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We first study how to make use of the Marotto theory to prove rigorously the existence of the
Li-Yorke chaos in diffusively coupled map lattices with open boundary conditions (i.e., a high-
dimensional discrete dynamical system). Then, the recent 0-1 test for chaos is applied to confirm
our theoretical claim. In addition, we control the chaotic motions to a fixed point with delay
feedback method. Numerical results support the theoretical analysis.

1. Introduction

Extensive research has been carried out to discover complex behaviors of various discrete
dynamical systems in the past several decades. However, limited rigorous analysis
concerning existence of chaos in high-dimensional discrete dynamical systems has been seen
in the literature. Since the 1980s, coupled map lattices (CMLs) as high-dimensional discrete
system have caused widespread concern [1]. CMLs as chaotic dynamical system models
for spatiotemporal complexity are usually adopted. Spatiotemporal complexity is common
in nature, such as biological systems, networks of DNA, economic activities, and neural
networks [1]. The complex behaviors of CMLs have been studied extensively [1–16]. These
mainly include bifurcation [2], chaos [6, 7], chaotic synchronization [4, 8–10], and controlling
chaos [5, 11, 12]. However, being able to rigorously prove the existence of chaos in CMLs is
an important and open question. A rigorous verification of chaos will provide a theoretical
foundation for the researchers to discover the complex behaviors in CMLs. Recently, Li et al.
[13, 14] theoretically analyzed the chaos in one-way coupled logistic lattice with periodic
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boundary conditions and presented a chaotification method for creating spatiotemporal
systems strongly chaotic. Tian and Chen [15] discussed the chaos in CMLswith the new chaos
definition in the sense of Li-Yorke. These CMLs with the periodic boundary conditions have
been most extensively investigated [1, 2, 4–15]. But, in all of the research so far published,
only a few studies have attempted to explore the case of open boundary conditions [16, 17].
In this case, it is almost impossible to obtain all eigenvalues of Jacobian matrix of the CMLs.
This partially hindered early research in the CMLs with open boundary conditions.

Until now, the rigorous proof of chaos has not yet been studied in diffusively coupled
map lattices (DCMLs)with open boundary conditions, which is one important case of CMLs.
Inspired by the ideas of [13, 14, 18, 19], we have tried to answer this question. The DCML is
as follows [1, 16, 17]:

xn+1(i) = (1 − ε)f(xn(i)) +
ε

2
[
f(xn(i − 1)) + f(xn(i + 1))

]
, (1.1)

where n is discrete time step and i is lattice point (i = 1, 2, . . . ,N;N is the number of the sites
in the DCML). ε ∈ (0, 1) is the coupling strength. xn(i) represents the state variable for the ith
site at time n. Throughout this paper, we adopt open boundary conditions [16, 17]:

xn+1(1) = (1 − ε)f(xn(1)) + εf(xn(2)),

xn+1(N) = εf(xn(N − 1)) + (1 − ε)f(xn(N)).

(1.2)

Here each of the lattice points in (1.1) and (1.2) is chosen to be the logistic map f(xn(i)) =
1−ax2

n(i), where a ∈ (0, 2] and xn(i) ∈ (−1, 1). The logistic function f(x) = 1−ax2 is equivalent
to the well-known form g(z) = rz(1 − z) [20] when the transformations a = r(r − 2)/4
and x = 2(2z − 1)/(r − 2) are taken. This simple quadratic iteration was only completely
understood in the late 1990s [21]. When the lattice points are logistic functions, the CMLs
generate more rich and complex dynamic behaviours. What is more is that the dynamical
behaviors of CMLs may be different from each other when the lattice points are chosen from
f(x) and g(z), respectively [1, 2].

Based on the Marotto theory [22, 23], we prove theoretically the existence of the Li-
Yorke chaos in the DCML (1.1). In the process of proving, the most difficult problem is how
to find a snap-back repeller. At the same time, we have exploited different measures such
as the chaotic phase, bifurcation diagram, and 0-1 test on time series to confirm our claim
of the existence of chaos. The 0-1 test is a new method to distinguish chaotic from ordered
motion. It is more suitable to handle high-dimensional systems and does not require phase
space reconstruction. Finally, we control spatiotemporal chaotic motion in the DCML (1.1) to
period-1 orbit (fixed point) by delay feedback and obtain the stability conditions of control.

