This part
of the computation is negligible in the other proposed
algorithms. The external active constraint selection method
largely reduces the number of back steps in the first example
but increases this number in the other examples. As intended
it spends little time for the calculation of the Hessians and
achieves the smallest overall computation time.

Up to numerical inaccuracies all methods deliver the
same maximum volume inscribed ellipsoid. In Table 2 we
present the power losses obtained by 107 uniformly dis-
tributed random samples from 𝐶-dimension complex unit
vectors. Clearly these numbers bring the major drawback
of the MVIE to light: in certain directions, it cuts away a
substantial part of the available RF power. Also, the power
reduction in average is disappointingly large. Finally, it is
astonishing that the observed minimum power fractions of
the examples with 8 excitation coils remain about 10% away
from their theoretical value 1.

4.2. Excitation Pulse Design. We consider the inversion pulse
design problems of [12] with either 5 or 7 𝑘𝑇 points [24], a
fixed total duration of 1.39 and 4.03 milliseconds, and a target
flip angle of 30 and 180 degrees, respectively. There are 𝐶 = 8

Table 1: Numerical calculation of maximum volume inscribed
ellipsoid for the three examples and the three proposed methods.

Example characteristics
Example number (1) (2) (3)
RF coils 𝐶 2 8 8
SAR constraints 𝑆 448480 111939 491

Method (1): individual SAR constraints
Number of iterations 33 100 22
Overall algorithm [s] 657.7 847.3 0.5
Symbolic factorization [s] 630.8 607.0 0.1
Update Hessian [s] 0.6 127.2 0.2
Compute direction [s] 22.2 97.0 0.1
Acceptable trial point [s] 2.4 0.04 0.0
Number of back steps 15 76 22

Method (2): single SAR constraint
Number of iterations 100 100 61
Overall algorithm [s] 27.9 129.9 0.9
Symbolic factorization [s] 0.1 0.1 0.1
Update Hessian [s] 0.7 115.5 0.5
Compute direction [s] 0.1 0.06 0.1
Acceptable trial point [s] 26.3 0.001 0.1
Number of back steps 1920 412 117

Method (3): external active constraint selection
Number of iterations 19 58 46
Overall algorithm [s] 2.9 4.4 0.6
Symbolic factorization [s] 0.1 0.1 0.1
Compute Hessian [s] 0.0 0.3 0.2
Compute direction [s] 0.0 0.2 0.1
Acceptable trial point [s] 0.0 3.6 0.1
Number of back steps 15 127 137

Table 2: Power losses for the three examples.

Example number (1) (2) (3)
RF coils 𝐶 2 8 8
𝑓min(𝑋) 1.00002 1.11045 1.10287𝑓avg(𝑋) 1.1802 2.56831 2.83011
𝑓max(𝑋) 1.88863 5.18516 6.2459

RF excitation coils. Each coil must satisfy amaximum voltage
restriction during each 𝑘𝑇 point and additionally an average
power bound. The 491 SAR constraints are those considered
in the third example of the previous section.These constraints
can be reduced to the single MVIE SAR constraint in less
than one second, as shown in the last column of Table 1. In
this section we investigate the effect of this reduction on the
performance of an RF pulse optimization.

For this optimization we follow the approach described
in [16]: the interior point solver IpOpt is used to find
the RF amplitudes and phases during the 𝑘𝑇 points which
minimize the magnitude least squares distance between the
achieved and desired magnetization. Both, first- and second-
order derivatives are utilized in this process. Two different
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Table 3: Optimization of AFA and STA objective functions for the
excitation and inversion examples without andwith proposedMVIE
SAR reduction.

