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Magnetic resonance imaging based on steady-state free precision (SSFP) sequences is a fast method to acquire �1, �2, and  �∗2-weighted images. In inhomogeneous tissues such as lung tissue or blood vessel networks, however, microscopic �eld 
inhomogeneities cause a nonexponential free induction decay and a non-Lorentzian lineshape. In this work, the SSFP signal is 
analyzed for di�erent prominent tissue models. Neglecting the e�ect of non-Lorentzian lineshapes can easily result in large errors 
of the determined relaxation times. Moreover, sequence parameters of SSFP measurements can be optimized for the nonexponential 
signal decay in many tissue structures.

1. Introduction

Magnetic resonance imaging is a powerful tool for in vivo
measurements with di�erent tissue contrasts. Most common 
tissue contrasts are based on �1-, �2-, or �∗2-weighted images, 
but also susceptibility-weighted, di�usion-weighted, or con-
trast-enhanced imaging are used in clinical standard routine. 
Recently, much e�ort has been put into a quantitative meas-
urement of the underlying tissue parameters. �is would allow 
an improved diagnosis with measurements performed on 
di�erent dates and scanners. Moreover, most big data analyses 
rely on quantitative reliable contrast parameters. Typically, the 
measurement times of quantitative �1 and �2 maps are long. 
Recently, a promising method called MR �ngerprinting was 
developed for quantitative determination of �1 and �2 with 
short measurement times. �e basic idea of MR �ngerprinting 
is to apply pulses, echo times, and acquisition times (pseudo)
randomly and to compare the measurements with previously 
calculated dictionaries [1]. A typical implementation of a MR 

�ngerprinting approach is performed with a steady-state free 
precession (SSFP) sequence.

Moreover, quantitative blood oxygenation level dependent 
(qBOLD) measurements in functional magnetic resonance 
imaging (fMRI) might be a relevant application for SSFP 
sequences. So far, qBOLD measurements are based on FLASH-
like MR sequences and evaluated with analytical solutions of 
the Bloch- or the Bloch–Torrey-equation [2–5]. However, a 
quantitative evaluation of the SSFP sequence for blood vessel 
networks might lead to the applicability of SSFP for qBOLD 
measurements [6], similar than used for detection of micro-
structural properties in the heart [7].

For nonhomogeneous tissues, susceptibility di�erences 
between di�erent compartments cause magnetic �eld inho-
mogeneities, and the gradient echo and spin echo signal 
decay cannot be described su¡ciently by monoexponential 
decays. Typical examples are vessel networks in the brain 
[8–11], around axons [12], or in the myocardium, causing 
magnetic �eld inhomogeneities due to the susceptibility 
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di�erence between blood and tissue [13–15]. Although imag-
ing of lung tissue is typically performed with computed 
tomography, in recent years, enormous e�orts have been put 
into the �eld of lung MRI [16–19]. Transverse relaxation in 
lung tissue is dominated by susceptibility e�ects between 
spherically shaped alveoli and surrounding tissues that cause 
nonexponential signal decay [20–22]. Similarly, cells labeled 
with magnetic particles produce magnetic �eld inhomoge-
neities leading to an accelerated dephasing [23, 24]. So far, 
the SSFP signal was typically analyzed under the assumption 
of exponential signal decay. In this work, the free induction 
decay and the SSFP signal is analyzed for di�erent types of 
tissue structures where the signal decay is nonexponential. 
�e results are relevant for a detailed understanding of the 
SSFP signal, for example for quantitative MRI including MR 
�ngerprinting.

As visualized in Figure 1(a), an ensemble of spin-bearing 
particles in an external magnetic �eld along the �-axis leads 
to a macroscopic magnetization. Due to spin-spin-interaction, 
the transverse signal �(�) decays purely monoexponentially 
(see Figure 1(c)) with the intrinsic relaxation time �2. In the 
presence of magnetic �eld inhomogeneities (see Figure 1(b)), 
an additional modulation �(�) of the signal results from 
dephasing inside the local magnetic �eld:

For negligible di�usion e�ects, this modulation depends on 
the response function ��(�) + i��(�) of the applied pulse 
sequence as well as on the distribution of the local Larmor 
frequencies �(�), which is also denoted as lineshape:

(1)
�(�)
�(0) = e

−(�/�2)�(�)�(0) .

In general, the lineshape �(�) depends on the geometry of the 
underlying structures creating microscopic �eld inhomogenei-
ties, and the magnetization is nonexponential [25, 26]. Even 
though, usually a Lorentzian lineshape (index “L”) in the form of

is assumed to describe the resulting Larmor frequency distri-
bution of the underlying tissue [27]. In the case of a FLASH-
sequence with repetition time �� and ̈ ip angle �, the response 
function takes the frequency-independent and purely real 
form [28]:

By virtue of Equation (3), the corresponding magnetization 
(also denoted with index “L”) decays monoexponentially:

which results in a purely monoexponential signal decay �(�)
with relaxation time �∗2  as shown in Figure 1(d). �e goal of 
this work is to overcome the monoexponential approximation 
of the magnetization by utilizing the lineshapes of speci�c 
tissue geometries.

(2)�(�) = ∫+∞
−∞

d� �(�)[��(�) + i��(�)]e−i��.

