
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2010, Article ID 246783, 11 pages
doi:10.1155/2010/246783

Research Article
Permanence of a Discrete Periodic
Volterra Model with Mutual Interference and
Beddington-DeAngelis Functional Response

Runxin Wu

Department of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350014, China

Correspondence should be addressed to Runxin Wu, runxinwu@163.com

Received 4 March 2010; Accepted 12 May 2010

Academic Editor: Leonid Berezansky

Copyright q 2010 Runxin Wu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper discuss a discrete periodic Volterra model with mutual interference and Beddington-
DeAngelis functional response. By using the comparison theorem of difference equation, sufficient
conditions are obtained for the permanence of the system. After that,we give an example to show
the feasibility of our main result.

1. Introduction

In 1971, Hassell introduced the concept of mutual interferencem (0 < m ≤ 1) and established
a Volterra model with mutual interference as follows: (see [1])

ẋ = xg(x) − ϕ(x)ym,

ẏ = y
(
−d + kϕ(x)ym−1 − q

(
y
))

.
(1.1)

Recently, Wang and Zhu [2] proposed following system:

ẋ(t) = x(t)(r1(t) − b1(t)x(t)) − c1(t)x(t)
k + x(t)

ym(t),

ẏ(t) = y(t)
(−r2(t) − b2(t)y(t)

)
+
c2(t)x(t)
k + x(t)

ym(t).

(1.2)
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Motivated by theworks ofWang and Zhu [2], Lin andChen [3] considered an almost periodic
Volterra model with mutual interference and Beddington-DeAngelis function response as
follows, which is the generalization of the model (1.2):

ẋ(t) = x(t)(r1(t) − b1(t)x(t)) − k1(t)x(t)
a(t) + d(t)x(t) + c(t)y(t)

ym(t),

ẏ(t) =
(−r2(t) − b2(t)y(t)

)
+

k2(t)x(t)
a(t) + d(t)x(t) + c(t)y(t)

ym(t).

(1.3)

Sufficient conditions which guarantee the permanence and existence of a unique globally
attractive positive almost periodic solution of the system are obtained by applying the
comparison theorem of the differential equation and constructing a suitable Lyapunov
functional.

On the other hand, it has been found that the discrete time models governed by dif-
ference equations are more appropriate than the continuous ones when the populations have
nonoverlapping generations. Discrete time models can also provide efficient computational
models of continuous models for numerical simulations (see [4, 5]). This motivated us to
propose and study the discrete analogous of predator-prey system (1.4):

x(n + 1) = x(n) exp
{
r1(n) − b1(n)x(n) − k1(n)

a(n) + d(n)x(n) + c(n)y(n)
ym(n)

}
,

y(n + 1) = y(n) exp
{
−r2(n) − b2(n)y(n) +

k2(n)x(n)
a(n) + d(n)x(n) + c(n)y(n)

ym−1(n)
}
,

(1.4)

where x(n) is the density of prey species at nth generation, y(n) is the density of predator
species at nth generation. Also, r1(n), b1(n) denote the intrinsic growth rate and density-
dependent coefficient of the prey, respectively, r2(n), b2(n) denote the death rate and density-
dependant coefficient of the predator, respectively, k1(n) is the capturing rate of the predator,
k2(n)/k1(n) is the rate of conversion of nutrients into the reproduction of the predator.
Further, m is mutual interference constant. In this paper, we assume that all the coefficients
a(n), d(n), c(n), ri(n), ki(n), bi(n), i = 1, 2, are all positive ω-periodic sequences and 0 <

m < 1. Here, for convenience, we denote f = (1/ω)
∑ω−1

n=0 f(n), f
u = supn∈Iω{f(n)}, and

fl = infn∈Iω{f(n)}where Iω = {0, 1, 2, . . . , ω − 1}.
The remaining part of this paper is organized as follows: in Section 2 we will introduce

some definitions and establish several useful lemmas. The permanence of system (1.4) is then
studied in Section 3. In Section 4, we give an example to show the feasibility of our main
result.

