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Motivated by some results of L. Berg (2002), in this paper we find the second member in
the asymptotic development of some of the positive solutions of a class of difference equa-
tions of second and third orders. The main result in this paper partially solves an open
problem by S. Stević (2003), and it is applied to some classes of mathematical biology
models, for example, generalized Beverton-Holt stock recruitment model, flour beetle
population model, mosquito population equations, and discrete delay logistic difference
equation.

Copyright © 2006 Stevo Stević. This is an open access article distributed under the Cre-
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reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently there has been a great interest in studying nonlinear difference equations and
systems (cf. [1–36] and the references therein). One of the reasons for this is a neces-
sity for some techniques which can be used in investigating equations arising in math-
ematical models describing real-life situations in population biology, economy, proba-
bility theory, genetics, psychology, sociology, and so forth. Such equations also appear
naturally as discrete analogues of differential equations which model various biologi-
cal and economical systems (see, e.g, [7, 13, 16–18, 20, 24, 28, 29] and the references
therein).

There are sequences defined by recurrence formulae such that we know their asymp-
totic behavior, see, for example, [11, 12, 14, 15, 19, 21, 23, 29, 30, 32, 33, 36], that is, we
know the first member in their asymptotic behavior.

The following theorem was established in [21, Problem I, page 174]. The proof ap-
pearing there is attributed to Jacobsthal.

Theorem 1.1. Let f : (0,α)→ (0,α), where α > 0, be a continuous function such that 0 <
f (x) < x for every x ∈ (0,α) and f (x) = x− axk + bxk+p + o(xk+p), when x → +0, where
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2 Asymptotic behavior of some difference equations

k > 1, p, a, and b are positive numbers. Let x0 ∈ (0,α) and xn = f (xn−1), n≥ 1. Then

xn ∼

1
(
(k− 1)an

)1/(k−1) . (1.1)

Our version of this proof is somewhat different to its original form, and the idea and
structure of this version was the starting point and inspiration for our further investiga-
tions, see [23]. In [24] we have noted, by an example, that there are sequences defined
by difference equations of second order which behave similarly to those sequences in
Theorem 1.1. Motivated by the example in [29], we have found the asymptotics of all
positive solutions of a nonlinear difference equation of second order.

A natural problem was whether Theorem 1.1 could be extended in the case of differ-
ence equations of order greater than one. The problem was not only of great importance
in its own right. This is important because there is a large class of mathematical biology
models which are described by equations of this type. For example,

discrete delay logistic difference equation [20]:

Nt+1 = αNt

1 +βNt−k
, α,β > 0, k ∈N; (1.2)

generalized Beverton-Holt stock recruitment model [7, 13]:

xn+1 = axn +
bxn−1

1 + cxn−1 +dxn
, x0,x1 > 0, n= 1,2,3, . . . , (1.3)

where a∈ (0,1), b ∈R+, and c,d ∈R+∪{0}, with c+d > 0;
flour beetle population model [18]:

xn+3 = axn+2 + bxne
−(cxn+2+dxn), n= 0,1,2, . . . , (1.4)

with a,b,c,d ≥ 0 and c+d > 0.
mosquito population equations [16]:

xn+1 = (axn + bxn−1e
−xn−1 )e−xn , x0,x1 > 0, n= 1,2,3, . . . , (1.5)

where a∈ (0,1), b ∈ [0,∞), and

xn+1 = (αxn +βxn−1)e−xn , x0,x1 > 0, n= 1,2,3, . . . , (1.6)

where α∈ [0,1), β ∈ (0,∞).
One of the most interesting cases of these equations is when the sum of the main

coefficients of the equations is equal to 1, that is, when α= 1 for (1.2), a+ b = 1 for (1.3),
(1.4), and (1.5), and α+β = 1 for (1.6).

A natural question is to find the first term in the asymptotic behavior of the solutions
of (1.3)–(1.5) for a+ b = 1 and of (1.6) when α+β = 1.

In [29, 32] we have generalized Theorem 1.1 in the case of sequences defined by a
difference equations of order more than one, where among other results we completely
described the asymptotic behavior of solutions of (1.3)–(1.6) in these cases.
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In [32] we have proved the following theorem.