The paper is organized as follows. In Section 2, the Marotto theorem is introduced.
In Section 3.1, a mathematically rigorous proof of the Li-Yorke chaos in the DCML (1.1)
is examined. In Section 3.2, we show numerical simulation results. In Section 3.3, 0-1 test
method is used to verify the existence of chaos. In Section 4, delay feedback control method
is adopted to control chaos. In the last section, conclusions are given.
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2. Marotto Theorem

Li and Yorke [24] state that the period-three orbit exhibits chaos in one-dimensional discrete
interval map. This is the first precise definition of discrete chaos. This classical criterion
for chaos is extended to higher-dimensional discrete systems by Marotto [22]. Marotto
considered the following n-dimensional discrete system:

xk+1 = F(xk), k = 0, 1, 2, . . . , (2.1)

where xk ∈ Rn and F : Rn → Rn is continuous. Let Br(x) denote the closed ball in Rn of
radius r centered at point x and B0

r (x) its interior. Also, let ‖x‖ be the usual Euclidean norm
of x in Rn [22]. Then, if F is differentiable in Br(z), Marotto claimed that in the following,
A ⇒ B.

(A) All eigenvalues of the JacobianDF(z) of system (2.1) at the fixed point z are greater
than one in norm.

(B) There exist some s > 1 and r > 0 such that, for all x, y ∈ Br(z), ‖F(x) − F(y)‖ >
s‖x − y‖.

Marotto thought that, if (A) is satisfied, then (B) can be derived, that is, F is expanding
in Br(z) [22]. But, (A) does not always imply (B)with usual Euclidean norm [25]. Chen et al.
[26] first pointed out this problem in the Marotto theorem. During the past decade, several
papers tried to fix this error ([19, 23, 25, 26] and some references therein).

In 2005, Marotto redefined the definition of snap-back repeller [23]. He pointed out
that (A) does imply (B) with some vector norm in Rn (which depends on F and z). See, for
example, the discussion by Hirsch and Smale in [27]. However, we still do not knowwhat the
vector norm is in specific issues. In the application of the Marotto theorem, we need to find
a suitable vector norm. With this special vector norm, (A) implies (B). The correct Marotto
theorem is given as follows.

Definition 2.1 (see [23]). Suppose that z is a fixed point of (2.1) with all eigenvalues of
DF(z) exceeding 1 in magnitude, and suppose that there exists a point x0 /= z in a repelling
neighborhood of z, such that xM = z and det(DF(xk))/= 0 for 1 ≤ k ≤ M, where xk = Fk(x0).
Then, z is called a snap-back repeller of F.

Lemma 2.2 (see [23], the Marotto theorem). If F has a snap-back repeller, then F is chaotic.

At the same time, Shi and Chen [19] presented a modifiedMarotto theorem as follows.

Lemma 2.3 (see [19]). Consider the n-dimensional discrete system

xk+1 = F(xk), xk ∈ Rn, k = 0, 1, 2, . . . , (2.2)

where F is a map from Rn to itself. Assume that F has a fixed point x∗ satisfying x∗ = F(x∗).
Assume, moreover, that

(1) F(x) is continuously differentiable in a neighborhood of x∗, and all eigenvalues of DF(x∗)
have absolute values large than 1, whereDF(x∗) is the Jacobian of F evaluated at x∗, which
implies that there exist an r > 0 and a norm ‖ · ‖ in Rn such that F is expanding in Br(x∗),
the closed ball of radius r centered at x∗ in (Rn, ‖ · ‖),



4 Discrete Dynamics in Nature and Society

(2) x∗ is a snap-back repeller of F with Fm(x0) = x∗, x0 /=x∗, for some x0 ∈ Br(x∗) and some
positive integer m, where Br(x∗) is the open ball of radius r centered at x∗ in (Rn, ‖ · ‖).
Furthermore, F is continuously differentiable in some neighborhoods of x0, x1, . . . , xm−1,
respectively, and det[DF(xj)]/= 0, where xj = F(xj−1) for j = 1, 2, . . . , m.

Then, the system (2.2) is chaotic in the sense of Li-Yorke. Moreover, the system (2.2) has
positive topological entropy. Here the topological entropy of F is defined to be the supremum of
topological entropies of F restricted to compact invariant sets.

Remark 2.4. The Marotto theorem is a sufficient condition for the Li-Yorke chaos. Lemmas 2.2
and 2.3 have the same effect. But, direct application of the Marotto theorem is not always
easy. In most cases, the verification must be carried out with the aid of a computer [28].

