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1. Introduction

During the last two decades, there has been much research activity concerning the oscillation
and nonoscillation of solutions of neutral type delay differential equations (see [1–9]).
Investigation of such equations or systems, besides of their theoretical interest, have some
importance in modelling of the networks containing lossless transmission lines, in the study
of vibrating masses attached to an elastic bar and also in population dynamics, and so forth
(see [1, 2, 8, 10] and the references cited therein).

In this paper, we consider the second-order neutral delay differential equation with
forcing term of the form

[
x(t) + P(t)x(t − τ)

]′′ +Q1(t)x
(
t − σ1

) −Q2(t)x
(
t − σ2

)
= h(t), t ≥ t0, (1.1)

where

τ > 0, σ1 ≥ 0, σ2 ≥ 0, P,Q1, Q2, h ∈ C
([
t0,∞

)
,R

)
. (1.2)
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Let ϕ ∈ C([t0 − σ, t0),R), where σ = max{τ, σ1, σ2}, be a given function and let x0

be a given constant. By the method of steps (see [2]), it is easy to know that (1.1) has a
unique solution x ∈ C([t0 −σ,∞),R) in the sense that x(t) +P(t)x(t− τ) is twice continuously
differential for t ≥ t0, x(t) satisfies (1.1) and

x(s) = ϕ(s) for s ∈ [t0 − σ, t0],

[
x(t) + P(t)x(t − τ))

]′
t=t0

= x0.
(1.3)

As is customary, a solution of (1.1) is called oscillatory if it has arbitrarily large zeros,
and otherwise it is nonoscillatory. Equation (1.1) is oscillatory if all its solutions are oscillatory.

When P(t) = p and the forcing term h(t) ≡ 0, (1.1) reduces to

[
x(t) + px(t − τ)

]′′ +Q1(t)x
(
t − σ1

) −Q2(t)x
(
t − σ2

)
= 0, t ≥ t0, (1.4)

where p ∈ R(p /= ±1) and ∫∞
tQi(t)dt < ∞, i = 1, 2. The first global result of (1.4) (with respect

to p), which is a sufficient condition for the existence of a nonoscillatory solution for all values
of p /= ± 1, have been examined by Kulenović and Hadžiomerspahić [4].

Recently, Parhi and Rath [7] studied oscillation behaviors for forced first-order neutral
differential equations as follows

[
x(t) − P(t)x(t − τ)

]′ +Q(t)G
(
x(t − σ)

)
= h(t), t ≥ t0. (1.5)

Necessary and sufficient conditions are obtained in various ranges for P(t)/= ±1 so that every
solution of (1.5) is oscillatory or tends to zero or to ±∞ as t → ∞.

Motivated by the idea of [4, 7], in present paper we establish sufficient conditions
for existence of a nonoscillatory solution to (1.1) depending on various ranges of P(t)/= ± 1.
Hereinafter, we assume that the following conditions hold,

(H1) Qi ≥ 0, and
∫∞

tQi(t)dt < ∞, i = 1, 2.

(H2) There exists a function H(t) ∈ C2([t0,∞),R) such that H ′′(t) = h(t) and
limt→∞ H(t) = M ∈ R.

2. Main results

Theorem 2.1. Suppose that conditions (H1) and (H2) hold. If P(t) is in one of the following ranges:

(i) 0 < P(t) ≤ p1 < 1,

(ii) 1 < p2 ≤ P(t) ≤ p1,

(iii) − 1 < − p2 ≤ P(t) < 0,

(iv) − p2 ≤ P(t) ≤ − p1 < −1,

(2.1)

then (1.1) has a nonoscillatory solution.



Jin-Zhu Zhang et al. 3

Proof. The proof of this theorem will be divided into four cases in terms of the four different
ranges of P(t).