Theorem 1.2. Let f : [0,+∞)k → [0,+∞) be a continuous function such that
(a) 0 < f (z1, . . . ,zk) < max{z1, . . . ,zk} for all z1, . . . ,zk ∈ [0,α), such that (z1,z2, . . . ,zk) �=

(0,0, . . . ,0), where α∈ (0,∞] and k ∈N;
(b) f (z1, . . . ,zk) = p1z1 + ···+ pkzk −

∑+∞
s=mKs(z1, . . . ,zk) uniformly as z2

1 + ···+ z2
k →

0, where m> 1, p1, . . . , pk ∈ [0,1), and Ks(z1, . . . ,zk) is a homogeneous polynomial of
order s;

(c)
∑k

i=1 pi = 1;
(d) f (z1, . . . ,zk) is nondecreasing in each variable in a neighborhood of the origin;
(e) Km(1, . . . ,1) > 0.

Then the sequence defined by

xn+1 = f
(
xn, . . . ,xn−k+1

)
(1.7)

with initial conditions x0,x1, . . . ,xk−1 ∈ [0,α) satisfies the following asymptotic formula:

xn ∼

(
P′k(1)

(m− 1)Km(1, . . . ,1)

)1/(m−1)
1

m−1
√
n

, (1.8)

where Pk(λ)= λk − p1λk−1−···− pk−1λ− pk.

Remark 1.3. From the proof of Theorem 1.2, it is easy to see that condition (b) can be
replaced by the following condition:

(b)′ f
(
z1, . . . ,zk

)= p1z1 + ···+ pkzk −Km
(
z1, . . . ,zk

)
+ o
((
z2

1 + ···+ z2
k

)m/2
)

, (1.9)

uniformly as z2
1 + ··· + z2

k → 0, where m > 1, p1, . . . , pk ∈ [0,1), and Km(z1, . . . ,zk) is a
homogeneous polynomial of order m.

Remark 1.4. Note that if p1, . . . , pk ∈ (0,1), then condition (d) is automatically satisfied,
since the partial derivatives of the function f are positive in a neighborhood of the origin.

The convergence of the sequences in Theorem 1.2 follows, for example, from some
results, in [25, 27]. For closely related results, see also [1, 8–10, 22, 24–28, 31].

Applying Theorem 1.2 to (1.3)–(1.6), we obtain that the following asymptotics hold.

Equation (1.3). If a,b ∈ (0,1) and a+ b= 1, then

xn ∼

2− a

(1− a)(c+d)n
. (1.10)

Equation (1.4). If a,b ∈ (0,1) and a+ b= 1, then

xn ∼

3− 2a
(1− a)(c+d)n

. (1.11)

Equation (1.5). If a,b ∈ (0,1) and a+ b= 1, then

xn ∼

1
n
. (1.12)
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Equation (1.6). If α,β ∈ (0,1) and α+β = 1, then

xn ∼

2−α

n
. (1.13)

For the class of difference equations of first order defined in Theorem 1.1, we described
in [23], under some additional conditions, a method for finding the next members in as-
ymptotic developments of its solutions. It is a natural question to find the other members
in the asymptotic development of the solutions of (1.3)–(1.6). Hence in [32] we have
offered the following problem.

Open problem 1.5. Find the second member in the asymptotic development of the solu-
tions of (1.3)–(1.6), that is, find the sequence yn such that

lim
n→∞

xn− a/n

yn
= 1. (1.14)

The main object in the paper is to find the second member in the asymptotic de-
velopment of some of the positive solutions of a class of nonlinear difference equations
generalizing (1.2)–(1.6).

2. The inclusion theorem

In order to prove the open problem, we need the following result.

Theorem 2.1. Let f : Ik → I be a continuous and nondecreasing function in each argument
on the interval I ⊆ R, and let (yn) and (zn) be sequences in I , with yn < zn for n ≥ n0 and
such that

yn+1 ≤ f
(
yn, . . . , yn−k+1

)
, f

(
zn, . . . ,zn−k+1

)≤ zn+1, n≥ n0 + k− 1. (2.1)

Let further xn be a solution of the following difference equation:

xn+1 = f
(
xn, . . . ,xn−k+1

)
(2.2)

such that

yn ≤ xn ≤ zn, for n∈ {n0, . . . ,n0 + k− 1
}

, (2.3)

then

yn ≤ xn ≤ zn, for n≥ n0. (2.4)

Proof. We prove the theorem by induction. If n= n0 + k, then using (2.1) and the mono-
tonicity of the function f we have

yn0+k ≤ f
(
yn0+k−1, . . . , yn0

)≤ f
(
xn0+k−1, . . . ,xn0

)≤ f
(
zn0+k−1, . . . ,zn0

)≤ zn0+k, (2.5)

that is,

yn0+k ≤ xn0+k ≤ zn0+k. (2.6)
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Assume now that it has been proved that

yn ≤ xn ≤ zn, for n∈ {n0, . . . ,m
}

, (2.7)

where m≥ n0 + k, then using again (2.1), induction hypothesis, and the monotonicity of
the function f we have

ym+1 ≤ f
(
ym, . . . , ym−k+1

)≤ f
(
xm, . . . ,xm−k+1

)≤ f
(
zm, . . . ,zm−k+1

)≤ zm+1, (2.8)

that is, ym+1 ≤ xm+1 ≤ zm+1, finishing the proof. �

Remark 2.2. Some other results of this type and their applications can be found, for ex-
ample, in [2–6, 34, 35].