MVIE SAR reduction no yes
Number of SAR constraints 491 1
Average power constraints 8 8

30-degree excitation with 5 kT points
Number of RF constraints 40 40

Arbitrary flip angle optimization (AFA)
Computation time [s] 2.63 1.24
Iteration count 41 38
Root mean square error [deg] 1.63 1.87

Small tip angle approximation (STA)
Computation time [s] 1.87 0.89
Iteration count 38 41
Root mean square error [deg] 1.64 1.90

180-degree inversion with 7 kT points
Number of RF constraints 56 56

Arbitrary flip angle optimization (AFA)
Computation time [s] 8.52 2.87
Iteration count 84 55
Root mean square error [deg] 15.44 15.44

Small tip angle approximation (STA)
Computation time [s] 4.84 1.44
Iteration count 65 52
Root mean square error [deg] 10.38 10.38

approaches are available for the calculation of the achieved
magnetization:

(1) The arbitrary flip angle optimization (AFA) based on
a solution of the Bloch equation without relaxation
terms.

(2) The small tip angle approximation (STA) amounting to
a linearization of the solution of the Bloch equation.

We are applying these two approaches to each of the two
pulse design problems with either the full set of 491 SAR
constraints or the single MVIE SAR constraint obtained
in Section 4.1. In Table 3 the observed computation times,
number of iterations, and achieved root mean square errors
are reported. The middle column shows the results for the
original SAR constraints and the right-hand column those for
the MVIE SAR. However, a certain reduction of the available
RF pulse power is incurred by our method.

The use of the MVIE SAR reduces the computation
time by a factor of about 1/2 to 1/3 in the STA and AFA
optimization.This reduction is larger than the time it takes to
calculate the MVIE SAR parameters. Only in the 30-degree
excitation example with 5 𝑘𝑇 points the root mean square
error of the magnetization is slightly reduced from about 1.6
degrees to 1.9 degrees. In the 180-degree inversion example
the excitation pulse quality is not affected, since the SAR
constraints are not the limiting constraints, but the efficient
power constraints.

This RF pulse design example shows that even in the case
where the SAR matrices have been already been reduced to
about 500 they put a burden on the pulse optimization which
dominates computation time. This burden is largely reduced
by utilizing the MVIE SAR constraint.

5. Conclusions

Parallel RF excitation pulses not only have to forman accurate
magnetization, but also must make sure that a large number
of SAR constraints are respected. In this work we suggested
to reduce this additional burden by replacing a collection of
SAR constraints by a single virtual MVIE SAR constraint.
This MVIE SAR constraint is characterized by the properties
that it implies each of the original SAR constraints and that
its associated ellipsoid has the maximum volume. The 𝐶 × 𝐶
parameters of the MVIE SAR constraint can be obtained by
solving a convex optimization problem. Taking advantage of
the properties of the logdet-function, which appears in the
objective function of the problem and can also be used as a
barrier function for the positive semidefiniteness constraints
therein and techniques for reducing the number of slack
variables, one can utilize interior point algorithms to obtain
solutions for realistic problem sizes within seconds. Our
tentative examples show the feasibility of the approach. Also,
the RF pulse optimization can get much faster when the
tighter MVIE SAR is respected rather than the large number
of original SAR constraints. In general, this tightening can
lead to a certain degradation of the magnetization quality,
except for special cases as in the example of Section 4.2.

Appendix

Complex Maximum Volume
Inscribed Ellipsoids

The theory of maximum volume inscribed ellipsoids has
been developed for ellipsoids in Euclidian spaces R𝐶 [17].
In this appendix we shortly justify the analogous results for
the space C𝐶 which were used in the main part of this
work.Throughout this section we let𝐾 be a closed, compact,
convex, and symmetric subset of C𝐶 having a nonempty
interior. Symmetry means that for every V ∈ 𝐾 and 𝛼 ∈ C

