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1. Introduction

Bidirectional associative memory (BAM) neural networks were first introduced by Kosko [1,
2]. It generalizes the single-layer autoassociative Hebbian correlator to a two-layer pattern-
matched heteroassociative circuits. This class of neural networks has been successfully
applied to pattern recognition and artificial intelligence. In those applications, it is very
important to guarantee the designed neural networks to be stable. On the other hand,
time delays are unavoidably encountered in the implementation of neural networks, and
its existence will lead to instability, oscillation, and poor performances of neural networks.
Therefore, the the asymptotic or exponential stability analysis for BAM neural networks with
time delays has received great attention during the past years, see, for example, [3–15]. The
obtained results are classified into two categories: delay-independent results [3–5, 7, 10] and
delay-dependent results [6, 9, 11, 12, 14–16]. Generally speaking, the delay-dependent results
are less conservative than the delay-independent ones, especially when the size of time delay
is small.
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It should be pointed out that all of the above-mentioned references are concerned with
continuous-time BAM neural networks. However, when implementing the continuous-time
neural networks for computer simulation, for experimental or computational purposes, it
is essential to formulate a discrete-time system that is an analogue of the continuous-time
recurrent neural networks [17]. Generally speaking, the stability analysis of continuous-time
neural networks is not applicable to the discrete version. Therefore, the stability analysis for
various discrete-time neural networks with time delays is widely studied in recent years
[17–28]. Using M-matrix method, Liang and Cao [25] studied the exponential stability of
continuous-time BAM neural network with constant delays and its discrete analogue. Liang
et al. [26] also studied the dynamics of discrete-time BAM neural networks with variable
time delays based on unreasonably severe constraints on the delay functions. By using the
Lyapunov functional method and linear matrix inequality technique, the exponential stability
and robust exponential stability for discrete-time BAM neural networks with variable delays
were considered in [27, 28], respectively. However, the results presented in [27, 28] are
still conservative, since the the Lyapunov functionals constructed in [27, 28] are so simple.
Therefore, there is much room to improve the results in [27, 28].

In this paper, we present a new exponential stability criterion for discrete-time BAM
neural networks with time-varying delays. Compared with the existing methods, the main
contributions of this paper are as follows. Firstly, more general Lyapunov functional is
employed to obtain the improved exponential stability criterion; secondly, in order to reduce
the conservativeness, some slack matrices, which bring much flexibility in solving LMI, are
introduced in this paper. The proposed exponential stability criterion is expressed in LMI
which can be efficiently solved by LMI toolbox in Matlab. Finally, two numerical examples
are presented to show that our result is less conservative than some existing ones [27, 28].

The organization of this paper is as follows. Section 2 presents problem formulation of
discrete-time BAM neural networks with time delay-varying. In Section 3, our main result of
this paper is established and some remarks are given. In Section 4, numerical examples are
given to demonstrate the proposed method. Finally, conclusion is drawn in Section 5.

Notation

Throughout this paper, the superscript “T” stands for the transpose of a matrix. Rn and Rn×n

denote the n-dimensional Euclidean space and set of all n × n real matrices, respectively. A
real symmetric matrix P > 0(≥ 0) denotes P being a positive definite (positive semidefinite)
matrix. I is used to denote an identity matrix with proper dimension. For integers a, b, and
a < b, N[a, b] denote the discrete intervalN[a, b] = {a, a + 1, . . . , b − 1, b}. λM(X) and λm(X)
stand for the maximum and minimum eigenvalues of the symmetric matrix X, respectively.
Matrices, if not explicitly stated, are assumed to have compatible dimensions. The symmetric
terms in a symmetric matrix are denoted by ∗.

2. Problem formulation

Consider the following discrete-time BAM neural network with time-varying delays:

ui(k + 1) = aiui(k) +
m∑

j=1

wij f̃j(vj(k − τ(k))) + Ii, i = 1, 2, . . . , n,

vj(k + 1) = bjvj(k) +
n∑

i=1

vjig̃i(ui(k − h(k))) + Jj , j = 1, 2, . . . , m,

(2.1)
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where ui(k) and vj(k) are the states of the ith neuron from the neural field FX and the
jth neuron from the neural field FY at time k, respectively; ai, bj ∈ (0, 1) denote the
stability of internal neuron process on the X-layer and the Y -layer, respectively; wij , vji are
real constants, and denote the synaptic connection weights; f̃j(·)g̃i(·) denote the activation
functions of the jth neuron from the neural field FY and the jth neuron from the neural
field FX , respectively; Ii and Jj denote the external constant inputs from outside the network
acting on the ith neuron from the neural field FX and the jth neuron from the neural field FY ,
respectively. τ(k) and h(k) represent time-varying interval delays satisfying

τm ≤ τ(k) ≤ τM, hm ≤ h(k) ≤ hM, (2.2)

where τm, τM, hm, and hM are positive integers.
Throughout this paper, we make the following assumption on the activation functions

f̃j(·), g̃i(·).