Case (i) (0 < P(t) ≤ p1 < 1). Choose a t1 > t0 + σ sufficiently large such that

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds <

3
(
1 − p1

)

4
, (2.2)

∫∞

t1

sQ1(s)ds ≤ p1 +N1 − 1
N1

, (2.3)

∫∞

t1

sQ2(s)ds ≤ 1 − p1
(
1 + 2N1

) − 2M1

2N1
, (2.4)

∣∣H(t) −M
∣∣ ≤ 1 − p1

4
, (2.5)

where M1 and N1 are positive constants such that

1 −N1 < p1 <
1 − 2M1

1 + 2N1
. (2.6)

LetX be the set of all continuous and bounded functions on [t0,∞)with the sup norm.
Set

A =
{
x ∈ X : M1 ≤ x(t) ≤ N1, t ≥ t0

}
. (2.7)

Define a mapping T : A → X as follows:

(Tx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3
(
1 − p1

)

4
− P(t)x(t − τ) + t

∫∞

t

[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds

+
∫ t

t1

s
[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds +H(t) −M, t ≥ t1

(Tx)
(
t1
)
, t0 ≤ t ≤ t1.

(2.8)

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1, using (2.3) and (2.5), we get

(Tx)(t) ≤ 1 − p1 +N1

∫∞

t1

sQ1(s)ds ≤ N1. (2.9)

Furthermore, from (2.4) and (2.5), we have

(Tx)(t) ≥ 1 − p1
2

− p1N1 −N1

∫∞

t1

sQ2(s)ds ≥ M1. (2.10)
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Thus we prove that TA ⊂ A. To apply the contraction principle, we need to prove that T is a
contraction mapping on A since A is a bounded, closed, and convex subset of X.

Now, for x1, x2 ∈ A and t ≥ t1 we have

∣∣(Tx1
)
(t) − (

Tx2
)
(t)

∣∣ ≤ ∥∥x1 − x2
∥∥
{
p1 +

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds

}

= q1
∥∥x1 − x2

∥∥,

(2.11)

where we used sup norm. From (2.2), we obtain q1 < 1, which completes the proof of
Case (i).

Example 2.2. Consider the second-order neutral delay differential equation

(
x(t) + e−tx(t − 1)

)′′ + e−t−1x(t − 1) − 4e−tx(t − 1) = h(t), t ≥ 1, (2.12)

where P(t) = e−t, Q1(t) = e−t−1, Q2(t) = 4e−t, h(t) = e−t + e−2t such that 0 < P(t) ≤ e−1 < 1.
Since H(t) = e−t + 1/4e−2t → 0 as t → ∞,

∫∞
t1
sQ1(s)ds = 2e−t, and

∫∞
t1
sQ2(s)ds = 8e−t, then

the sufficient conditions—in Case (i) of Theorem 2.1—are satisfied. Therefore, the equation
has a positive solution. In fact y = e−t is a positive solution of this equation.

Case (ii) (1 < p2 ≤ P(t) ≤ p1). Choose a t1 > t0 + σ sufficiently large such that

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds <

3
(
p2 − 1

)

4
, (2.13)

∫∞

t1

sQ1(s)ds ≤ 1 − p2
(
1 −N2

)

N2
, (2.14)

∫∞

t1

sQ2(s)ds ≤ p2
(
p2 − 1

) − 2p1
(
N2 + p2M2

)

2p1N2
, (2.15)

∣∣H(t) −M
∣∣ ≤ p2 − 1

4
, (2.16)

where M2 and N2 are positive constants such that

1 − 1
p2

< N2 <
p2
(
p2 − 1 − 2p1M2

)

2p1
. (2.17)

Let X be the set as in Case (i). Set

A =
{
x ∈ X : M2 ≤ x(t) ≤ N2, t ≥ t0

}
. (2.18)
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Define a mapping T : A → X as follows:

(Tx)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p2 − 1
4P(t + τ)

− x(t + τ)
P(t + τ)

+
t + τ

P(t + τ)

∫∞

t+τ

[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds

+
1

P(t + τ)

∫ t+τ

t1

s
[
Q1(s)x

(
s − σ1

)−Q2(s)x
(
s−σ2

)]
ds +

H(t + τ) −M

P(t + τ)
, t ≥ t1

(Tx)
(
t1
)
, t0 ≤ t ≤ t1.

(2.19)

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1, using (2.14) and (2.16), we get

(Tx)(t) ≤ 1 − 1
p2

+
N2

p2

∫∞

t1

sQ1(s)ds ≤ N2. (2.20)

Furthermore, from (2.15) and (2.16) we have

(Tx)(t) ≥ p2 − 1
2p1

− N2

p2
− N2

p2

∫∞

t1

sQ2(s)ds ≥ M2. (2.21)

Thus we prove that TA ⊂ A. To apply the contraction principle, we need to prove that T is a
contraction mapping on A since A is a bounded, closed, and convex subset of X.