Remark 2.3. It suffices that the hypotheses concerning f are satisfied in the strip (2.4).

3. Main result

In this section, we formulate and prove the main result in this paper. As a consequence of
this result, we find the second member in the asymptotics of some positive solutions of
(1.3)–(1.6).

Theorem 3.1. Consider (1.7), where k ∈ {2,3}. Then the following statements are true.
(a) For k = 2 and p ∈ (0,1), there is a positive solution of (1.7) with the following asymp-

totics:

xn = 2− p

K2(1,1)n
+ b

lnn
n2

+ o
(

lnn
n2

)
, (3.1)

as n→∞, where

f (x, y)= px+ (1− p)y−K2(x, y)−K3(x, y) + o
((
x2 + y2)3/2

)
, (3.2)

as x2 + y2 → 0,

b = p(s− q)− 2(r + 2s)
K2(1,1)2

− K3(1,1)
K2(1,1)3

(2− p)2, (3.3)

K2(x, y)= qx2 + rxy + sy2 is a positive definite form, and K3(x, y) is a homogeneous
polynomial in variables x and y of third order.

(b) For k = 3 and p,q, p+ q ∈ (0,1), there is a positive solution of (1.7) with the follow-
ing asymptotics:

xn = 3− q− 2p
K2(1,1,1)n

+ b
lnn
n2

+ o
(

lnn
n2

)
, (3.4)

as n→∞, where

f (x, y,z)= px+ qy + (1− p− q)z−K2(x, y,z)−K3(x, y,z) + o
((
x2 + y2 + z2)3/2

)
,
(3.5)
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as x2 + y2 + z2 → 0,

b= 3(r− 3t− s− v− 2w)− q(3r + s+ 2u+ v− t)− 2p(2r− 2t+u−w)
K2(1,1,1)2

+
K3(1,1,1)
K2(1,1,1)3

(3− 2p− q)2,
(3.6)

K2(x, y,z)=rx2 +sy2 +tz2 +uxy +vxz+wyz is a positive definite form, and K3(x, y)
is a homogeneous polynomial in variables x, y, and z of third order.

Proof. In both cases, we suppose that there are solutions which have the following asymp-
totics:

xn = a

n
+
b lnn
n2

+ o
(

lnn
n2

)
= ϕn + o

(
lnn
n2

)
, (3.7)

as n→∞.
We show this by finding the values of the coefficients a and b.
(a) Let

F(x, y,z)= x− f (y,z). (3.8)

Choosing a = (2− p)/(q + r + s) = (2− p)/(K2(1,1)) and b arbitrary, comparing coeffi-
cients in

F
(
ϕn+1,ϕn,ϕn−1

)= 0 (3.9)

by some calculations, we obtain

F
(
ϕn+1,ϕn,ϕn−1

)
∼

(2− p)
(
b− b0

)

n3
, (3.10)

where

b0 = p(s− q)− 2(r + 2s)
K2(1,1)2

− K3(1,1)
K2(1,1)3

(2− p)2. (3.11)

Let b1 and b2 be such that b1 > b0 and b2 < b0. With the notations

yn = a

n
+
b2 lnn
n2

,

zn = a

n
+
b1 lnn
n2

,

(3.12)

and from (3.10), we get

F
(
yn+1, yn, yn−1

)
∼

(2− p)
(
b2− b0

)

n3
< 0,

F
(
zn+1,zn,zn−1

)
∼

(2− p)
(
b1− b0

)

n3
> 0.

(3.13)
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These relations show that inequalities (2.1) are satisfied for sufficiently large n, where f is
defined in Theorem 3.1(a) and F is given by (3.8). Thus, since for sufficiently large n we
can chose b arbitrary close to b0, in view of Theorem 2.1, it follows that in this case there
is a solution of (1.7) which has asymptotics (3.4).