with |𝛼| = 1 we have 𝛼V ∈ 𝐾, where |𝛼| fl √𝛼∗𝛼. We let 𝜕𝐾
be the border of 𝐾 and 𝜕E(𝑋) the border of E(𝑋). For two
vectors 𝑢, V ∈ C𝐶 we let 𝑢V∗ ∈ C𝐶×𝐶 be the matrix defined by(𝑢V∗)𝑖,𝑗 fl 𝑢𝑖V∗𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 𝐶}.
�eorem A.1. �ere exists a unique matrix 𝑋 ∈ H++ such
that E(𝑋) is the MVIE of 𝐾, i.e., 𝑋 ∈ H++ maximizes the
volume 𝑉(𝑋) subject to the condition E(𝑋) ⊂ 𝐾.
Proof. As in [19] Section 12.4, one shows that the set of
matrices 𝑌 ∈ H++ satisfying E(𝑌−1) ⊂ 𝐾 is compact
and convex. The strict concavity of the logdet-function on
H++ implies the existence and the uniqueness of a matrix𝑌 in this set which maximizes the value of logdet. Since the
logdet-function is strictly increasing with the volume of the
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ellipsoid E(𝑌−1), the inverse 𝑋 fl 𝑌−1 has the requested
properties.

�eoremA.2. If the matrix𝑋 ∈H++ is such thatE(𝑋) is the
MVIE of𝐾, there exists a number𝑁 ∈ {1, . . . , 𝐶2}, multipliers𝜆1, . . . , 𝜆𝑁 > 0, and vectors 𝑢(1), . . . , 𝑢(𝑁) ∈ 𝜕𝐾∩𝜕E(𝑋) such
that

𝑋−1 = 𝑁∑
𝑛=1

𝜆𝑛𝑢 (𝑛) 𝑢 (𝑛)∗ . (A.1)

Proof. As preparation we define the mapping h : R𝐶×𝐶 󳨀→
H which transforms a real matrix 𝑅 ∈ R𝐶×𝐶 to a complex
Hermitian matrix h(𝑅) ∈H by setting for 𝑖, 𝑗 ∈ {1, . . . , 𝐶}

h (𝑅)𝑖,𝑗 fl
{{{{{{{{{

𝑅𝑖,𝑖 if 𝑖 = 𝑗,
𝑅𝑖,𝑗 + 𝜄𝑅𝑗,𝑖 if 𝑖 > 𝑗,
𝑅𝑗,𝑖 − 𝜄𝑅𝑖,𝑗 if 𝑖 < 𝑗,

(A.2)

where 𝜄 denotes the imaginary unit. This means that the
diagonal and strictly lower triangular values of the realmatrix𝑅 specify the real parts of the entries of the Hermitian
matrix h(𝑅), and the strictly upper triangular values of 𝑅
the imaginary parts of h(𝑅). The mapping h allows us to
parameterize H with 𝐶2 real parameters. The set R++ fl
h−1(H++) is an open subset of R𝐶×𝐶.

Moreover, we define for a nonempty set 𝐿 ⊂ C𝐶 the
convex function 𝑠𝐿 : C𝐶 󳨀→ R ∪ {∞} by

𝑠𝐿 (𝑑) fl sup
𝑢∈𝐿

R (𝑑∗𝑢) , (A.3)

whereR(𝛼) denotes the real part of a complex number𝛼 ∈ C.
This function has the property, that for nonempty convex sets𝐿,𝑀 ⊂ C𝐶 we have (compare Corollary 12.2.1 in [25])

𝐿 ⊂ 𝑀 ⇐⇒
𝑠𝐿 (𝑑) ≤ 𝑠𝑀 (𝑑) ∀𝑑 ∈ C𝐶. (A.4)

Since 𝑠𝐿 is homogeneous (i.e., 𝑠𝐿(𝛼𝑑) = 𝛼𝑠𝐿(𝑑) for all 𝛼 ∈ R+
and 𝑑 ∈ C𝐶) this equivalence remains valid if its right-hand
side is restricted to vectors 𝑑 with 𝑑∗𝑑 = 1. Moreover, one
can show that for 𝑌 ∈H++

𝑠E(𝑌−1) (𝑑) = √𝑑∗𝑌𝑑. (A.5)

We can thus cast the problem to find the matrix 𝑌 ∈ H++
such thatE(𝑌−1) is the maximum volume inscribed ellipsoid
for𝐾 as

maximize logdet (h (𝑅))
subject to 𝑅 ∈R++,

√𝑑∗h (𝑅) 𝑑 ≤ 𝑠𝐾 (𝑑)
for 𝑑 ∈ CC with 𝑑∗𝑑 = 1.