Now, for x1, x2 ∈ A and t ≥ t1, we have

∣∣(Tx1
)
(t) − (

Tx2
)
(t)

∣∣ ≤ 1
p2

∥∥x1 − x2
∥∥
{
1 +

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds

}

= q2
∥∥x1 − x2

∥∥,

(2.22)

where we used sup norm. From (2.13), we obtain q2 < 1, which completes the proof of
Case (ii).

Example 2.3. Consider the second-order neutral delay differential equation

(
x(t) +

(
2 + e−t

)
x(t − 1)

)′′ + e−t−1x(t − 1) − 4e−tx(t − 1)) = h(t), t ≥ 1, (2.23)

where P(t) = 2 + e−t, Q1(t) = e−t−1, Q2(t) = 4e−t, h(t) = e−t + 2e−t+1 + e−2t such that P(t) ≥
2 + e−1 > 1. Since H(t) = e−t + 1/4e−2t + 2e−t+1 → 0 as t → ∞,

∫∞
t1
sQ1(s)ds = 2e−t, and

∫∞
t1
sQ2(s)ds = 8e−t, then the sufficient conditions—in Case (ii) of Theorem 2.1—are satisfied.

Therefore, the equation has a positive solution. In fact y = e−t is a positive solution of this
equation.
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Case (iii) (−1 < − p2 ≤ P(t) < 0). Choose a t1 > t0 + σ sufficiently large such that

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds <

3
(
1 − p2

)

4
, (2.24)

∫∞

t1

sQ1(s)ds ≤
(
1 − p2

)(
N3 − 1

)

N3
, (2.25)

∫∞

t1

sQ2(s)ds ≤
(
1 − p2

) − 2M3

2N3
, (2.26)

∣∣H(t) −M
∣∣ ≤ 1 − p2

4
, (2.27)

where M3 and N3 are positive constants such that

2M3 + p2 < 1 < N3. (2.28)

Let X be the set as in Case (i). Set

A =
{
x ∈ X : M3 ≤ x(t) ≤ N3, t ≥ t0

}
. (2.29)

Define a mapping T : A → X as follows:

(Tx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3
(
1 − p2

)

4
− P(t)x(t − τ) + t

∫∞

t1

[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds

+
∫ t

t1

s
[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds +H(t) −M, t ≥ t1

(Tx)
(
t1
)
, t0 ≤ t ≤ t1.

(2.30)

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1, using (2.25) and (2.27), we get

(Tx)(t) ≤ 1 − p2 + p2N3 +N3

∫∞

t1

sQ1(s)ds ≤ N3. (2.31)

Furthermore, from (2.26) and (2.27), we have

(Tx)(t) ≥ 1 − p2
2

−N3

∫∞

t1

sQ2(s)ds ≥ M3. (2.32)

Thus we prove that TA ⊂ A. To apply the contraction principle, we need to prove that T is a
contraction mapping on A since A is a bounded, closed, and convex subset of X.
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Now, for x1, x2 ∈ A and t ≥ t1, we have

∣∣(Tx1
)
(t) − (

Tx2
)
(t)

∣∣ ≤ ∥∥x1 − x2
∥∥
{
p2 +

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds

}

= q3
∥∥x1 − x2

∥∥,

(2.33)

where we used sup norm. From (2.24), we obtain q3 < 1, which completes the proof of
Case (iii).

Example 2.4. Consider the second-order neutral delay differential equation

(
x(t) − e−tx(t − 1)

)′′ + e−t−1x(t − 1) − 4e−tx(t − 1) = h(t), t ≥ 1, (2.34)

where h(t) = e−t + e−2t − 8e−2t+1. This equation has a nonoscillatory solution y = e−t since the
sufficient conditions—in Case (iii) of Theorem 2.1—are satisfied.