By the biological meaning, we will focus our discussion on the positive solution of
system (1.4). So it is assumed that the initial conditions of (1.4) are of the form

x(0) > 0, y(0) > 0. (1.5)

One can easily show that the solution of (1.4) with the initial condition (1.5) are defined and
remain positive for all n ∈ N where N = {0, 1, 2, . . .}.
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2. Preliminaries

In this section, we will introduce the definition of permanence and several useful lemmas.

Definition 2.1. System (1.4) is said to be permanent if there exist positive constants
x∗, y∗, x∗, y∗, which are independent of the solution of system (1.4), such that for any position
solution (x(n), y(n)) of system (1.4) satisfies

x∗ ≤ lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ x∗,

y∗ ≤ lim inf
n→+∞

y(n) ≤ lim sup
n→+∞

x(n) ≤ y∗.
(2.1)

Lemma 2.2 ([6]). Assume that {x(n)} satisfies x(n) > 0 and

x(n + 1) ≤ x(n) exp{a(n) − b(n)x(n)} (2.2)

for n ∈ N, where a(n) and b(n) are nonnegative sequences bounded above and below by positive
constants. Then

lim sup
n→+∞

x(n) ≤ 1
bl

exp(au − 1). (2.3)

Lemma 2.3 ([6]). Assume that {x(n)} satisfies

x(n + 1) ≥ x(n) exp{a(n) − b(n)x(n)}, n ≥ N0. (2.4)

lim supn→+∞ x(n) ≤ x∗ and x(N0) > 0, where a(n) and b(n) are nonnegative sequences bounded
above and below by positive constants and N0 ∈ N. Then

lim inf
n→+∞

x(n) ≥ al exp
{
al − bux∗}

bu
. (2.5)

Lemma 2.4 ([7]). The problem

x(n + 1) = x(n) exp{a(n) − b(n)x(n)} (2.6)

with x(0) = x0 > 0 has at least one periodic positive solution x∗(n) if both b : Z → R+ and
a : Z → R+ are ω-periodic sequences with a > 0. Moreover, if b(n) = b is a constant and au < 1,
then bx(n) ≤ 1 for n sufficiently large, where x(n) is any solution of (2.6).

Lemma 2.5 ([8]). Suppose that f : Z+ × [0,+∞) and g : Z+ × [0,+∞) with f(n, x) ≤ g(n, x) for
n ∈ Z+ and x ∈ [0,+∞). Assume that g(n, x) is nondecreasing with respect to the argument x. If
x(n) and u(n) are solutions of

x(n + 1) = f(n, x(n)), u(n + 1) = g(n, u(n)), (2.7)



4 Discrete Dynamics in Nature and Society

respectively, and x(0) ≤ u(0) (x(0)u(0)), then

x(n) ≤ u(n) (x(n) ≥ u(n)) (2.8)

for all n > 0.

3. Permanence

In this section, we establish a permanent result for system (1.4).

Proposition 3.1. If (H1): (1−m)ru2 < 1 holds, then for any positive solution (x(n), y(n)) of system
(1.4), there exist positive constants x∗ and y∗, which are independent of the solution of the system,
such that

lim sup
n→+∞

x(n) ≤ x∗, lim sup
n→+∞

y(n) ≤ y∗. (3.1)

Proof. Let (x(n), y(n)) be any positive solution of system (1.4), from the first equation of (1.4),
it follows that

x(n + 1) ≤ x(n) exp{r1(n) − b1(n)x(n)}. (3.2)

By applying Lemma 2.2, we obtain

lim sup
n→+∞

x(n) ≤ x∗, (3.3)

where

x∗ =
1

bl1
exp

(
ru1 − 1

)
. (3.4)

Denote P(n) = (1/y(n))1−m. Then from the second equation of (1.4), it follows that