(A1) The activation functions f̃j(·), g̃i(·) (i = 1, 2, . . . , n, j = 1, 2, . . . , m) are bounded on
R.

(A2) For any ζ1, ζ2 ∈ R, there exist positive scalars l1j , l2i such that

0 ≤ |f̃j(ζ1) − f̃j(ζ2)| ≤ l1j |ζ1 − ζ2|, j = 1, 2, . . . , m,

0 ≤ |g̃j(ζ1) − g̃j(ζ2)| ≤ l2i|ζ1 − ζ2|, i = 1, 2, . . . , n.
(2.3)

It is clear that under Assumption (A1) and (A2), system (2.1) has at least one
equilibrium. In order to simplify our proof, we shift the equilibrium point u∗ = [u∗1, u

∗
2,

. . . , u∗n]
T , v∗ = [v∗

1, v
∗
2, . . . , v

∗
m]

T of system (2.1) to the origin. Let xi(k) = ui(k) − u∗i , yj(k) =
vj(k) − v∗

j , fj(yj(k)) = f̃j(vj(k)) − f̃j(v∗
j ), gi(xi(k)) = g̃i(ui(k)) − g̃i(u∗i ), then system (2.1) can

be transformed to

xi(k + 1) = aixi(k) +
m∑

j=1

wijfj(yj(t − τ(k))), i = 1, 2, . . . , n

yj(k + 1) = bjyj(k) +
n∑

i=1

vjigi(xi(t − h(k))), j = 1, 2, . . . , m.

(2.4)

Obviously, the the activation functions fj(·), gi(·) satisfy the following conditions.

(A3) For any ζ ∈ R, there exist positive scalars l1j , l2i such that

0 ≤ |fj(ζ)| ≤ l1j |ζ|, j = 1, 2, . . . , m, 0 ≤ |gi(ζ)| ≤ l2i|ζ|, i = 1, 2, . . . , n. (2.5)

Also we assume that system (2.4)with initial value

xi(s) = φi(s), yj(s) = ψj(s), ∀s ∈N[−τ∗, 0], i = 1, 2, . . . , n, j = 1, 2, . . . , m, (2.6)

where τ∗ = max{τM, hM}.
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For convenience, we rewrite system (2.4) in the form

x(k + 1) = Ax(k) +Wf(y(k − τ(k))),
y(k + 1) = By(k) + Vg(x(k − h(k))),

x(s) = φ(s), y(s) = ψ(s), ∀s ∈N[−τ∗, 0],
(2.7)

where x(k) = [x1(k), x2(k), . . . , xn(k)]
T , y(k) = [y1(k), y2(k), . . . , ym(k)]

T , f(y(k)) =
[f1(y1(k)), f2(y2(k)), . . . , fm(ym(k))]

T , g(x(k)) = [g1(x1(k)), g2(x2(k)), . . . , gn(xn(k))]
T , A =

diag{a1, a2, . . . , an}, B = diag{b1, b2, . . . , bm}, W = (wij)m×n, V = (vij)n×m, φ(s) = [φ1(s),
φ2(s), . . . , φn(s)]

T , ψ(s) = [ψ1(s), ψ2(s), . . . , ψm(s)]
T .

From above analysis, we can see that the exponential stability problem of system (2.1)
on equilibrium x∗ is changed into the zero stability problem of system (2.7). Therefore, in the
following part, we will devote into the exponential stability analysis problem of system (2.7).

Before giving the main result, we will firstly introduce the following definition and
lemmas.

Definition 2.1. The trivial solution of BAM neural network (2.7) is said to be globally
exponentially stable, if there exist scalars r > 1 andM > 1 such that

‖x(k)‖2 + ‖y(k)‖2 ≤M
(

sup
s∈N[−hM,0]

‖φ(s)‖2 + sup
s∈N[−τM,0]

‖ψ(s)‖2
)
r−k. (2.8)

Lemma 2.2 (see [29]). For any real vectors a, b, and any matrixQ > 0with appropriate dimensions,
it follows that

2aTb ≤ aTQa + bTQ−1b. (2.9)

3. Main result

In this section, we are in a position to present the global exponential stability criterion of
system (2.7).