3. Proving Chaos and Simulation Verifications

3.1. Proving Chaos

In this subsection, we prove the existence of the Li-Yorke chaos in the DCML (1.1). Lemmas
3.1 and 3.2 will be useful throughout the proof.

Lemma 3.1 (see [29, 30]). For a matrix AN×N with eigenvalues λ1, λ2, . . . , λN , the determinant of
A is equal to

∏N
i=1λi. Denote det(A) =

∏N
i=1λi.

Lemma 3.2 (see [29, 30], the Gershgorin circle theorem). Let A be an n × n matrix, and let Ri

denote the circle in the complex plane with center aii and radius
∑n

j=1, j /= i |aij |; that is,

Ri =

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ C | |z − aii| ≤

n∑

j=1,
j /= i

∣∣aij

∣∣

⎫
⎪⎪⎬

⎪⎪⎭
, (3.1)

where C denotes the complex plane. The eigenvalues ofA are contained within R =
⋃n

i=1 Ri. Moreover,
the union of any k of these circles that do not intersect the remaining (n − k) contains precisely k
(counting multiplicities) of the eigenvalues.

Theorem 3.3. If 0 < ε < 1/2 and ε is small enough, a ∈ {a | a > (1 +
√
2)/2 	 1.2071}⋂{a | a >

(1 − ε)2/(1 − 2ε)2 − (1/4)}, and c = 1/
√
(3N + 2)ε2 − 4Nε + 2N < 0.0613/

√
2, then the DCML

(1.1) is chaotic in the sense of Li-Yorke.

Proof. Wewill prove that the DCML (1.1) has a snap-back repeller x∗. Rewrite the DCML (1.1)
in the vector form as follows:

xk+1 = F(xk), (3.2)

where xk = [xk(1), xk(2), . . . , xk(N)]T and T denotes the vector (or matrix) transpose. Using
Definition 2.1 and Lemma 2.3, we have to verify the following three conditions.

(a) x∗ is a fixed point of F and all the eigenvalues ofDF(x∗) have absolute values larger
than 1. Moreover, there exist r > 0 and a norm ‖ · ‖ in Rn such that F is expanding
in Br(x∗).
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(b) There exist a x0 ∈ B(x∗, r) and x0 /= x∗ such that Fm(x0) = x∗ for some m ∈ N and
m ≥ 2.

(c) det[DFm(x0)]/= 0.

The proof consists of four steps. The ideas are motivated chiefly by [13, 18, 19].

Step 1. Let x∗ = [(
√
4a + 1 − 1)/2a, . . . , (

√
4a + 1 − 1)/2a]

T
= z∗1 ∈ RN , where z∗ = (

√
4a + 1 −

1)/2a, 1 = [1, . . . , 1]T . Then x∗ is a fixed point of the DCML (3.2), that is, x∗ = F(x∗). F(x) is
continuously differentiable in Br(x∗) for some r > 0. Its Jacobian matrix at x∗ is

DF(x∗)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ε)f ′(z∗) εf ′(z∗) 0 0 · · · 0
ε

2
f ′(z∗) (1 − ε)f ′(z∗)

ε

2
f ′(z∗) 0 · · · 0

0
ε

2
f ′(z∗) (1 − ε)f ′(z∗)

ε

2
f ′(z∗) · · · 0

...
...

...
...

...
...

0 0 . . .
ε

2
f ′(z∗) (1 − ε)f ′(z∗)

ε

2
f ′(z∗)

0 0 · · · 0 εf ′(z∗) (1 − ε)f ′(z∗)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(3.3)

where f ′(z∗) = 1 −
√
4a + 1 < 0. We denote DF(x∗) by (1 −

√
4a + 1)M, where

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − ε ε 0 0 · · · 0
ε

2
1 − ε

ε

2
0 · · · 0

0
ε

2
1 − ε

ε

2
· · · 0

...
...

...
...

...
...