(3)�
L
(�) = �

�
2
�
1

1 + [���2]2

(4)��(�) + i��(�) = �0 sin(�) 1 − e
−(��/�1)

1 − e−(��/�1)cos(�) .
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Figure 1: Free induction decay for dephasing in the absence and presence of microscopic magnetic �eld inhomogeneities. In the case of 
homogeneous tissue (a), the intrinsic transverse relaxation leads to purely monoexponential signal decay with the intrinsic transverse relaxation 
time �2 as shown in (c). In the presence of microscopic magnetic �eld inhomogeneities (b), dephasing e�ects cause an additional decay of 
the signal that might be approximated by a monoexponential relaxation time ��2. (d) �e intrinsic relaxation times �2 and ��2 are combined to 
the relaxation times �∗2 .
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2. Material and Methods

In this work, the SSFP signal of important tissue geometries is 
derived. �erefore, the underlying local Larmor frequencies as 
well as the resulting lineshapes for the important cases of dephas-
ing in a constant gradient as well as dephasing in a two-
dimensional and three-dimensional dipole �eld (see Figure 2) 
are reviewed (see Sections 2.1 and 2.2). �en, the mathematical 
description of SSFP signal formation is introduced (Section 2.3), 
while new results are presented in Section 3.

2.1. Local Larmor Frequencies. Externally applied magnetic 
�eld gradients or internal gradients due to susceptibility 
di�erences cause a local magnetic �eld which is associated 
with a local Larmor frequency in which the dephasing occurs. 
�e most important case is the dephasing in a constant 
gradient � = Δ�/�. Without loss of generality, the gradient 
is applied in �-direction (see Figure 2(a)) within the interval 
−�/2 ≤ � ≤ +�/2 (see Figure 2(b)). �e Larmor frequency 
�G(�) = ��� takes the form of

where ��G = �Δ� = ��� is denoted as the characteristic 
frequency.

Cylindrical objects as for example blood �lled vessels in 
the myocardium or in skeletal muscle (see Figure 2(c)) induce 
a two-dimensional dipole �eld [29]. �e corresponding local 
Larmor frequency around these vessels is given by

(6)�G(�) = ��G �� ,

where � and � are polar coordinates in a plane perpendicular 
to the axis of the cylindrical object (see Figure 2(d)), and �C
denotes the radius of the vessels. �e strength of the dipole 
�eld depends on the susceptibility di�erences Δ�C between 
blood inside the vessel and surrounding tissue, as well as the 
angle � between vessel and main magnetic �eld: 
��C = ��0sin2(�)Δ�C/2.

Spherical magnetic �eld inhomogeneities, such as mag-
netically labeled cells or alveoli of the lung (see Figure 2(e) 
and [30]), create a three-dimensional dipole �eld

which depends on the distance � to the center of the sphere 
and the polar angle � between the external magnetic �eld and 
the position vector as visualized in Figure 2(f). In the lung, 
the dipole �eld strength depends on the susceptibility di�er-
ence Δ�S between air-�lled alveoli and surrounding tissue: 
��S = ��0Δ�S/3.

If the dephasing is restricted to the surface of a spherical 
object with radius �S, as for example on the surface of an alve-
olus as visualized in Figure 2(g), the radius � in Equation (8) 
always takes the value � = �S. �us, the local Larmor frequency 
on the alveolar surface (index AS) depends on the polar angle 
� only:

(7)�C(�, �) = ��C�2C cos(2�)�2 ,

(8)�
S
(�, �) = ��

S
�3
S

3cos2(�) − 1
�3 ,

(9)�AS(�) = ��S[3cos2(�) − 1].
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Figure 2: Larmor-frequencies for di�erent local magnetic �eld inhomogeneities. For dephasing in an imaging gradient or di�usion weighted 
gradient (a) the local resonance frequency is proportional to the spatial coordinate (b) according to Equation (6). In case of cylindrical objects, 
as for example blood �lled capillaries in the myocardium (c) the local Larmor frequency exhibits the form of a two-dimensional dipole 
�eld (d) according to Equation (7) where � and � are polar coordinates in a plane perpendicular to the axis of the vessel. Dephasing around 
spherical objects as exempli�ed by magnetically labeled cells (e) is described by the three-dimensional dipole �eld with low volume fraction � = �sir/�total =≪ 1 or its extended version (f) according to Equation (8) or Equation (10). On the alveolar surface (� = 1) (g) [image adapted 
from [18]], the resonance frequency depends on the polar angle � only (h).
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corresponding to the above described frequency o�sets are 
reviewed in this subsection. �e relevant expressions for the 
magnetization decay �(�) can be found in Appendix B.

A monoexponential magnetization decay with relaxation 
time ��2 results in a Lorentzian lineshape as given in Equation 
(3) and shown in Figure 3(a). Note that the intrinsic �2 relax-
ation time is absorbed in the de�nition of the magnetization 
�(�), see Equation (1).

For dephasing in the constant gradient �G(�) given in 
Equation (6), the lineshape is a boxcar function

and all possible Larmor frequencies take the same probability 
1/��G. Since the interval −�/2 ≤ � ≤ +�/2 is considered, 
 frequencies exclusively occur within the range 
−��G/2 ≤ � ≤ +��G/2. �e lineshape is visualized in 
Figure 3(c). Dephasing and di�usion in constant gradients 
have intensively been analyzed e.g., in [32, 33].

�e lineshape caused by a two-dimensional dipole �eld 
around a cylindrical object (see Figure 2(d)) depends on the 
volume fraction � = �2C/�2D, where �D constitutes the radius 
of the surrounding dephasing cylinder:

(11)�G(�) = {
1
��G for − 12 ≤ ���G ≤ + 120 elsewere,

,

(12)�
C
(�) =
{{{{{{{{{{{

�
1−�
��

C��2 √1 − [ ���
C

]2 for
�
��

C

≤ −� or ���
C

≥ �,
�
1−�
��

C��2 [√1 − [ ���
C

]2 − √1 − [ ����
C

]2] for − � ≤ ���
C

≤ �,
0 otherwise.