Theorem 3.1. For given diagonal matrices L1 = diag{l11, l12, . . . , l1m} and L2 = diag{l21, l22,
. . . , l2n}. Under Assumptions (A1) and (A2), the system (2.7) is globally exponentially stable,
if there exist matrices Pi > 0, Qi > 0, Ri > 0, Si > 0, Zi > 0, (i = 1, 2),
Lj , Mj, Nj, Tj , (j = 1, 2, . . . , 8), and diagonal matrices D1 = diag{d11, d12, . . . , d1m} > 0, D2 =
diag{d21, d22, . . . , d2n} > 0, such that the following LMI holds:

⎡
⎢⎢⎢⎢⎢⎣

Ω
√
hML

√
hM − hmM √

τMN
√
τM − τm T

∗ −Z1 0 0 0
∗ ∗ −Z1 0 0
∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ −Z2

⎤
⎥⎥⎥⎥⎥⎦
< 0, (3.1)
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where

ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω11 ω12 ω13 ω14 ω15 ω16 −m1 + lt7 lt8

∗ ω22 ω23 ω24 ω25 ω26 ω27 tt8 − nt8
∗ ∗ ω33 −tt4 ω35 ω36 −m3 − tt7 −tt8
∗ ∗ ∗ ω44 n4 m4 − l4 −m4 0

∗ ∗ ∗ ∗ ω55 ω56 −m5 + nt7 ω58

∗ ∗ ∗ ∗ ∗ ω66 ω67 −lt8 +mt
8

∗ ∗ ∗ ∗ ∗ ∗ ω77 −mt
8

∗ ∗ ∗ ∗ ∗ ∗ ∗ ω88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

l =
[
lt1 lt2 lt3 lt4 lt5 lt6 lt7 lt8

]t
,

m =
[
mt

1 mt
2 mt

3 mt
4 mt

5 mt
6 mt

7 mt
8

]t
,

n =
[
nt1 nt2 nt3 nt4 nt5 nt6 nt7 nt8

]t
,

t =
[
tt1 tt2 tt3 tt4 tt5 tt6 tt7 tt8

]t
,

ω11 = ratp1a + rhmhm(a − i)tz1(a − i) − p1 + (hm − hm + 1)q1 + r1 + l1 + lt1,

ω12 = lt2 + t1 − n1,

ω13 = lt3 − t1,

ω14 = ratp1w + rhmhm(a − i)tz1w + lt4,

ω15 = lt5 + n1,

ω16 = −l1 + lt6 +m1,

ω22 = −r−τmq2 + t2 + tt2 + d1 − n2 − nt2,

ω23 = −t2 + tt3 − nt3,

ω24 = tt4 − nt4,

ω25 = tt5 + n2 − nt5,

ω26 = tt6 +m2 − l2 − nt6,

ω27 = −m2 + tt7 − nt7,

ω33 = −r−τmr2 − t3 − tt3,

ω35 = n3 − tt5,
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ω36 = m3 − l3 − tt6,

ω44 = rwtp1w + rhmhmwtz1w − l−11 d1l−11 ,

ω55 = rbtp2b + rτmτm(b − i)tz2(b − i) − p2 + (τm − τm + 1)q2 + r2 + n5 + nt5,

ω56 = m5 − l5 + nt6,

ω58 = rbtp2v + rτmτm(b − i)tz2v + nt8,

ω66 = −r−hmq1 − l6 − lt6 + d2 +m6 +mt
6,

ω67 = −lt7 −m6 +mt
7,

ω77 = −r−hmr1 −m7 −mt
7,

ω88 = rvtp2v + rτmτmvtz2v − l−12 d2l−12 .