P(n + 1) = P(n) exp

{
(1 −m)r2(n) +

(1 −m)b2(n)
1−m
√
P(n)

− (1 −m)k2(n)x(n)

a(n) + d(n)x(n) + c(n) m−1
√
P(n)

P(n)

}
,

(3.5)

which leads to

P(n + 1) ≥ P(n) exp
{
(1 −m)r2(n) − (1 −m)ku

2P(n)
}
. (3.6)

Consider the following auxiliary equation:

J(n + 1) = J(n) exp
{
(1 −m)r2(n) − (1 −m)ku

2 J(n)
}
. (3.7)
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By Lemma 2.4, (3.7) has at least one positive ω-periodic solution and we denote one of them
as J ∗ (n). Now (H1) and Lemma 2.4 imply (1 −m)Ku

2 J(n) ≤ 1 for n sufficiently large, where
J(n) is any solution of (3.7). Consider the following function:

g1(n, J) = J exp
{
(1 −m)r2(n) − (1 −m)Ku

2 J
}
. (3.8)

It is not difficult to see that g1(n, J) is nondecreasing with respect to the argument J .
Then applying Lemma 2.5 to (3.6) and (3.7), we easily obtain that P(n) ≥ J∗(n). So
lim infn→+∞ P(n) ≥ (J∗(n))l, which together with that transformation P(n) = (1/y(n))1−m,
produces

lim sup
n→+∞

y(n) ≤ 1
1−m
√
(J∗(n))l

Δ= y∗. (3.9)

This ends the proof of Proposition 3.1.

Proposition 3.2. Assume that

(H2):

(
r1(n) −

k1(n)
(
y∗)m

al

)l

> 0 (3.10)

hold, then for any positive solution (x(n), y(n)) of system (1.4), there exist positive constants x∗ and
y∗, which are independent of the solution of the system, such that

lim inf
n→+∞

x(n) ≥ x∗, lim inf
n→+∞

y(n) ≥ y∗, (3.11)

where y∗ can be seen in Proposition 3.1.

Proof. Let (x(n), y(n)) be any positive solution of system (1.4). From (H2), there exists a small
enough positive constant ε such that

(
(r1(n) −

k1(n)
(
y∗ + ε

)m
a(n)

)l

> 0. (3.12)

Also, according to Proposition 3.1, for above ε, there existsN1 > 0 such that for n > N1,

y(n) < y∗ + ε. (3.13)

Then from the first equation of (1.4), for n > N1, we have

x(n + 1) ≥ x(n) exp

{
r1(n) −

k1(n)
(
y∗ + ε

)m
a(n)

− b1(n)x(n)

}
. (3.14)
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Let e(n, ε) = r1(n) − (k1(n)/a(n))(y∗ + ε)m, so the above inequality follows that

x(n + 1) ≥ x(n) exp{e(n, ε) − b1(n)x(n)}. (3.15)

From (3.12) and (3.15), by Lemma 2.3, we have

lim inf
n→+∞

x(n) ≥ (e(n, ε))l

bu1
exp

{
(e(n, ε))l − blux

∗
}
. (3.16)

Setting ε → 0 in the above inequality leads to

lim inf
n→+∞

x(n) ≥ el

bu1
exp

{
el − bu1x

∗
}

� x∗, (3.17)

where

e(n) = r1(n) − k1(n)
a(n)

(
y∗)m. (3.18)

From above ε, there exists N2 > N1 such that n ≥ N2, x(n) ≥ x∗ − ε. So from (3.5), we obtain
that

P(n + 1) ≤ P(n) exp

{
(1 −m)

(
r2(n) + b2(n)

(
y∗ + ε

)) − (1 −m)k2(n)(x∗ − ε)
au + du(x∗ − ε) + cu

(
y∗ + ε

)P(n)
}
.