As visualized in Figure 2(h), the maximal frequency takes the 
value +2��S for � = 0 and � = �, while the minimal frequency 
takes the value −��S for � = �/2. While the alveolar surface 
model is valid for air volume fractions close to � = �air/�total → 1, 
recently, the alveolar surface model was extended to air volume 
fractions � ≳ 0.5 [31]. In this extended alveolar surface model 
(index EAS), the Larmor frequency around an alveolus was 
approximated by:

If the movement of the spin-bearing particles is restricted to 
the alveolar surface, the extended alveolar surface model 
agrees with the alveolar surface model. However, it yields more 
realistic results for particles being not exactly restricted but 
di�using close to the alveolar surface [31].

2.2. Corresponding Lineshapes. As in detail shown in Appendix 
A, the magnetic �eld inhomogeneities described by the local 
Larmor frequency o�sets �(r) lead to dephasing of the local 
magnetization and a decay of the total magnetization �(�). 
However, it is more convenient to analyze the frequency 
distribution or lineshape �(�) that is connected via a Fourier 
transform with the magnetization �(�). �e lineshapes 

(10)�EAS(�, �) = ��S�2S 3 cos
2(�) − 1
�2 .

Details of the derivation can be found in [34]. �is lineshape 
is visualized in Figure 3(b). �e lineshape of a single vessel in 
a cubic voxel is numerically and analytically determined in 
[35–37], the lineshape of randomly distributed vessels being 
analyzed in [8]. A detailed comparison between randomly 
distributed vessels and the single vessel model is given in 
Appendix A in [11].

�e asymmetric lineshape caused by the three-dimen-
sional dipole �eld (see Equation (8)) around a spherical object 
(see Figure 2(f)) also depends on the volume fraction 
� = �3S/�3D, where �D represents the radius of the surrounding 
dephasing sphere:

(13)
�
S
(�) =
{{{{{{{

�
3√3[1−�] ��S�2 [2 − ���S ]√1 + ���S for

�
��

S

≤ −� or ���
S

≥ 2�,
�

3√3[1−�] ��S�2 [[2 − ���S ]√1 + ���S − [2 − ����S ]√1 + ����S ] for − � ≤ ���
S

≤ 2�,
0 otherwise .

Details of the derivation can be found in [38]. �is lineshape is 
visualized in Figure 3(d). Numerical simulations of a single alve-
olus in spherical and cubic voxels were performed in [39, 40]. 
Randomly distributed spheres are considered in [8].

In the limit of restricting water molecules to the surface 
of the alveoli, the lineshape is given by (see also the corre-
sponding local Larmor frequency given in Equation (9)):

�is expression also follows from the lineshape caused by a spher-
ical object given in Equation (13) in the limit � → 1 when dephas-
ing occurs on the surface of the sphere: �AS(�) = lim�→1�S(�).

(14)

�
AS
(�) = lim

�→1
�
S
(�) = {{{

1
2��

S
√3[(�/��S)+1] for − 1 ≤ ���

S

≤ +2,
0 elsewhere.

In the extended alveolar surface model, the lineshape was 
obtained as [31]:

where the function �(�/��S) is de�ned in Equation (D.1)  
in Appendix D. �e lineshape �EAS(�) also converges to the 
alveolar surface lineshape (see Equation (14)) in the limit: 
lim�→1�EAS(�) = �AS(�).
2.3. SSFP Signal Formation. A pulse sequence similar to the 
previously described FLASH-sequence is the balanced SSFP-
sequence [41]. While the FLASH-sequence spoiles residual 
transverse magnetization before the following excitation pulse, 
the SSFP-sequence reverses the e�ects of the applied gradients. 

(15)

�
EAS
(�) = {{{

�
1−�
3√3
16
��

S�2 [[1 − 23 ���
S

]√1 + ���
S

+ �( ���
S

)] for − 1 ≤ ���
S

≤ +2,
0 elsewhere,
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the analytic continuation of the free induction decay for neg-
ative times in Equation (A.7), the SSFP signal �±(�) can be 
expressed in terms of the Fourier coe¡cients �±�  and the free 
induction decay �(�)

In the following subsections, this general expression is evalu-
ated for the speci�c �eld inhomogeneities as described in 
section “Material and methods”.

3.1. Lorentzian Lineshape. To obtain the SSFP signal for the 
Lorentzian lineshape given in (3), it is advantageous to 
introduce the corresponding purely monoexponential 
magnetization decay from Equation (5) into the general 
expression (25). �e appearing sums over the Fourier 
coe¡cients can be traced back to geometric series, and �nally 
the signal is a sum of an exponentially decaying part 
∝ exp(−�[1/�2 + 1/��2]) = exp(−�/�∗2 ) and an exponentially 
growing part ∝ exp(−�[1/�2 − 1/��2 ])

with the prefactor �± and the abbreviation ��2

as well as the initial signal �±L,0 = �±L(0)

Measuring the SSFP signal allows �tting the relaxation times 
�2, ��2, and the prefactor �±. �e next subsection describes how 
to obtain the relaxation time �1 knowing these parameters.