(3.2)

Proof. Choose the following Lyapunov-Krasovskii candidate function of system (2.7) as
follows:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k), (3.3)

where

v1(k) = rkxt(k)p1x(k) + rkyt(k)p2y(k),

v2(k) =
k−1∑

l=k−h(k)
rlxt(l)q1x(l) +

k−1∑

l=k−τ(k)
rlyt(l)q2y(l),

v3(k) =
−hm∑

θ=−hm+1

k−1∑

l=k+θ

rlxt(l)q1x(l) +
−τm∑

θ=−τm+1

k−1∑

l=k+θ

rlyt(l)q2y(l),

v4(k) =
k−1∑

l=k−hm
rlxt(l)r1x(l) +

k−1∑

l=k−τm
rlyt(l)r2y(l),

v5(k) = rhm
−1∑

θ=−hm

k−1∑

l=k+θ

rlηt1(l)z1η1(l) + r
τm

−1∑

θ=−τm

k−1∑

l=k+θ

rlηt2(l)z2η2(l),

(3.4)

and η1(l) = x(l + 1) − x(l), η2(l) = y(l + 1) − y(l).
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Calculating the difference of V (k) along the trajectories of system (2.7), we can obtain

δv1(k) = rk+1[ax(k) +wf(y(k − τ(k)))]tp1[ax(k) +wf(y(k − τ(k)))]
+ rk+1[by(k) + vg(x(k − h(k)))]tp2[by(k) + vg(x(k − h(k)))]
− rkxt(k)p1x(k) − rkyt(k)p2y(k)

= rk
{
xt(k)(ratp1a − p1)x(k) + 2rxt(k)atp1wf(y(k − τ(k)))
+ rft(y(k − τ(k)))wtp1wf(y(k − τ(k))) + yt(k)(rbtp2b − p2)y(k)
+ 2ryt(k)btp2vg(x(k − h(k))) + rgt(x(k − h(k)))vtp2vg(x(k − h(k)))},

(3.5)

δv2(k) ≤ rkxt(k)q1x(k) − rk−h(k)xt(k − h(k))q1x(k − h(k))
+ rkyt(k)q2y(k) − rk−τ(k)yt(k − τ(k))q2y(k − τ(k))

+
k−hm∑

l=k+1−h(k+1)
rlxt(l)q1x(l) +

k−τm∑

l=k+1−τ(k+1)
rlyt(l)q2y(l)

≤ rkxt(k)q1x(k) − rk−hmxt(k − h(k))q1x(k − h(k))
+ rkyt(k)q2y(k) − rk−τmyt(k − τ(k))q2y(k − τ(k))

+
k−hm∑

l=k+1−hm
rlxt(l)q1x(l) +

k−τm∑

l=k+1−τm
rlyt(l)q2y(l),

(3.6)

δv3(k) = (hm − hm)rkxt(k)q1x(k) + (τm − τm)rkyt(k)q2y(k)

−
k−hm∑

l=k+1−hm
rlxt(l)q1x(l) −

k−τm∑

l=k+1−τm
rlyt(l)q2y(l),

(3.7)

δv4(k) = rkxt(k)r1x(k) − rk−hmxt(k − hm)r1x(k − hm)
+ rkyt(k)r2y(k) − rk−τmyt(k − τm)r2y(k − τm),

(3.8)

δv5(k) = rkrhmhmηt1(k)z1η1(k) − rhm
k−1∑

l=k−hm
rlηt1(l)z1η1(l)

+ rkrτmτmηt2(k)z2η2(k) − rτm
k−1∑

l=k−τm
rlηt2(l)z2η2(l)

≤ rkrhmhm[(a − i)x(k) +wf(y(k − τ(k)))]tz1[(a − i)x(k) +wf(y(k − τ(k)))]
+ rkrτmτm[(b − i)y(k) + vg(x(k − h(k)))]tz2[(b − i)y(k) + vg(x(k − h(k)))]

− rk
k−1∑

l=k−h(k)
ηt1(l)z1η1(l) − rk

k−h(k)∑

l=k−hm
ηt1(l)z1η1(l)

− rk
k−1∑

l=k−τ(k)
ηt2(l)z2η2(l) − rk

k−τ(k)∑

l=k−τm
ηt2(l)z2η2(l).