(3.19)

Consider the following auxiliary equation:

L(n + 1) = L(n) exp

{
(1 −m)

(
r2(n) + b2(n)

(
y∗ + ε

)) − (1 −m)k2(n)(x∗ − ε)
au + du(x∗ − ε) + cu

(
y∗ + ε

)L(n)
}
.

(3.20)

By Lemma 2.4, (3.20) has at least one positiveω-periodic solution and we denote one of them
as L∗(n).

Let

R(n) = lnP(n), W(n) = lnL∗(n). (3.21)
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Then,

R(n + 1) − R(n) ≤ (1 −m)
(
r2(n) + b2(n)

(
y∗ + ε

)) − (1 −m)k2(n)(x∗ − ε)
au + du(x∗ − ε) + cu

(
y∗ + ε

) exp{R(n)},

W(n + 1) −W(n) = (1 −m)
(
r2(n) + b2(n)

(
y∗ + ε

)) − (1 −m)k2(n)(x∗ − ε)
au + du(x∗ − ε) + cu

(
y∗ + ε

) exp{W(n)}.
(3.22)

Set

U(n) = R(n) −W(n). (3.23)

Then

U(n + 1) −U(n) ≤ − (1 −m)k2(n)(x∗ − ε)
au + du(x∗ − ε) + cu

(
y∗ + ε

) exp{W(n)}[exp{U(n)} − 1
]
. (3.24)

In the following we distinguish three cases.

Case 1. {U(n)} is eventually positive. Then, from (3.24), we see that U(n + 1) < U(n) for any
sufficient large n. Hence, limn→+∞ U(n) = 0, which implies that

lim sup
n→+∞

P(n) ≤ (L∗(n))u. (3.25)

Case 2. {U(n)} is eventually negative. Then, from (3.23), we can also obtain (3.25).

Case 3. {U(n)} oscillates about zero. In this case, we let {U(nst)} (s, t ∈ N) be the positive
semicycle of {U(n)}, where U(ns1) denotes the first element of the sth positive semicycle of
{U(n)}. From (3.24), we know that U(n + 1) < U(n) if U(n) > 0. Hence, lim supn→+∞ U(n) =
lim supn→+∞ U(ns1). From (3.24), and U(ns1−1) < 0, we can obtain

U(ns1) ≤ (1 −m)k2(ns1−1)(x∗ − ε)
au + du(x∗ − ε) + cu

(
y∗ + ε

) exp{W(ns1)}
[
1 − exp{U(ns1)}

]
,

≤ (1 −m)ku
2 (x∗ − ε)

au + du(x∗ − ε) + cu
(
y∗ + ε

) (L∗(n))u.
(3.26)

From (3.21) and (3.23), we easily obtain

lim sup
n→+∞

P(n) ≤ (L∗(n))u exp

{
(1 −m)ku

2 (x∗ − ε)

au + du(x∗ − ε) + cu
(
y∗ + ε

) (L∗(n))u
}
. (3.27)

Setting ε → 0 in the above inequality leads to

lim sup
n→+∞

P(n) ≤ (L∗(n))u exp
{ (1 −m)ku

2x∗
au + dux∗ + cuy∗ (L

∗(n))u
}

� P ∗. (3.28)
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which together with that transformation P(n) = (1/y(n))1−m, we have

lim inf
n→+∞

y(n) ≥ 1
1−m√P ∗ � y∗. (3.29)

Thus, we complete the proof of Proposition 3.2.

Theorem 3.3. Assume that (H1) and (H2) hold, then system (1.4) is permanent.

It should be noticed that, from the proof of Propositions 3.1 and 3.2, one knows that
under the conditions of Theorem 3.3, the set Ω = {(x, y) | x∗ ≤ x ≤ x∗, y∗ ≤ y ≤ y∗} is an
invariant set of system (1.4).

4. Example

In this section,we give an example to show the feasibility of our main result.