Case (iv) (−p2 ≤ P(t) ≤ −p1 < −1). Choose a t1 > t0 + σ sufficiently large such that

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds <

3
(
p1 − 1

)

4
, (2.35)

∫∞

t1

sQ1(s)ds ≤ N4
(
p1 − 1

) − p1

N4
, (2.36)

∫∞

t1

sQ2(s)ds ≤ p2 − p1
(
1 +M4

)(
p2 − 1

)

p2N4
, (2.37)

∣∣H(t) −M
∣∣ ≤ p1 − 1, (2.38)

where M4 and N4 are positive constants such that

N4 >
p1

p1 − 1
, M4 <

p2 − p1
(
p2 − 1

)

p1
(
p2 − 1

) . (2.39)

Let X be the set as in Case (i). Set

A =
{
x ∈ X : M4 ≤ x(t) ≤ N4, t ≥ t0

}
. (2.40)
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Define a mapping T : A → X as follows

(Tx)(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− 1
P(t + τ)

− x(t + τ)
P(t + τ)

+
t + τ

P(t + τ)

∫∞

t+τ

[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds

+
1

P(t + τ)

∫ t+τ

t1

s
[
Q1(s)x

(
s − σ1

) −Q2(s)x
(
s − σ2

)]
ds +

H(t + τ) −M

P(t + τ)
, t ≥ t1

(Tx)
(
t1
)
, t0 ≤ t ≤ t1.

(2.41)

Clearly, Tx is continuous. For every x ∈ A and t ≥ t1, using (2.37) and (2.38), we get

(Tx)(t) ≤ −1 + x(t + τ)
p(t + τ)

− 1
p(t + τ)

∫∞

t1

sQ2(s)x
(
s − σ2

)
ds +

H(t + τ) −M

p(t + τ)

≤ 1 +N4

p1
+
N4

p1

∫∞

t1

sQ2(s)ds +
p1 − 1
p1

≤ N4.

(2.42)

Furthermore, from (2.36) and (2.38), we have

(Tx)(t) ≥ −1 + x(t + τ)
p(t + τ)

+
1

p(t + τ)

∫∞

t1

sQ1(s)x
(
s − σ1

)
ds +

H(t + τ) −M

p(t + τ)

≥ 1 +M4

p2
− N4

p1

∫∞

t1

sQ1(s)ds −
p1 − 1
p1

≥ M4.

(2.43)

Thus we prove that TA ⊂ A. To apply the contraction principle, we need to prove that T is a
contraction mapping on A since A is a bounded, closed, and convex subset of X.

Now, for x1, x2 ∈ A and t ≥ t1, we have

∣∣(Tx1
)
(t) − (

Tx2
)
(t)

∣∣ ≤ 1
p1

∥∥x1 − x2
∥∥
{
1 +

∫∞

t1

s
[
Q1(s) +Q2(s)

]
ds

}

= q4
∥∥x1 − x2

∥∥,

(2.44)

where we used sup norm. From (2.35), we obtain q4 < 1, which completes the proof of
Case (iv).

Example 2.5. Consider the second-order neutral delay differential equation

(
x(t) − (

1 + e−t
)
x(t − 1)

)′′ + e−t−1x(t − 1) − e−t−1x(t − 1) = h(t), t ≥ 1, (2.45)

where h(t) = e−t + 4e−2t+1 − e−t+1. This equation has a nonoscillatory solution y = e−t since the
sufficient conditions—in Case (iv) of Theorem 2.1—are satisfied.
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[5] Á. Elbert, “Oscillation/nonoscillation criteria for linear second order differential equations,” Journal
of Mathematical Analysis and Applications, vol. 226, no. 1, pp. 207–219, 1998.

[6] W.-T. Li, “Positive solutions of second order nonlinear differential equations,” Journal of Mathematical
Analysis and Applications, vol. 221, no. 1, pp. 326–337, 1998.

[7] N. Parhi and R. N. Rath, “Oscillation criteria for forced first order neutral differential equations with
variable coefficients,” Journal of Mathematical Analysis and Applications, vol. 256, no. 2, pp. 525–541,
2001.

[8] I. R. Al-Amri, “On the oscillation of first-order neutral delay differential equations with real
coefficients,” International Journal of Mathematics and Mathematical Sciences, vol. 29, no. 4, pp. 245–249,
2002.
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