(3.9)
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By Lemma 2.2, we have

−
k−1∑

l=k−h(k)
ηt1(l)z1η1(l) ≤ 2

k−1∑

l=k−h(k)
ηt1(l)l

tξ(k) +
k−1∑

l=k−h(k)
ξt(k)lz−11 l

tξ(k)

= 2[xt(k) − xt(k − h(k))]ltξ(k) + h(k)ξt(k)lz−11 ltξ(k)
≤ ξt(k)(ψ1l

t + lψ1)ξ(k) + hmξt(k)lz−11 l
tξ(k),

(3.10)

−
k−h(k)∑

l=k−hm
ηt1(l)z1η1(l) ≤ 2

k−h(k)∑

l=k−hm
ηt1(l)m

tξ(k) +
k−h(k)∑

l=k−hm
ξt(k)mz−11 m

tξ(k)

= 2[xt(k−h(k))−xt(k−hm)]mtξ(k)+(hm−h(k))ξt(k)mz−11 mtξ(k)

≤ ξt(k)(ψ2m
t +mψ2)ξ(k) + (hm − hm)ξt(k)mz−11 mtξ(k),

(3.11)

−
k−1∑

l=k−τ(k)
ηt2(l)z2η2(l) ≤ 2

k−1∑

l=k−τ(k)
ηt2(l)n

tξ(k) +
k−1∑

l=k−τ(k)
ξt(k)nz−12 n

tξ(k)

= 2[yt(k) − yt(k − τ(k))]ntξ(k) + τ(k)ξt(k)nz−12 ntξ(k)
≤ ξt(k)(ψ3n

t + nψ3)ξ(k) + τmξt(k)nz−12 n
tξ(k),

(3.12)

−
k−τ(k)∑

l=k−τm
ηt2(l)z2η2(l) ≤ 2

k−τ(k)∑

l=k−τm
ηt2(l)t

tξ(k) +
k−τ(k)∑

l=k−τm
ξt(k)tz−12 t

tξ(k)

= 2[yt(k − τ(k)) − yt(k − τm)]ttξ(k) + (τm − τ(k))ξt(k)tz−12 ttξ(k)
≤ ξt(k)(ψ4t

t + tψ4)ξ(k) + (τm − τm)ξt(k)tz−12 ttξ(k),
(3.13)

where

l =
[
lt1 lt2 lt3 lt4 lt5 lt6 lt7 lt8

]t
,

m =
[
mt

1 mt
2 mt

3 mt
4 mt

5 mt
6 mt

7 mt
8

]t
,

n =
[
nt1 nt2 nt3 nt4 nt5 nt6 nt7 nt8

]t
,

t =
[
tt1 tt2 tt3 tt4 tt5 tt6 tt7 tt8

]t
,

ψ1 =
[
i 0 0 0 0 −i 0 0

]t
,

ψ2 =
[
0 0 0 0 0 i −i 0

]t
,

ψ3 =
[
0 −i 0 0 i 0 0 0

]t
,

ψ4 =
[
0 i −i 0 0 0 0 0

]t
,

(3.14)
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and ξ(k) = [xT (k)yT (k−τ(k))yT (k−τM)fT (y(k−τ(k)))yT (k)xT (k−h(k))xT (k−hM)gT (x(k−
h(k)))]. By inequalities (2.5), it is well known that there exist positive diagonally matrices
Di ≥ 0 (i = 1, 2) such that the following inequalities hold:

rk
[
yt(t − τ(t))d1y(t − τ(t)) − ft(y(t − τ(t)))l−11 d1l−11 f(y(t − τ(t)))

] ≥ 0,

rk
[
xt(t − h(t))d2x(t − h(t)) − gt(x(t − h(t)))l−12 d2l−12 g(x(t − h(t)))

] ≥ 0,
(3.15)

where L1 = diag{l11, l12, . . . , l1m}, L2 = diag{l21, l22, . . . , l2n}.
Substituting (3.10)–(3.13) into (3.9), we have

δv(k) ≤ δv1(k) + δv2(k) + δv3(k) + δv4(k) + δv5(k)
+ rk

[
yt(t − τ(t))d1y(t − τ(t))) − ft(y(t − τ(t)))l−11 d1l−11 f(y(t − τ(t)))

]

+ rk
[
xt(t − h(t))d2x(t − h(t))) − gt(x(t − h(t)))l−12 d2l−12 g(x(t − h(t)))

]

≤ rkξt(k)[ω + hmlz−11 l
t + (hm − hm)mz−11 mt + τmnz−12 n

t + (τm − τm)tz−12 tt
]
ξ(k),

(3.16)

where Ω, L, M, N, and T are defined in Theorem 3.1. Thus, if LMI (3.1) holds, it can be
concluded that ΔV (k) < 0 according to Schur complement, which implies that V (k) < V (0).
Note that

v1(0) = xt(0)p1x(0) + yt(0)p2y(0)

≤ λm(p1) sup
s∈n[−hm,0]