3.2. Quanti�cation of the Longitudinal Relaxation Time. �e 
series expansion point � can be obtained a²er several 
rearrangement steps from the prefactor �± given in Equation 
(27):

�e de�nition of the series expansion point in Equation (22) 
leads to the relation 1 + �2 = −2��/�. Introducing the explicit 
expressions for the parameters � and � according to Equations 
(17) and (18), a²er several rearrangement steps one obtains:

(25)�±(�) = e−(�/�2)�0
× [�±0 �(�)�(0) +

∞∑
�=1
[�±+��(��� + �)�(0) + �±−�

�∗(��� − �)�(0) ]].

(26)
�±
L
(�)
�±
L,0
= e−(�/�2)[�±e+(�/��2) + [1 − �±]e−(�/��2)]

(27)
1
�± = 1 ∓

1 + ��2
[� + �2]��2 ,

(28)��2 = e−(��/��2),

(29)�±L,0 = �0 1 − �1√�2 − �2
sin(�)1 + ��2 ∓ [� + �2]�

�
2

1 ± ���2 .

(30)
� = �2�

�
2[�+ − 1] − �+
��2[1 − �+] + �2�+ =

�2��2[�− − 1] + �−
��2[1 − �−] − �2�−

= �2�
�
2[�± − 1] ∓ �±
��2[1 − �±] ± �2�± .

A²er preparation in the steady state of a SSFP sequence, two 
di�erent phase cycles for the excitation pulse are common: 
alternating phase and constant phase. �e response function 
of the SSFP-sequence for alternating phase (upper sign) and 
constant phase (lower sign) is given as (see Equation (1) in [42]):

with the parameters

and the abbreviations

For further analysis it is advantageous, to expand the response 
function in a Fourier series [43, 44]

where the Fourier coe¡cients are given as

with the series expansion point

and the step function of the discrete variable �:

In Figure 4, the Fourier coe¡cients are visualized for di�erent 
¨ip angles �. �is agrees with numerical results for the coe¡-
cients obtained by Kim and Cho [45].  

Finally, the total signal that is measured depends on the 
intrinsic �2-relaxation time, the lineshape �(�), and the 
response function of the underlying pulse sequence 
�±� (�) + i�±� (�) (see Equation (5) in [46]):

�us, for detailed understanding of SSFP signal formation, it 
is mandatory to consider the exact lineshape as presented in 
the last subsection.

3. Results

Introducing the Fourier series of the response function (20) 
in the general expression for the signal (24) and considering 

(16)�±� (�) + i�±� (�) = �0[1 − �1]sin(�) 1 ∓ �2e
+i���

� ∓ � cos(���) ,

(17)� = 1 − �1�22 + [�22 − �1]cos(�),

(18)� = �2[1 − �1][1 + cos(�)],

(19)�1 = e−(��/�1) and �2 = e−(��/�2).

(20)�±� (�) + i�±� (�) = �0
+∞∑
�=−∞
�±� e−i���� ,

(21)�±� = 1 − �1√�2 − �2
sin(�)[1 + �2�Θ(�)][∓�]|�|,

(22)� = √�
2

�2 − 1 −
�
� ,

(23)Θ(�) = {+1 for � ≥ 0,
−1 for � < 0.

(24)�±(�) = e−(�/�2)∫+∞
−∞

d� �(�)[�±� (�) + i�±� (�)]e−i��.
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�e initial signal follows as

Similar expressions can also be derived for the extended alve-
olar surface model.

So far, the SSFP signal was usually described under the 
assumption of Lorentzian lineshapes. A comparison of both 
lineshapes is shown in Figure 5, together with the response 
functions ��(�) and ��(�). In Figure 6, the initial signal �+L,0
that determines the signal to noise ratio is compared in the 
Lorentzian lineshape model and the alveolar surface model in 
dependence on the sequence parameters �� and �. Even both 
curves share the general characteristic form, there exist obvi-
ous di�erences between the Lorentzian lineshape and the 
alveolar surface model: the signal in the alveolar surface model 
is complex-valued and shows oscillation whereas the 
Lorentzian lineshape model exhibits only a purely real �-com-
ponent of the signal.

3.5. Numerical Validation. To validate the theoretical �ndings, 
numerical simulations were performed. A steady-state signal 
can be measured in the equilibrium state a²er applying a 
certain number of rf pulses. �e signal a²er the (� + 1)-th 
rf-pulse depends on the pulse structure, the relaxation times 
and the precession frequency. It can be written as:

where the matrix P describes the in¨uence of the rf pulses, the 
matrix R gives the relaxation of the signal as well as the phase 
precession according to the Larmor frequency, and Λ denotes 
a vector driving the magnetization to thermal equilibrium. 
�e matrices are given as [47]:

Furthermore, it is convenient to introduce the column 
vectors

�e steady state is characterized by the condition S�+1 = S�. 
�e time evolution of the SSFP signal for a �xed o�set fre-
quency � can thus be yielded as:

(35)

�±
AS
(0)
�0 =

1 − �1
√�2 − �2

sin(�)[1 + �2�] + 1 − �1√�2 − �2
sin(�)1 + i2 √
6

⋅ [[[1 + �2�]
∞∑
�=1

e
+i��

S
���

√
	
S
��� [∓�]

�
erfi([1 − i]√3
	

S

���
2 )

+[1 + �2�−1] ∞∑
�=1

e
−i��

S
���

√
	
S
��� [∓�]

�
erf([1 − i]√3
	

S

���
2 )]].

(36)S�+1 = P ⋅ [R(�, ��) ⋅ S� + Λ(��)]

(37)P = ( cos(�) 0 sin(�)0 1 0
−sin(�) 0 cos(�)

) and

(38)R(�, �) = (
e
−(�/�2)cos(��) e

−(�/�2)sin(��) 0−e−(�/�2)sin(��) e
−(�/�2)cos(��) 00 0 e

−(�/�1)
).