0 0 . . .
ε

2
1 − ε

ε

2
0 0 · · · 0 ε 1 − ε

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.4)

Obviously,M is not a circulant matrix. WhenN is large, it will be difficult to calculate all the
eigenvalues of the matrix DF(x∗). With the Marotto theorem (Lemmas 2.2 and 2.3), we do
not need to know the size of eigenvalues and only need to know that the absolute value of
eigenvalues is greater than one. According to the Gershgorin circle theorem (Lemma 3.2), all
the eigenvalues ofDF(x∗), λj(j = 1, 2, . . . ,N), are given by 1−√4a + 1 ≤ λj ≤ (1−√4a + 1)(1−
2ε). Under the conditions of Theorem 3.3, that is, 0 < ε < 0.5 and a > (1−ε)2/(1−2ε)2− (1/4),
the following results are obtained:

1 <
(√

4a + 1 − 1
)
(1 − 2ε) ≤ ∣∣λj

∣∣ ≤
√
4a + 1 − 1, ∀j = 1, 2, . . . ,N, (3.5)

that is, all the eigenvalues of DF(x∗) are greater (in absolute value) than one. x∗ is an
expanding fixed point of F. Therefore, there exist some r > 0 and a special vector norm
‖ · ‖ such that F is expanding in Br(x∗). That is, for any two distinct points x, y ∈ Br(x∗), we
have

‖F(y) − F(x)‖ > s‖y − x‖, (3.6)
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where s > 1 and x,y are sufficiently close to x∗. Since F(y) − F(x) = DF(x)(y − x) + α, where
‖α‖/‖y− x‖ → 0 as ‖y− x‖ → 0 [19], specially, ‖F(x)−F(x∗)‖ = ‖DF(x∗)(x− x∗) +α‖. When ε
is small enough, we can prove that the operator DF(x∗) is expanding with Frobenius matrix

norm ‖ · ‖F , where ‖DF(x)‖F = (
∑N

j=1
∑N

i=1 a
2
ij)

1/2
. With the conditions of Theorem 3.3, we get

|(1−√
4a + 1)(1− ε)| > 1. For any point x ∈ Br(x∗) and ε small enough, there exists some s > 1

such that

‖DF(x∗)x‖F =
∥∥∥
(
1 −

√
4a + 1

)
M(x1, x2, x3, . . . , xN−2, xN−1, xN)T

∥∥∥
F

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(
1 −

√
4a + 1

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ε)x1 + εx2
ε

2
x1 + (1 − ε)x2 +

ε

2
x3

...
ε

2
xN−2 + (1 − ε)xN−1 +

ε

2
xN

εxN−1 + (1 − ε)xN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

≥ s

∥∥∥∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎜⎜⎜
⎝

x1

x2
...

xN−1
xN

⎞

⎟⎟⎟⎟⎟⎟
⎠

∥∥∥∥∥∥∥∥∥∥∥∥
F

.

(3.7)

Since F(x) is continuously differentiable, DF(x) is also expanding for x ∈ Br(x∗). Let the
bound of the maximal open expanding ball Br(x∗) be denoted by ρ1, where ρ satisfies the
following inequality [13]:

∥∥DF
(
ρ1

)∥∥ =
√
4a2(1 − ε)2Nρ2 + 2ε2a2(N − 2)ρ2 + 8ε2a2ρ2 > 1. (3.8)

Moreover, the equation

√
2a2ρ2[(3N + 2)ε2 − 4Nε + 2N] = 1 (3.9)

has two solutions

ρ1,2 = ∓ 1√
2a ×

√
(3N + 2)ε2 − 4Nε + 2N

= ∓ c√
2a

, (3.10)

where c = 1/
√
(3N + 2)ε2 − 4Nε + 2N. One has c ∈ (0, 1) (because f(ε) = (3N + 2)ε2 − 4Nε+

2N is a quadratic function, the discriminant Δ = −8N2 − 16N < 0, when ε = 4N/2(3N + 2),
min f(ε) = (4(3N + 2)2N − 16N2)/4(3N + 2) > 1). In fact, c ∈ (1/

√
2N, 1/

√
(3/4)N + (1/2)).

Since a > (1+
√
2)/2 ≈ 1.2071 and 0 < ρ2 < z∗ < 1, we take ρ = ρ2 = c/

√
2a. Then, z∗−ρ < 1−z∗,

and we denote

r = z∗ − ρ =

√
4a + 1 − 1 − √

2c
2a

> 0. (3.11)

Thus, condition (a) of Definition 2.1 and Lemma 2.2 is satisfied.
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Step 2. For all z = z1 ∈ Br(x∗), we have |z − z∗| < r, that is, σ1 < z < σ2, where σ1 = z∗ − r =
c/