‖φ(s)‖2 + λm(p2) sup
s∈n[−τm,0]

‖ψ(s)‖2, (3.17)

v2(0) =
−1∑

l=−h(0)
rlxt(l)q1x(l) +

−1∑

l=−τ(0)
rlyt(l)q2y(l)

≤ λm(q1)1 − r
−hm

r − 1
sup

s∈n[−hm,0]
‖φ(s)‖2 + λm(q2)1 − r

−τm

r − 1
sup

s∈n[−τm,0]
‖ψ(s)‖2,

(3.18)

v3(0) =
−hm∑

θ=−hm+1

−1∑

l=θ

rlxt(l)q1x(l) +
−τm∑

θ=−τm+1

−1∑

l=θ

rlyt(l)q2y(l)

≤ (hm − hm)
−1∑

l=hm

rlxt(l)q1x(l) + (τm − τm)
−1∑

l=τm

rlyt(l)q2y(l)

≤ (hm − hm)λm(q1)1 − r
−hm

r − 1
sup

s∈n[−hm,0]
‖ψ(s)‖2

+ (τm − τm)λm(q2)1 − r
−τm

r − 1
sup

s∈n[−τm,0]
‖ψ(s)‖2,

(3.19)
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v4(0) =
−1∑

l=−hm
rlxt(l)r1x(l) +

−1∑

l=−τm
rlyt(l)r2y(l)

≤ λm(r1)1 − r
−hm

r − 1
sup

s∈n[−hm,0]
‖φ(s)‖2 + λm(r2)1 − r

−τm

r − 1
sup

s∈n[−τm,0]
‖ψ(s)‖2,

(3.20)

v5(0) = rhm
−1∑

θ=−hm

−1∑

l=θ

rlηt1(l)z1η1(l) + r
τm

−1∑

θ=−τm

1∑

l=θ

rlηt2(l)z2η2(l)

≤ rhmhmλm(z1)
−1∑

l=−hm
rlηt1(l)η1(l) + r

τmτmλm(z2)
−1∑

l=−τm
rlηt2(l)η2(l)

≤ rhmhmλm(z1)1 − r
−hm

r − 1
sup

s∈n[−hm,−1]
‖η1(s)‖2

+ rτmτmλm(z2)
1 − r−τm
r − 1

sup
s∈n[−τm,−1]

‖η2(s)‖2,

(3.21)

sup
s∈n[−hm,−1]

‖η1(s)‖2 = sup
s∈n[−hm,−1]

‖x(s + 1) − x(s)‖2

≤ 2 sup
s∈n[−hm,−1]

(‖x(s + 1)‖2 + ‖x(s)‖2)

≤ 4 sup
s∈n[−hm,0]

‖φ(s)‖2,

(3.22)

sup
s∈n[−τm,−1]

‖η2(s)‖2 = sup
s∈n[−τm,−1]

‖y(s + 1) − y(s)‖2

≤ 2 sup
s∈n[−τm,−1]

(‖y(s + 1)‖2 + ‖y(s)‖2)

≤ 4 sup
s∈n[−τm,0]

‖ψ(s)‖2.

(3.23)

Substituting (3.22), (3.23) into (3.21), and combining (3.17)–(3.21), then we have

V (0) =
5∑

i=1

Vi(0) ≤ ρ1 sup
s∈N[−hM,0]

‖φ(s)‖2 + ρ2 sup
s∈N[−τM,0]

‖ψ(s)‖2, (3.24)

where

ρ1 = λm(p1) +
[
(hm − hm + 1)λm(q1) + λm(r1) + 4rhmhmλm(z1)

]1 − r−hm
r − 1

,

ρ2 = λm(p2) +
[
(τm − τm + 1)λm(q2) + λm(r2) + 4rτmτmλm(z2)

]1 − r−τm
r − 1

.

(3.25)
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On the other hand,

V (k) ≥ rkxT (k)P1x(k) + rkyT (k)P2y(k) ≥ rk
{
λm(P1)‖x(k)‖2 + λm(P2)‖y(k)‖2

}
. (3.26)

Therefore, we can obtain

‖x(k)‖2 + ‖y(k)‖2 ≤ α

β

(
sup

s∈N[−hM,0]
‖φ(s)‖2 + sup

s∈N[−τM,0]
‖ψ(s)‖2

)
r−k, (3.27)

where α = max{ρ1, ρ2}, β = min{λm(P1), λm(P2)}. Obviously, α/β > 1, by Definition 2.1, the
system (2.7) or (2.1) is globally exponentially stable.