Example 4.1. Consider the following system:

x(n + 1) = x(n) exp

{
0.7 + 0.1 cos(n) − 0.7x(n) − 0.4y0.6(n)

2 + x(n) + y(n)

}
,

y(n + 1) = y(n) exp

{
−0.8 − 0.1 sin(n) − (1.1 + 0.1 cos(n))y(n) +

0.6x(n)y−0.4(n)
2 + x(n) + y(n)

}
,

(4.1)

where m = 0.6, r1(n) = 0.7 + 0.1 cos(n), b1(n) = 0.7, k1(n) = 0.4, a(n) = 2, d(n) = 1, c(n) =
1, r2(n) = 0.8 + 0.1 sin(n), b2(n) = 1.1 + 0.1 cos(n), k2(n) = 0.6.

By simple computation, we have y∗ ≈ 1.1405.Thus, one could easily see that

(1 −m)(r2(n))u ≈ 0.36 < 1,
(
r1(n) − k1(n)

al

(
y∗)m

)l

≈ 0.3836 > 0. (4.2)

Clearly, conditions (H1) and (H2) are satisfied,then system (4.1) is permanent.
Figure 1 shows the dynamics behavior of system (4.1).

Example 4.2. Consider the following system:

x(n + 1) = x(n) exp

{
0.2 + 0.1 cos(n) − 0.7x(n) − 0.4y0.8(n)

2 + x(n) + y(n)

}
,

y(n + 1) = y(n) exp

{
−0.8 − 0.4 sin(n) − (0.8 + 0.1 cos(n))y(n) +

0.6x(n)y−0.2(n)
2 + x(n) + y(n)

}
,

(4.3)
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Figure 1: Dynamics behavior of system (4.1)with initial condition (x(0), y(0)) = (0.8, 0.02).
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Figure 2: Dynamics behavior of system (4.3)with initial condition (x(0), y(0)) = (0.4, 0.01).

where m = 0.8, r1(n) = 0.2 + 0.1 cos(n), b1(n) = 0.7, k1(n) = 0.4, a(n) = 2, d(n) = 1, c(n) =
1, r2(n) = 0.8 + 0.4 sin(n), b2(n) = 0.8 + 0.1 cos(n), k2(n) = 0.6.

By simple computation, we have y∗ ≈ 37.3346. Thus, one could easily see that

(1 −m)(r2(n))u ≈ 0.24 < 1,
(
r1(n) − k1(n)

al

(
y∗)m

)l

≈ −3.5201 < 0. (4.4)

Clearly, condition (H1) is satisfied and condition (H2) is not satisfied, but the system
(4.3) is permanent. It shows that conditions (H1) and (H2) are sufficient for the system (1.4)
but not necessary.

Figure 2 shows the dynamics behavior of system (4.3).
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Figure 3: Dynamics behavior of system (4.5)with initial condition (x(0), y(0)) = (0.8, 0.02).

Example 4.3. Consider the following system:

x(n + 1) = x(n) exp

{
0.2 + 0.1 cos(n) − 0.7x(n) − 2y0.8(n)

2 + x(n) + y(n)

}
,

y(n + 1) = y(n) exp

{
−0.8 − 0.4 sin(n) − (0.8 + 0.1 cos(n))y(n) +

3x(n)y−0.2(n)
2 + x(n) + y(n)

}
,

(4.5)

where m = 0.8, r1(n) = 0.2 + 0.1 cos(n), b1(n) = 0.7, k1(n) = 2, a(n) = 2, d(n) = 1, c(n) =
1, r2(n) = 0.8 + 0.4 sin(n), b2(n) = 0.8 + 0.1 cos(n), k2(n) = 3.

By simple computation, we have y∗ ≈ 116670. Thus, one could easily see that

(1 −m)(r2(n))u ≈ 0.24 < 1,
(
r1(n) − k1(n)

al

(
y∗)m

)l

≈ −11313 < 0. (4.6)

Clearly,condition (H1) is satisfied and (H2) is not satisfied, then the species x is extinct
and the species y is permanent.

Figure 3 shows the dynamics behavior of system (4.5).
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