√
2a, σ2 = z∗ + r = (

√
4a + 1 − 1 − (

√
2/2)c)/a. Now let x = (x1, x2, . . . , xN)T and F(x) = x∗,

that is,

(1 − ε)
(
1 − ax2

1

)
+ ε

(
1 − ax2

2

)
= z∗,

(1 − ε)
(
1 − ax2

i+1

)
+
ε

2

(
1 − ax2

i

)
+
ε

2

(
1 − ax2

i+2

)
= z∗,

ε
(
1 − ax2

N−1
)
+ (1 − ε)

(
1 − ax2

N

)
= z∗,

(3.12)

where i = 1, 2, . . . ,N − 2. Summing all the above equations, we obtain

(
1 − ε

2

)(
1 − ax2

1

)
+
(
1 +

ε

2

)(
1 − ax2

2

)
+

N−2∑

k=3

(
1 − ax2

k

)

+
(
1 +

ε

2

)(
1 − ax2

N−1
)
+
(
1 − ε

2

)(
1 − ax2

N

)
= Nz∗.

(3.13)

Assume that (3.12) has a solution, and denote y1 = z11, that is N(1 − az21) = Nz∗, which has
two solutions: z1 = ±

√
(1 − z∗)/a = ±(√4a + 1−1)/2a. We choose z1 = (1−√4a + 1)/2a since

z1 − σ1 = (1 − √
4a + 1 − √

2c)/2a < 0, that is, z1 < σ1 and z1 /∈ (σ1, σ2).

Step 3. Now, let F(x) = y1, that is,

(1 − ε)
(
1 − ax2

1

)
+ ε

(
1 − ax2

2

)
= z1,

(1 − ε)
(
1 − ax2

i+1

)
+
ε

2

(
1 − ax2

i

)
+
ε

2

(
1 − ax2

i+2

)
= z1,

ε
(
1 − ax2

N−1
)
+ (1 − ε)

(
1 − ax2

N

)
= z1,

(3.14)

where i = 1, 2, . . . ,N − 2. Summing the above N equations, we get

(
1 − ε

2

)(
1 − ax2

1

)
+
(
1 +

ε

2

)(
1 − ax2

2

)
+

N−2∑

k=3

(
1 − ax2

k

)

+
(
1 +

ε

2

)(
1 − ax2

N−1
)
+
(
1 − ε

2

)(
1 − ax2

N

)
= Nz1.

(3.15)

Assume that the system of (3.14) has a solution, and denote y2 = z21, that is,N(1−az22) = Nz1,

that is, 1 − az22 = (1 − √
4a + 1)/2a, which has two solutions: z2 = ±

√
(2a +

√
4a + 1 − 1)/2a2.

We take z2 =
√
(2a +

√
4a + 1 − 1)/2a2. Thus,

σ2 − z2 =

√
4a + 1 − 1 −

(√
2/2

)
c

a
−
√

2a +
√
4a + 1 − 1
2a2

=
√
8a + 2 − √

2 − c −
√
2a − 1 +

√
4a + 1√

2a
.

(3.16)
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Denote
√
4a + 1 = t; since a > (1+

√
2)/2, that is, 3 > t >

√
3 + 2

√
2 ≈ 2.4142 and a = (t2−1)/4,

then

√
8a + 2 −

√
2 − c −

√
2a − 1 +

√
4a + 1 =

√
2t −

√
2 − c −

√
t2 − 1
2

+ t − 1

=
2t −

√
t2 + 2t − 3 − 2 − √

2c√
2

.

(3.17)

Denoting y(t) = 2t−
√
t2 + 2t − 3, we get y′(t) = 2−(t+1)/(

√
(t + 1)2 − 4) > 0, t ∈ (

√
3 + 2

√
2, 3).

So, y(t) is monotone increasing continuous function, and miny(t) = 2
√
3 + 2

√
2 −√

2(
√
2 +

√
3 + 2

√
2) ≈ 2.0613. We get 2t −

√
t2 + 2t − 3 − 2 − √

2c ≥ 0.0613 − √
2c > 0

(since the condition c < (0.0613/
√
2)). Therefore, z2 < σ2. On the other hand, z2 − σ1 =√

(2a +
√
4a + 1 − 1)/2a2 − (c/

√
2a) = (

√
2a +

√
4a + 1 − 1 − c)/

√
2a > 0, that is, z2 > σ1.

Thus, σ1 < z2 < σ2, y2 ∈ Br(x∗), and z2 /= z∗, that is, y2 /= x∗. Let x0 = y2, x1 = y1; then,
F2(x0) = x∗. Steps 2 and 3 complete the proof of condition (b).