Remark 3.2. Based on the linear matrix inequality (LMI) technique and Lyapunov stability
theory, the exponential stability for discrete-time delayed BAM neural network (2.1) was
investigated in [26–28]. However, it should be noted that the results in [26] are based on the
unreasonably severe constraints on the delay functions 1 < τ(k+1) < 1+τ(k), 1 < h(k+1) < 1+
h(k), and the results in [27, 28] are based on the simple Lyapunov functionals. In this paper, in
order to obtain the less conservative stability criterion, the novel Lyapunov functional V (k) is
employed, which contains V4(k), V5(k), and more general than the traditional ones [26–28].
Moreover, some slack matrices, which bring much flexibility in solving LMI, are introduced
in this paper.

Remark 3.3. By setting r = 1 in Theorem 3.1, we can obtain the global asymptotic stability
criterion of discrete-time BAM neural network (2.7).

Remark 3.4. Theorem 3.1 in this paper depends on both the delay upper bounds τM, hM and
the delay intervals τM − τm and hM − hm.

Remark 3.5. The proposed method in this paper can be generalized to more complex neural
networks, such as delayed discrete-time BAM neural networks with parameter uncertainties
[30, 31] and stochastic perturbations [30–32], delayed interval discrete-time BAM neural
networks [28], and discrete-time analogues of BAM neural networks with mixed delays
[32, 33].

4. Numerical examples

Example 4.1. Consider the delayed discrete-time BAM neural network (2.7) with the
following parameters:

A =
[
0.8 0
0 0.9

]
, B =

[
0.5 0
0 0.4

]
, W =

[
0.1 −0.01
−0.2 −0.1

]
, V =

[
0.15 0
−0.2 0.1

]
. (4.1)

The activation functions satisfy Assumptions (A1) and (A2) with

L1 =
[
1 0
0 1

]
, L2 =

[
1 0
0 1

]
. (4.2)
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Table 1:Maximum allowable delay bounds for Example 4.1.

τm = hm 2 4 6 8 10 15 20 25
τM = hM [27, 28] 6 8 10 12 14 19 24 29
τM = hM Theorem 3.1 11 12 13 15 16 21 25 30

For this example, by Theorem 3.1 in this paper with r = 1, we can obtain some
maximum allowable delay bounds for guaranteeing the asymptotic stability of this system.
For a comparison with [27, Theorem 1] and in [28, Corollary 1], we made Table 1. For this
example, it is obvious that our result is less conservative than those in [27, 28].

Example 4.2 (see [27]). Consider the delayed discrete-time BAMNN (2.7)with the following
parameters:

A =

⎡
⎢⎣

1
5

0

0
1
5

⎤
⎥⎦ , B =

⎡
⎢⎣

1
10

0

0
1
10

⎤
⎥⎦ , W =

⎡
⎢⎣
0

1
8

1
8

0

⎤
⎥⎦ , V =

⎡
⎢⎣
− 1
20

0

0 − 1
20

⎤
⎥⎦ . (4.3)

The activation functions satisfy Assumptions (A1) and (A2) with

L1 =
[
1 0
0 1

]
, L2 =

[
1 0
0 1

]
. (4.4)

Now, we assume τ(k) = h(k) = 4 − 2 sin((π/2)k), r = 1.55. It is obvious that
2 ≤ τ(k) = h(k) ≤ 6, that is, hm = τm = 2, hM = τm = 6. In this case, it is found that the
exponential conditions proposed in [27, 28] is not satisfied. However, it can be concluded
that this system is globally exponentially stable by using Theorem 3.1 in this paper. If we
assume hm = τm = τM = 2, r = 2.7. Using [27, Theorem 1] and [28, Corollary 1], the achieved
maximum allowable delays for guaranteeing the globally exponentially stable of this system
are hM = 3, hM = 3, respectively. However, we can obtain the delay bound hM = 4 by using
Theorem 3.1 in this paper. For this example, it is seen that our result improve some existing
results [27, 28].

5. Conclusion

In this paper, we consider the delay-dependent exponential stability for discrete-time BAM
neural networks with time-varying delays. Based on the Lyapunov stability theory and
linear matrix inequality technique, the novel delay-dependent stability criterion is obtained.
Two numerical examples show that the proposed stability condition in this paper is less
conservative than previously established ones.
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