(39)Λ(�) = �0(
0
0

1 − e−(�/�1)
), Q = (1i

0
).

In case of a Lorentzian lineshape, the parameters �±, �2, and 
��2 can be determined by a biexponential model �t (see 
Equation (26)). �us, the series expansion point � can be cal-
culated according to Equation (30), and the relaxation time is 
yielded by utilizing Equation (31).

3.3. Constant Gradient. In the case of constant gradients, the 
time evolution of the magnetization according to Equation 
(B.1) has to be introduced into the general expression for the 
SSFP signal in Equation (25):

where 2�1 denotes the Gaussian or ordinary hypergeometric 
function. At the initial time � = 0, the signal becomes:

Since the lineshape for dephasing in a constant gradient is a 
symmetric function (see Equation (11) and Figure 3(b)), the 
SSFP signal for dephasing in a constant gradient is purely 
real.

3.4. Alveolar Surface. To �nd the SSFP signal for dephasing 
on the alveolar surface, the relavant magnetization given in 
Equation (B.6) has to be introduced in the general expression 
for the SSFP signal in Equation (25). Finally, the SSFP signal 
for dephasing on the alveolar surface is given by

(31)�1 =
�2[�2 + 1][cos(�) + 1] + 2�[�22cos(�) + 1]
�2[�2 + 1][cos(�) + 1] + 2�[cos(�) + �22]

.

(32)�±�(�) = e−(�/�2)�0 1 − �1√�2 − �2
sin(�) 2���

1 + ��2
�

⋅ Im(2�1(1, �	� ; 1 +
�
	� ; ∓�e

i���(��/2))ei���(�/2))
∓ e−(�/�2)�0 1 − �1√�2 − �2

sin(�) 2���
� + �2
	� − �

⋅ Im(2�1(1, 1 − �	� ; 2 −
�
	� ; ∓�e

i���(��/2))ei���(��−�/2)),

(33)�±
G
(0)
�0 =

1 − �1
√�2 − �2

sin(�)

⋅ [1 + �2� ∓ 4 + 2�2[� + (1/�)]��
G
�� arctan( � sin(��G��/2)1 ± � cos(��

G
��/2))].

(34)�±
AS
(�) =e−(�/�2)�0 1 − �1√�2 − �2 sin(�)

1 + i2 √�6 ei��S�

⋅ [1 + �2�√��
S
� erfi([1 − i]√3��S

�
2)

+ [1 + �2�] ∞∑
�=1

e
+i��

S
���[∓�]�

√��
S
[��� + �]erfi([1 − i]

√3��
S

��� + �
2 )

+[1 + �2�−1] ∞∑
�=1

e
−i��

S
���[∓�]�

√��
S
[��� − �]erf([1 − i]

√3��
S

��� − �
2 )]]]

.
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of approximately 4Hz, a constant gradient was superimposed 
leading to ��G = 177Hz (value obtained from the bSSFP 
frequency pro�le) according to Equation (6). �e SSFP 
sequence parameters were: ¨ip angle � = 25∘, repetition time 
�� = 25ms. In Figure 7, the measured signal is compared 
with the exact expression of the SSFP signal for a constant 
gradient according to Equation (32) as well as the SSFP signal 
expected for a Lorentzian lineshape (see Equation (26)). �e 
theoretically predicted SSFP signal describes the data very well 
(note that no �t was used), whereas the Lorentzian lineshape 
model exhibits large deviations from the measured data.  

3.7. Relaxation Time Estimation and Adjustment of Sequence 
Parameters. To estimate the impact of the presented results on 
the relaxation time determination, a simple numerical model 
is analyzed: we assume tissue that produces a boxcar lineshape 
with a width of ��G (see Equation (11)) and calculate the 
SSFP signal according to Equation (32). �en the SSFP signal 
obtained for a Lorentzian lineshape is �tted to the calculated 
SSFP signal and the obtained ��2 relaxation times are compared 
with the ground truth obtained from Equation (C.4). �us, 
the simulation assesses the bias of ��2 when �tting with a 
Lorentzian lineshape even though the tissue causes a more 
complicated lineshape (like the boxcar function). �e results 
are shown in Figure 8(a). For small gradient strengths ��G, the 
relaxation time ��2 is highly overestimated, especially for short 
repetition times ��. Only for gradient strength ��

G
≲ 1/��, 

where I denotes the identity matrix. �e inclusion of alternat-
ing phases is conceptually analogous. Finally, the complex-val-
ued SSFP signal �(�) = ��(�) + i��(�) is obtained by a weighted 
integration of S(�, �) according to the lineshape �(�):

�is integral is numerically calculated for the constant gradi-
ent lineshape, the alveolar surface model as well the Lorentzian 
lineshape and agrees with the theoretically derived signals in 
all models. Moreover, Equation (24) is used to recalculate the 
SSFP signal in all models obtaining the same results. �is 
demonstrates the validity of the theoretical approach.