Step 4. According to DF(y1) = (
√
4a + 1 − 1)M � ωM, where ω = (

√
4a + 1 − 1) > 0,

with Lemma 3.2, all eigenvalues of DF(y1) lie in the interval 0 < ω(1 − 2ε) ≤ λj ≤
ω. Thus, with Lemma 3.1, det[DF(y1)] =

∏N
j=1λj /= 0. Moreover, according to DF(y2) =

−
√
4a + 2

√
4a + 1 − 2M � ΘM, where Θ = −

√
4a + 2

√
4a + 1 − 2 < 0, with Lemma 3.2, all

eigenvalues of DF(y2) lie in the interval Θ ≤ λj ≤ Θ(1 − 2ε) < 0. Thus, with Lemma 3.1,
det[DF(y2)] =

∏N
j=1λj /= 0. Then, we have Fm(x0) = x∗ and det[DFm(x0)]/= 0(m = 2). Thus,

condition (c) is complete. The system (1.1) has a snap-back repeller x∗. Under the conditions
of the Theorem 3.3, the DCML (1.1) is chaotic in the sense of Li-Yorke. The proof is completed.

3.2. Numerical Simulation of Chaos

When N = 300, a = 1.8, and ε = 0.01, the conditions of Theorem 3.3 are satisfied. The DCML
(1.1) can be denoted as follows:

xn+1(1) = (1 − ε)
[
1 − ax2

n(1)
]
+ ε

[
1 − ax2

n(2)
]
,

xn+1(2) = (1 − ε)
(
1 − ax2

n(2)
)
+
ε

2

[
1 − ax2

n(1) + 1 − ax2
n(3)

]
,

...

xn+1(299) = (1 − ε)
(
1 − ax2

n(299)
)
+
ε

2

[
1 − ax2

n(298) + 1 − ax2
n(300)

]
,

xn+1(300) = ε
[
1 − ax2

n(299)
]
+ (1 − ε)

[
1 − ax2

n(300)
]
.

(3.18)

The corresponding eigenvalues of DF(x∗) lie in the interval (1 − √
4a + 1, (1 − √

4a + 1)(1 −
2ε)), that is, λi ∈ (−1.8636,−1.8263)(i = 1, 2, . . . , 300). These eigenvalues are strictly larger
than one in absolute value. Starting from a random initial state, the number of iterations is
140. Simulation result is shown in Figure 1. When fixed N = 300, a = 1.8, and ε < 0.0582;
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Figure 1: Spatiotemporal chaos in the DCML (3.18)without any control, with parametersN = 300, a = 1.8,
ε = 0.01.
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Figure 2: Bifurcation diagram of the DCML (3.18) versus ε ∈ (0.01, 0.14) and x(111), with initial point
(0.6, . . . , 0.6).

these satisfy the conditions of Theorem 3.3. Thus, the system (3.18) should display chaotic
behavior. The bifurcation diagram in Figure 2 also confirms the above statement.

3.3. 0-1 Test for Chaos in the DCML

The 0-1 test for chaos was first reported in [31]. It and its modified version are applied
directly to the time series data and do not require phase space reconstruction [31–36].
Moreover, the dimension and origin of the dynamical system are irrelevant. The 0-1 test can
efficiently distinguish chaotic behavior from regular (periodic or quasiperiodic) behavior
in deterministic systems. The test result is 0 or 1, depending on whether the dynamics is
regular or chaotic, respectively. This method has been successfully applied to some typical



10 Discrete Dynamics in Nature and Society

chaotic systems [37–44] and experiment data [45]. We apply this method to the DCML. From
another point of view, we show the existence of chaos in the DCML using the 0-1 test. Now,
we describe the implementation of the 0-1 test. The interested reader can consult [35] for
further details. Consider discrete data sets φ(n) sampled at times n = 1, 2, 3, . . . ,N, where N
is the total number of data points. φ(n) is an observable data from the underlying dynamic
system.

Step 1. For a random number c ∈ (π/5, 4π/5), define the translation variables

pc(n) =
n∑

j=1

φ
(
j
)
cos

(
jc

)
, qc(n) =

n∑

j=1

φ
(
j
)
sin

(
jc

)
. (3.19)

Step 2. Define the mean square displacement Mc(n) as follows:

Mc(n) = lim
N→∞

1
N

N∑

j=1

[
pc

(
j + n

) − pc
(
j
)]2 +

[
qc

(
j + n

) − qc
(
j
)]2

. (3.20)

Note that this definition requires n � N. In practice, n ≤ N/10 yields good results. Denote
ncut = round(N/10), where the function round(x) rounds the elements of x to the nearest
integers.