(A.6)

Except for the correspondence 𝑌 = h(𝑅) which transfers
the MVIE problem from the space C𝐶×𝐶 to R𝐶×𝐶 this

reformulation is the same as in display (12.11) of [19]. As
in the real case one can apply Theorem I of [17] for a given
solution 𝑅 ∈ R++ at this point: it gives the existence of a
number 𝑁 ∈ {1, . . . , 𝐶2}, coefficients 𝛿0 ≥ 0, 𝛿1 . . . , 𝛿𝑁 > 0,
and directions 𝑑(1), . . . , 𝑑(𝑁) ∈ C𝐶 with 𝑑(𝑛)∗𝑑(𝑛) = 1 for𝑛 ∈ {1, . . . , 𝑁} such that for 𝑛 ∈ {1, . . . , 𝑁}

√𝑑∗𝑛h (𝑅) 𝑑 (𝑛) = 𝑠𝐾 (𝑑 (𝑛)) (A.7)

and for 𝑖, 𝑗 ∈ {1, . . . , 𝐶}
𝛿0 𝜕logdet (h (𝑅))𝜕𝑅𝑖,𝑗 = 𝑁∑

𝑛=1

𝛿𝑛 𝜕√𝑑 (𝑛)∗ h (𝑅) 𝑑 (𝑛)𝜕𝑅𝑖,𝑗 . (A.8)

Setting 𝑌 fl h(𝑅) this implies for 𝑖, 𝑗 ∈ {1, . . . , 𝐶}
𝛿0𝑌−1 𝜕h (𝑅)𝜕𝑅𝑖,𝑗 =

𝑁∑
𝑛=1

𝛿𝑛 𝑑 (𝑛) 𝑑 (𝑛)∗√𝑑 (𝑛)∗ 𝑌𝑑 (𝑛)
𝜕h (𝑅)𝜕𝑅𝑖,𝑗 (A.9)

Because the matrices 𝑌−1 and 𝑑(𝑛)𝑑(𝑛)∗ are Hermitian, this
is equivalent to

𝛿0𝑌−1 = 𝑁∑
𝑛=1

𝛿𝑛 𝑑 (𝑛) 𝑑 (𝑛)∗√𝑑 (𝑛)∗ 𝑌𝑑 (𝑛) . (A.10)

The proof now proceeds as the one of Theorem 12.12 of [19]:
taking the trace on both sides of (A.10), we get 𝛿0 > 0. By
rescaling the 𝛿-values we can therefore assumewithout loss of
generality 𝛿0 = 1. Defining 𝜆𝑛 fl 𝛿𝑛√𝑑(𝑛)∗𝑌𝑑(𝑛) and 𝑢(𝑛) fl𝑌𝑑(𝑛)/√𝑑(𝑛)∗𝑌𝑑(𝑛) for 𝑛 ∈ {1, . . . , 𝑁} and utilizing (A.10) we
thus obtain
𝑁∑
𝑛=1

𝜆𝑛𝑢 (𝑛) 𝑢 (𝑛)∗ = 𝑁∑
𝑛=1

𝛿𝑛𝑌𝑑 (𝑛) (𝑌𝑑 (𝑛))𝑇√𝑑 (𝑛)∗ 𝑌𝑑 (𝑛)
= 𝑁∑
𝑛=1

𝑌𝛿𝑛𝑑 (𝑛) (𝑑 (𝑛))𝑇√𝑑 (𝑛)∗ 𝑌𝑑 (𝑛) 𝑌 = 𝑌.
(A.11)

Moreover, 𝑢(𝑛)∗𝑌−1𝑢(𝑛) = 1 and 𝑠𝐾(𝑑(𝑛)) = 𝑑(𝑛)∗𝑢(𝑛) yield𝑢(𝑛) ∈ 𝜕𝐾 ∩ 𝜕E(𝑌−1) for every 𝑛 ∈ {1, . . . , 𝑁}. Substituting𝑋 fl 𝑌−1 thus completes the proof.