3.6. Experimental Veri�cation. Measurements were performed 
on a 7 Tesla Bruker Biospec 70/30 (Ettlingen, Germany). 
A 5 mm water-�lled MR tube axially aligned at the center 
line of the magnet with the relaxation times �1 = 3.2 s and 
�2 = 0.4 s was measured with a spectroscopic bSSFP pulse 
sequence [48] with alternating as well as constant phases. 
A²er carefully shimming the sample leading to a linewidth 

(40)

S(�, �) = R(�, �) ⋅ [I − P ⋅ R(�, ��)]−1 ⋅ P ⋅ Λ(��) + Λ(�),

(41)
�(�) =∫+∞

−∞
d��(�)QT ⋅ [R(�, �) ⋅ [I − P ⋅ R(�, ��)]−1

⋅ P ⋅ Λ(��) + Λ(�)].
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Figure 3: Lineshapes for a Lorentzian frequency distribution (a) according to Equation (3), for dephasing in a constant gradient (b) according 
to Equation (11), for dephasing around a cylinder (c) according to Equation (12), and for dephasing around a sphere (d) according to Equations 
(13) and (15).
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depends on the parameters �1, �2, and ��G. In this model, the 
frequency o�set ��G corresponds to the relaxation time ��2 via 
Equation (C.4).

To assess the expected precision and accuracy of determin-
ing the parameters in this model, the SSFP signal for a constant 
gradient was calculated according to Equation (32) for the 
parameters �1 = 3.2s, �2 = 0.4s, and ��G = 175Hz motivated 
by the parameters in Figure 7. Assumed sequence parameters 
were �� = 25ms  and � = 25∘. �en, Gaussian noise with stand-
ard deviation � was added and the constant gradient model 
was �tted to the simulated data for 100 di�erent noise realiza-
tion per chosen noise level. �e obtained values for the above 
parameters are shown in Figure 9 in dependence on the signal 
to noise ratio SNR = S(0)/�. For the chosen ground truth, the 
parameters �1 and �2 show a high spread for SNR lower than 
100, whereas the determination of ��G is very precise and accu-
rate for all shown SNR values. For SNR > 150, all three param-
eters can accurately and precisely be determined.

4. Discussion and Conclusion

In this work, the signal formation in local magnetic �eld inho-
mogeneities is recapitulated. Important local magnetic �eld 

the �tted relaxation times are similar to the ground truth and, 
in this regime, the error is in the order of 10%. �ese results 
suggest that the exact form of the lineshape has an important 
in¨uence on the SSFP signal and should in general not be 
described by a simple Lorentzian lineshape. Furthermore, we 
assess the accuracy of the ��2 estimation in the lung. �erefore, 
the SSFP signal in the alveolar surface model is calculated 
according to Equation (34) for typical lung parameters of 
�1 = 1.3 s and �2 = 0.04 s. �e ̈ ip angle was chosen as � = 14° 
in accordance with the maximum of the initial signal �−AS,0
(similar to Figure 6). �e calculated SSFP signal was �tted 
with the biexponential Lorentzian SSFP model (according 
to Equation (26)) yielding an estimation for the relaxation 
time ��2. �e estimated relaxation times are compared with 
the ground truth obtained from Equation (C.7) and presented 
in Figure 8(b). Similar to the results for the constant gradient 
SSFP model, a large bias in the order of 25% occurs for the 
determination of the relaxation time ��2. �is result also 
demonstrates the importance of using the correct form of the 
lineshape rather than its Lorentzian approximation.

In this work, more realistic lineshape models were ana-
lyzed to overcome the drawbacks of the Lorentzian lineshape 
model. �e SSFP signal in the constant gradient model e.g. 
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inhomogeneities for magnetic resonance imaging are the con-
stant gradient and dipole �elds caused by cylindrical or spher-
ical objects. For these cases, the free induction decay, the 
corresponding lineshape as well as the SSFP signal are 
analyzed.

�e lineshape for a constant gradient and for cylindrical 
objects are symmetric. Consequently, the free induction decay 
as well as the SSFP signal become purely real meaning that 
only the transverse component ��(�) is present while ��(�)
vanishes. In comparison, the lineshape around spherical 
objects shows a prominent asymmetry that arises from the 
angular dependency ∝ 3 cos2(�) − 1. �erefore, both trans-
verse components of the free induction decay and SSFP signal 
need to be considered and the signal is complex-valued. It is 
convenient to introduce a complex ��2-time as given in 
Equation (C.2): its real part describes the decay of the signal 
amplitude, and the imaginary part the phase oscillation, 
respectively.

Lung tissue consists of very densely packed air-�lled alve-
oli [49, 50]. �e susceptibility di�erence to the surrounding 
tissue causes strong susceptibility e�ects that can be described 
in the alveolar surface model [18]. In this model, spin-bearing 
particles are assumed to be located on the surface of a spherical 
alveolus. In general, contributions to the local Larmor fre-
quency from other alveoli need to be considered. However, 
numerical simulations show that these contributions are 
mostly averaged out due to the angular dependency of the 
Larmor frequency. Details are provided in [18]. In this work, 
the alveolar surface model was used to predict the SSFP signal 
in lung tissue. Due to the prominent asymmetry of the line-
shape (see Figure 3), the SSFP signal exhibits both transversal 
components.

�e initial SSFP signal �+0 is shown in Figure 6 for the 
Lorentzian lineshape as well as in the alveolar surface model. 
Since the initial signal is closely related to the signal to noise 
ratio, ¨ip angle � and repetition time �� should be chosen to 
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of the ̈ ip angle � in alveolar surface and Lorentzian lineshape 
model of a few degrees, depending on the chosen repetition 
time ��.

maximize the initial signal. �us, the alveolar surface model 
allows optimizing the sequence parameters. A quantitative 
evaluation of Figure 6 yields a di�erence of the optimal value 
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Figure 6: Comparison between Lorentzian lineshape and alveolar surface model. �e initial signal is shown in dependence on repetition 
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As a consequence of these �ndings, the determination of 
the relaxation time ��2 has to be performed with the correct 
lineshape model as shown in Figure 8(a). In this �gure, the 
relative error of ��2 is shown by �tting the SSFP signal of a 
constant �eld gradient with a Lorentzian lineshape. Obviously, 
large errors can occur, especially for small �eld gradients and 
small repetition times ��, which are usually preferred to cir-
cumvent banding artifacts. �is region, where the relaxation 
time ��2 is overestimated, can be qualitatively understood since 
the SSFP signal for a weak constant gradient increases for short 
times, which cannot be described by the SSFP signal for the 
Lorentzian lineshape. Similar results are shown in Figure 8(b) 
where the SSFP signal in the alveolar surface model is �tted 
by the Lorentzian lineshape model. Hereby, a bias of the deter-
mined relaxation time ��2 in the order of 25% occurs.