Step 3. Define the modified mean square displacement

Dc(n) = Mc(n) − Vosc(c, n), (3.21)

where Vosc(c, n) = (Eφ)2(1 − cosnc)/(1 − cos c) and Eφ = limN→∞(1/N)
∑N

j=1 φ(j).

Step 4. Form the vectors ξ = (1, 2, . . . , ncut) and Δ = (Dc(1), Dc(2), . . . , Dc(ncut)). Then define
the correlation coefficient

Kc = corr(ξ,Δ) ∈ [−1, 1]. (3.22)

Step 5. Steps 1–4 are performed for Nc values of c chosen randomly in the interval
(π/5, 4π/5). In practice, Nc = 100 is sufficient. We then compute the median of these Nc

values of Kc to compute the final result K = median(Kc). K ≈ 0 indicates regular dynamics,
and K ≈ 1 indicates chaotic dynamics.

Note that the (pc(n), qc(n))-trajectories provide a direct visual test of whether the
underlying dynamics is chaotic or nonchaotic. Namely, bounded trajectories in the (p, q)-
plane imply regular dynamics, whereas Brownian-like (unbounded) trajectories imply
chaotic dynamics [31, 32]. With the sufficient length of the time series, K ≤ 0.1 indicates
that the dynamics is regular and K > 0.1 indicates that the dynamics is chaotic [43].

Now, we apply the 0-1 test to the DCML (3.18). Fix N = 300, a = 1.8 and choose a
random initial point (x1(1), x1(2), . . . , x1(300)); we carry out the 0-1 test with ε = 0.03 and
ε = 0.12, respectively. Using the data set of x(111) in the system (3.18), we get K = 0.9981 at
ε = 0.03 and K = 0.0030 at ε = 0.12. The translation variables (p, q) are shown in Figures 3
and 4, respectively.
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Figure 3: Plot of p versus q for the DCML (3.18) with ε = 0.03. We used 30000 data points of x(111).
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Figure 4: Plot of p versus q for the DCML (3.18) with ε = 0.12. We used 30000 data points of x(111).

We take N = 300, a = 1.8 and let ε vary from 0.01 to 0.058 in increments of 0.01. It is
clear that the computed value of K is effective for most values of ε in Figure 5. These 0-1 test
results are consistent with numerical simulation in Section 3.2 and Theorem 3.3 in Section 3.1.
Here we stress that the test results (chaos or nonchaos) are independent of the choices of
initial point and changing the observable does not greatly alter the computed value of K.

4. Control Spatiotemporal Chaos

WhenN = 300, ε = 0.01, and a = 1.8, the system (3.18) displays chaotic dynamics. The DCML
(3.18) has an unstable equilibrium point X∗ = [(

√
4a + 1 − 1)/2a, . . . , (

√
4a + 1 − 1)/2a]T ≈

[0.5177, . . . , 0.5177]T . The goal of this section is to control spatiotemporal chaotic motions in
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Figure 5: Plot of K versus ε for the DCML (3.18) with ε ∈ (0.01, 0.058) increased in increments of 0.01. We
used 30000 data points of x(111).

the DCML (3.18) to the equilibrium point X∗ using delay feedback [46, 47]. We rewrite the
DCML (3.18) as

Xn+1(i) = F(Xn(i), Xn(i − 1), Xn(i + 1)), (4.1)

where Xn(i) = (xn(1), xn(2), . . . , xn(300))
T .

Theorem 4.1. With the local controllers Un(i) = α1[Xn−1(i) − F(Xn(i), Xn(i − 1), Xn(i + 1))],
the chaotic motion in the DCML (4.1) (i.e., (3.18)) can be controlled to the fixed point X∗, where
0.6407 < α1 < 1.