�eorem A.3. �eMVIE matrix 𝑋 of �eorem A.1 satisfies

𝐾 ⊂ √𝐶E (𝑋) . (A.12)

Proof. According to Theorem A.2 there exist 𝑁 ∈ N, 𝜆1, . . . ,𝜆𝑁 > 0 and 𝑢(1), . . . , 𝑢(𝑁) ∈ 𝜕𝐾 ∩ 𝜕E(𝑋) such that (A.1)
is satisfied. Since E(𝑋) and 𝐾 are symmetric we additionally
have 𝛼𝑢(𝑛) ∈ 𝜕𝐾 ∩ 𝜕E(𝑋) for every 𝑛 ∈ {1, . . . 𝑁} and 𝛼 ∈ C
with |𝛼| = 1. Moreover, for every 𝑛 ∈ {1, . . . , 𝑁}, 𝛼 ∈ C with|𝛼| = 1 and V ∈ E(𝑋) the Cauchy-Schwarz inequality gives

R (𝛼𝑢 (𝑛)∗𝑋V) ≤ 󵄨󵄨󵄨󵄨𝑢 (𝑛)∗𝑋V󵄨󵄨󵄨󵄨
≤ √𝑢 (𝑛)∗𝑋𝑢 (𝑛)√V∗𝑋V ≤ 1. (A.13)

Hence {V ∈ C𝐶 : R(𝛼𝑢(𝑛)∗𝑋V) = 1} is a tangent hyperplane
for E(𝑋) at the point 𝛼𝑢(𝑛). Since E(𝑋) ⊂ 𝐾, 𝐾 is convex
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and 𝛼𝑢(𝑛) ∈ 𝜕𝐾 this implies that both E(𝑋) and 𝐾 lie in the
closed affine half-space {V ∈ C𝐶 : R(𝛼𝑢(𝑛)∗𝑋V) ≤ 1}. If we
define the set 𝑄 ⊂ C𝐶 by
𝑄 fl {V ∈ C𝐶 : 󵄨󵄨󵄨󵄨𝑢 (𝑛)∗𝑋V󵄨󵄨󵄨󵄨 ≤ 1 ∀𝑛 ∈ {1, . . . , 𝑁}}
= 𝑁⋂
𝑛=1

⋂
𝛼∈C,|𝛼|=1

{V ∈ C𝐶 : R (𝛼𝑢 (𝑛)∗𝑋V) ≤ 1} , (A.14)

we therefore conclude 𝐾 ⊂ 𝑄.
We let√𝑋 be the positive definite square root of𝑋. Using

(A.1) twice we obtain for V ∈ 𝑄
V∗𝑋V = V∗𝑋( 𝑁∑

𝑛=1

𝜆𝑛𝑢 (𝑛) 𝑢 (𝑛)∗)𝑋V

= 𝑁∑
𝑛=1

𝜆𝑛 󵄨󵄨󵄨󵄨𝑢 (𝑛)∗𝑋V󵄨󵄨󵄨󵄨2 ≤
𝑁∑
𝑛=1

𝜆𝑛
= 𝑁∑
𝑛=1

𝜆𝑛𝑢 (𝑛)∗𝑋𝑢 (𝑛)

= 𝑁∑
𝑛=1

𝜆𝑛 (√𝑋𝑢 (𝑛)∗) (√𝑋𝑢 (𝑛))

= 𝑁∑
𝑛=1

𝜆𝑛trace ((√𝑋𝑢 (𝑛)) (𝑢 (𝑛)∗√𝑋))
= trace (√𝑋𝑋−1√𝑋) = 𝐶.

(A.15)

Hence 𝐾 ⊂ 𝑄 ⊂ √𝐶E(𝑋) which completes the proof.
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