In Figure 8, the ��2 relaxation time was �tted, keeping �1
and �2 �xed. In principle, it is possible to simultaneously �t all 
three parameters. However, the SSFP signal for the Lorentzian 
lineshape yields a biexponential signal model (see Equation 
(26)) which is di¡cult to handle and typically converges to 
local minima. �is is a further drawback of the Lorentzian 
lineshape approximation. �us, the correct lineshape model 
has to be considered.

�is also indicates that SSFP sequences in qBOLD imaging 
might be interesting as they are very sensitive towards changes 
in the lineshape. �e lineshape in blood vessel networks, on 
the other hand, is sensitive towards changes of physiological 
parameters like the blood volume fractions or the oxygenation 
level.

In Figure 9, expected accuracy and precision for deter-
mining �1, �2, and ��2 with the constant gradient model are 
shown in dependence on the signal to noise ratio. Even though 
the results highly depend on the chosen ground truth values, 
the relaxation times seems to be robustly measurable for 

�e analytical description of the SSFP signal derived in 
this work is validated with experimental measurements for a 
constant �eld gradient, see Section 3.6. �e obtained meas-
urements agree very well with the analytical description for 
the constant gradient, see Figure 7. Moreover, it becomes obvi-
ous that a quantitative description of the SSFP signal needs to 
account for the exact form of the lineshape, as the Lorentzian 
lineshape theory predicts a qualitatively di�erent signal.
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G
= 175Hz. Sequence parameters are �� = 25ms
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To obtain a purely real lineshape, it is necessary to continue 
the magnetization for negative times in the form of

�us, the lineshape can be written as

which requires only the knowledge of the magnetization for 
positive times. Introducing the expression for the total mag-
netization in Equation (A.4) with the local magnetization in 
Equation (A.3) into the general de�nition of the lineshape 
de�ned in Equation (A.6) results in

  

where the Fourier representation of Diracs delta distribution 
was used (note that a sign error occurred in Equation (7) in 
[18]). Obviously, the lineshape ful�lls the properties of a prob-
ability distribution:

�e magnetization can be expressed as the inverse Fourier 
transform of the lineshape according to Equation (A.6):

  

B. FLASH Signal Decay  

�e magnetization �
G
(�) that can be measured e.g., with a 

FLASH sequence for a constant gradient reads:
  

�e magnetization around a two-dimensional dipole �eld that 
occurs e.g. around vessels was obtained in [8] or Equations 
(31) and (32) in [51]:

(A.7)�(−�) = �∗(+�).

(A.8)�(�) = 1�∫
∞

0
Re(�(�)�(0)e

i��)d�,

(A.9)�(�) = 1�∫�d
3
r�(� − �(r)),

(A.10)∫+∞
−∞

d� �(�) = 1.

(A.11)
�(�)
�(0) = ∫

+∞

−∞
�(�)e−i��d�.

(B.1)
�

G
(�)
�

G
(0) = sinc(

��
G
�
2 ).

(B.2)
�

C
(�)
�

C
(0) =
ℎ
C
(���

C
�) − �ℎ

C
(��

C
�)

1 − �

SNR ≳ 150. A further evaluation for di�erent ground truth 
values, however, is numerically costly.

In this work, the SSFP signal is analyzed for nonhomoge-
neous tissue. For a purely monoexponential free induction 
decay, the lineshape is Lorentzian and the SSFP signal can be 
calcuated by utilizing the Fourier coe¡cents. However, even 
for nonexponential signal decay that may occur due to two-di-
mensional or three-dimensional dipole �elds in muscle or lung 
tissue, the SSFP signal can analytically expressed in terms of 
the Fourier coe¡cients. �e relaxation times can also be deter-
mined for nonLorentzian lineshapes by utilizing the correct 
lineshape model.

Appendix

A. Time Evolution of the Magnetization

For analysis of the local magnetization, it is advantageous to 
combine the �- and �-components of the local transverse mag-
netization density inside an imaging voxel to a complex-valued 
quantity

In general, the time evolution of this local transverse magnet-
ization density is then governed by the Bloch equation

where �(r) is the time-independent local Larmor frequency. 
A²er an excitation pulse with ̈ ip angle �, the initial transver-
sal magnetization density is assumed to be spatially constant 
�(r, 0) = �0 sin (�) and the time evolution of the local trans-
verse magnetization density is given by

�e total magnetization can be obtained by an integration of 
the local magnetization density over the voxel with volume �:

with the total initial magnetization

which will produce the transverse magnetization 
�(0) = �0sin(�) a²er the application of an �-pulse. Due 
to the exclusion of the �2-relaxation in the de�nition of the 
magnetization �(�), see Equation (1), the local magnetization 
�(r, �) excludes the intrinsic �2-relaxation processes as well.
Since the total magnetization is in general complex-valued 
�(�) = ��(�) + i��(�), it is advantageous to consider the 
lineshape

(A.1)�(r, �) = ��(r, �) + i��(r, �).