Proof. Since the local controllers are given by

Un(i) = α1[Xn−1(i) − F(Xn(i), Xn(i − 1), Xn(i + 1))], (4.2)

we get the controlled DCML:

Xn+1(i) = F(Xn(i), Xn(i − 1), Xn(i + 1)) +Un(i)

= (1 − α1)F(Xn(i), Xn(i − 1), Xn(i + 1)) + α1Xn−1(i),
(4.3)

where α1 ∈ (0.6407, 1). Expanding (4.3) around the fixed point X∗, we obtain

Xn+1 −X∗ =
∂F

∂Xn

∣∣∣∣
X∗
(Xn −X∗) +

∂F

∂Xn−1

∣∣∣∣
X∗
(Xn−1 −X∗). (4.4)
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Since xn(i) ≈ f[xn−1(i)], f(x) = 1 − ax2, and x∗ = (
√
4a + 1 − 1)/2a, we have xn(i) − x∗ =

∂f/∂xn−1|x∗(xn−1(i) − x∗). Thus, we get xn−1(i) − x∗ = (1/(∂f/∂xn−1|x∗))(xn(i) − x∗) and

Xn−1 −X∗ =
1

∂f/∂xn−1
∣∣
x∗
(Xn −X∗). (4.5)

Then, by using (4.4) and (4.5), we get

Xn+1 −X∗ =
∂F

∂Xn

∣∣∣∣
X∗
(Xn −X∗) +

∂F

∂Xn−1

∣∣∣∣
X∗

1
∂f/∂xn−1

∣∣
x∗
(Xn −X∗)

=

(
∂F

∂Xn

∣∣∣∣
X∗

+
1

∂f/∂xn−1
∣∣
x∗

∂F

∂Xn−1

∣∣∣∣
X∗

)

(Xn −X∗).
(4.6)

For the sake of simplicity, we denote J by ∂F/∂Xn|X∗ + (1/(∂f/∂xn−1|x∗))(∂F/∂Xn−1)|X∗ ; then

J =

⎛

⎜⎜⎜⎜⎜⎜
⎝

Λf ′(x(1)) 2Θf ′(x(2)) 0 · · · 0
Θf ′(x(1)) Λf ′(x(2)) Θf ′(x(3)) · · · 0

...
...

. . . . . .
...

0 . . . Θf ′(x(298)) Λf ′(x(299)) Θf ′(x(300))
0 · · · 0 2Θf ′(x(299)) Λf ′(x(300))

⎞

⎟⎟⎟⎟⎟⎟
⎠

+ J2, (4.7)

where

J2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1

f ′(x(1))
0 0 · · · 0

0
α1

f ′(x(2))
0 · · · 0

...
...

. . . . . .
...

0 . . . 0
α1

f ′(x(299))
0

0 · · · 0 0
α1

f ′(x(300))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.8)

Θ = (ε/2) − (εα1/2), Λ = 1 − ε − α1 + α1ε, and f ′(x(i)) = −2ax(i). With the Gershgorin circle
theorem (Lemma 3.2), we get

∣∣∣∣λi −
[
(1 − α1)(1 − ε)f ′(x(i)) +

α1

f ′(x(i))

]∣∣∣∣ < (1 − α1)εf ′(x(i)), (4.9)

that is,

(1 − α1)f ′(x(i)) − 2ε(1 − α1)f ′(x(i)) +
α1

f ′(x(i))
< λi < (1 − α1)f ′(x(i)) +

α1

f ′(x(i))
. (4.10)

Solving inequality (4.10), we obtain −1.8263 + 1.2897α1 < λi < −1.8636 + 1.3270α1. Since
0.6407 < α1 < 1, we get |λi| < 1. The proof is completed.
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Figure 6: The control result of the DCML (3.18), with the parameter values a = 1.8, ε = 0.01, and α1 = 0.85.
The feedback control starts at the 71st iteration.

The simulation result is shown in Figure 6. Chaotic motions are quickly controlled to
the fixed point X∗ ≈ [0.5177, . . . , 0.5177]T .

Remark 4.2. In the process of proving Theorems 3.3 and 4.1, we only need to know that
eigenvalues are greater (or less) than one in absolute and it is not necessary to compute
explicitly the eigenvalues. These ideas avoid difficulties in calculating eigenvalues in higher-
dimension DCMLs using the Gershgorin circle theorem.

5. Conclusion

With the Marotto theorem and the Gershgorin circle theorem, we have theoretically analyzed
the chaos in the DCML with open boundary conditions, which presents a theoretical
foundation for chaos analysis of the DCML. What is more is that the 0-1 test further confirms
the existence of chaos and we control spatiotemporal chaotic motions in the DCML to
period-1 orbits. Stability analysis is presented. The results of simulations are consistent with
theoretical analysis. We wish to emphasize that the methods of this paper can be used in all
those cases where the eigenvalues of Jacobi matrix are difficult to calculate in CMLs.
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