(b) Let

F(x, y,z,w)= x− f (y,z,w). (3.14)

Choosing a= (3− q− 2p)/(K2(1,1,1)) and b arbitrary, comparing coefficients in

F
(
ϕn+1,ϕn,ϕn−1,ϕn−2

)= 0, (3.15)

the DERIVE system yields

F
(
ϕn+1,ϕn,ϕn−1,ϕn−2

)
∼

(3− q− 2p)
(
b− b0

)

n3
, (3.16)

where

b0 = 3(r− 3t− s− v− 2w)− q(3r + s+ 2u+ v− t)− 2p(2r− 2t+u−w)
K2(1,1,1)2

+
K3(1,1,1)
K2(1,1,1)3

(3− 2p− q)2.

(3.17)

Let b1 and b2 be such that b1 > b0 and b2 < b0. With the notations (3.12) and from (3.16),
we get

F
(
yn+1, yn, yn−1, yn−2

)
∼

(3− q− 2p)
(
b2− b0

)

n3
< 0,

F
(
zn+1,zn,zn−1,zn−2

)
∼

(3− q− 2p)
(
b1− b0

)

n3
> 0.

(3.18)

These relations show that inequalities (2.1) are satisfied for sufficiently large n, where f is
given in Theorem 3.1(b) and F is given by (3.14). Applying Theorem 2.1, we obtain that
in this case there is a solution of (1.7) which has asymptotics (3.4). �

3.1. Case of discrete delay logistic difference equation. In the case of a general k, we
only consider the discrete delay logistic difference equation (1.2) with α= 1, that is,

xn+1 = xn
1 +βxn−k

. (3.19)

From [29, Theorem 2], it follows that

xn ∼

1
βn

. (3.20)

Let

F(x,u,v)= x− u

1 +βv
. (3.21)
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We assume that (3.19) has a positive solution xn with the asymptotics

xn = 1
n

+ b
lnn
n2

+ o
(

lnn
n2

)
, (3.22)

and also that β = 1, otherwise we consider the sequence yn = βxn. Let

ϕn = 1
n

+ b
lnn
n2

. (3.23)

Then by well-known asymptotics formulae, we have

F
(
ϕn+1,ϕn,ϕn−k

)= ϕn+1−ϕn +ϕnϕn−k −ϕnϕ
2
n−k + o

(
1
n3

)

= 1
n

(
1+

1
n

)−1

+b
lnn
n2

(
1+

1
n

)−2

+ b
ln(1+1/n)

n2

(
1+

1
n

)−2

− 1
n
−b lnn

n2

+
(

1
n

+ b
lnn
n2

)(
1
n

(
1− k

n

)−1

+ b
lnn+ ln(1− k/n)

n2

(
1− k

n

)−2)

−
(

1
n

+b
lnn
n2

)(
1
n

(
1− k

n

)−1

+ b
lnn+ln(1−k/n)

n2

(
1− k

n

)−2)2

+ o
(

1
n3

)

= 1
n
− 1
n2

+
1
n3

+ b
lnn
n2

− 2b
lnn
n3

+
b

n3
− 1
n
− b

lnn
n2

+
1
n2

+ 2b
lnn
n3

+
k

n3
− 1
n3

+ o
(

1
n3

)
∼ b+ k

n3
.

(3.24)

Hence, in this case, we have that b = −k (which implies that b = −k/β if β �= 1) in
(3.21). Denote b0 = −k/β. Using (3.12) and choosing b1 and b2 such that b1 > b0 and
b2 < b0, we obtain

F
(
yn+1, yn, yn−k

)∼
(
b2− b0

)

n3
< 0,

F
(
zn+1,zn,zn−k

)∼
(
b1− b0

)

n3
> 0.

(3.25)

Now note that from this and by Theorem 2.1 we could conclude that there is a positive
solution of (3.19) with the following asymptotics:

xn = 1
βn
− k

β

lnn
n2

+ o
(

lnn
n2

)
, (3.26)

as n→∞, if the monotonicity conditions were not violated.
Hence, for the readers interested in this research area, we leave the following conjec-

ture.

Conjecture 3.2. Shows that there is a positive solution of (3.19) with asymptotics (3.22).
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Remark 3.3. It is interesting that Conjecture 3.2 cannot be confirmed also by [4, Theorem
2.1] (see also [5]), since for the case of (3.19), two coefficients with the largest moduli in
[4, formula (2.3)] have the same moduli so that [4, condition (2.4)] is not satisfied. We
would like to point out that [4, Theorem 2.1] was applied with a success at many points,
for example, in [4, 34].
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