(A.2)
�
���(r, �) = −i�(r)�(r, �),

(A.3)�(r, �) = �(r, 0)e−i�(r)�.

(A.4)�(�) = ∫
�
d
3
r �(r, �)

(A.5)�0 = �0�,

(A.6)�(�) = 12�∫
+∞

−∞
�(�)
�(0)e

+i��
d�.

Im(ω)

Re(ω)

Figure 10: Integration pathway according to the right hand side of 
Equation (C.2).
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�e range correctly described by the mean time approxima-
tion depends on the actual form of the magnetization �(�)
as analyzed in [53]. Since the magnetization can be expressed 
in terms of the lineshape according to Equation (A.11), the 
relaxation time can also be expressed in terms of the lineshape:

where the pathway of integration is visualized in Figure 10. In 
the static-dephasing regime, the lineshape can be expressed 
directly in terms of the local Larmor frequency according to 
Equation (A.9) which allows to obtain an expression of the 
transverse relaxation time in the form of

�e real part of the relaxation time ��2 describes the signal loss, 
whereas the imaginary part describes the oscillatory behavior 
of the phase.

Appyling Eq. (C.1) or Eq. (C.2), the transverse relaxation 
times for the di�erent geometries presented follows as

(C.1)��2 = ∫
∞

0
d��(�)�(0) .

(C.2)
��2 = ��(0) − i∫

∞

−∞
d��(�)� = −i∮ d�

�(�)
� ,

(C.3)��2 = 1�∫�d
3
r[��(�(r)) + i

�(r)].

(C.4)��2� = ���� ,

with the generalized hypergeometric function

An alternative expression for the magnetization decay is given 
in Equations (39) and (40) in [11].
�e magnetization around a three-dimensional dipole �eld 
(as present around magnetized particles or alveoli in the lung) 
reads:

with the function

where 1�1 denotes the generalized hypergeometric function 
and Si and Ci are sine and cosine integral. An alternative 
expression for the magnetization decay is given in Equation 
(34) in [52].

In the limit of restricting water molecules to the surface of 
the alveoli, the time evolution of the magnetization is given by:

where erfi(�) = −ierf(i�) denotes the imaginary error func-
tion. �is expression also follows from the magnetization 
decay caused by a spherical object given in Equation (B.4) in 
the limit � → 1, when dephasing occurs on the surface of the 
sphere: �

AS
(�) = lim�→1�S

(�).
In the extended alveolar surface model, the magnetization 
reads:

with ℎ
EAS
(�) given in Equation (C.10) in [31]:

  

C. Monoexponential Approximation

In general, the magnetization �(�) exhibits decaying and 
oscillating parts and thus, is nonmonoexponential. However, 
for some applications it might be advantageous to de�ne a 
monoexponential approximation time ��2. �e relaxation time 
��2 can be obtained in terms of a mean relaxation time approx-
imation [13]:
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Figure 11: Comparison of lineshapes in the static dephasing for the 
exact dipole �eld �

S
(�, �) = ��

S
�3
S
[3cos2(�) − 1]/�3 according to 

Equation (13), the alveolar surface model �
AS
(�) = ��

S
[3cos2(�) − 1]

given in Equation (14), and the extended alveolar surface model 
�
EAS
(�, �) = ��

S
�2
S
[3cos2(�) − 1]/�2 given in Equation (15). �e 

lineshapes for the exact dipole �eld are obtained from Equation (13) 
for � = 0.2 shown as blue solid line and for � = 0.9 as red solid line. 
�e lineshapes in the extended alveolar surface model are obtained 
from Equation (15) for � = 0.2 (blue dotted line) and for � = 0.9 (red 
dotted line). �e black solid line shows the lineshape in the limit 
� = 1 obtained from Equation (14) that corresponds to the alveolar 
surface model.
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�e transverse relaxation time for a cylinder ��2� agrees with 
Equation (19) in [34]. Obviously, the relaxation times for a spher-
ical objects ��2S as well as in the extended alveolar surface model 
��2EAS converge towards the alveolar surface relaxation time ��2AS
within the limit of large air volume fractions � → 1.  

D. Extended Alveolar Surface Model

Within the static dephasing limit, where di�usion is neglected, 
the lineshape in the extended alveolar surface model is given in 
Equation (15) where the function �(�/��

S
) can be found as:
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Figure 12: Eigenvalues �� and expansion coe¡cients �� in dependence on the parameter ��
S
�2
S
/� according to Equation (E.3) for real part (a) 

and imaginary part (b) of the eigenvalues and according to Equation (E.4) for real part (c) and imaginary part (d) of the expansion coe¡cients.

A comparison of the lineshapes for the exact three-dimen-
sional dipole �eld and the extended alveolar surface model is 
shown in Figure 11.  

E. Diffusion Effects

If di�usion e�ects are included, an additional di�usion term 
has to be added to the original Bloch equation (A.2) which 
leads to the Bloch–Torrey equation [54]
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Since the imaginary parts of the eigenvalues �� and of the 
expansion coe¡cients �� never vanish (see Figures E.12(b) and 
E.12(d)), the lineshape according to Equation (E.2) is not a 
simple linear combination of Lorentzian lineshapes.

�e transverse relaxation time in the alveolar surface 
model for nonvanishing di�usion e�ects ��2A can easily be 
obtained from the mean relaxation time approximation by 
introducing Equation (E.6) into Equation (C.1) or from the 
lineshape given in Equation (E.2) with Equation (C.2):
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