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Based on a predator-prey differential system with continuously distributed delays, we derive
a corresponding difference version by using the method of a discretization technique. A good
understanding of permanence of system and global attractivity of positive solutions of system is
gained. An example and its numerical simulations are presented to substantiate our theoretical
results.

1. Introduction

It is well known that the classical Lotka-Volterra differential equations for predator-prey
interaction can be written as

x' () = x(t)[a - bx(t) - cy(t)],

(1.1)
Y (t) =yt [-d +px(t) - qy(t)],

where x(0) > 0, y(0) > 0, x(¢), and y(t) are the population densities of prey and predator,
respectively, at time ¢, and the coefficients a, b, ¢, d, p, q are positive constants. a is the intrinsic
growth rate of prey species, and d represents the death rate of predator species; b, g and ¢, p,
denote their self-inhibition and interaction rates, respectively. To account for time lag effects
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in their interaction, Cushing [1] suggested visualizing system (1.1) as a special case of the
following more general system

X (t) = x(t) [a - fo x(t - 0)dl; (0) - fo y(t- Q)dlz(e)],
(1.2)

y' () =y

—d+ Lw x(t - 0)dl;(0) - Lw y(t— 6)dl4(6)],

where [;(0) are nondecreasing functions on [0, +o0) with fg “dl;(0) < +oo foreachi=1,...,4,
and with limg_, ¢ [1;(0) — ;(0)], respectively, equal to b,c,p,q fori=1,...,4.

As Hale [2] pointed out, one expects that the lag effects tend to diminish gradually
in ever-moderating pace as one moves backward in time after the initial instantaneous effect
described by the assumption limg _, o+ [[;(6) —1;(0)] > 0. The effects are negligible after a certain
length of time 7 > 0. Mathematically, for 6 > 0, it is reasonable that dl;(8) can be assumed to
be of the form dl;(0) = k;(0)d0,i=1,...,4, where

(S1) ki(s) > 0 and continuous for s € [0, 7]; k;(s) =0 for s € [T, +0];
(S2) ki(s) < 0and continuous for s € (0, 7); lim, o+ kj(s) and lim,_. - k}(s) both exist;
(S3) ki(s) > 0 and continuous for s € (0, 7).
The assumption (S;) represents gradual diminishing effect as one moves backward in time,
and the assumption (S3) stands for the moderating pace of the decrease (see [2] or [3] for

the assumptions (S1) to (S3)). Leung [4] revised system (1.2) and established the following
predator-prey model with continuously distributed delays

x'(t) = x(t) [a —bx(t) —cy(t) - JZ ki(s)x(t—s)ds — Jj ka(s)y(t - s)ds] ,
(1.3)

T

—d +px(t) - qy(t) + f

k3(s)x(t — s)ds — Jq ka(s)y(t - s)ds] .
0 0

y' () =y

The parameters of system (1.3) are assumed to be constant; however, in the real world the
parameters are not fixed constants owing to the variation of environment. The effect of a var-
ying environment is significant for evolutionary theory as the selective forces on systems in
a fluctuating environment differ from those in a stable environment. Thus, it is realistic to
assume that the parameters of system (1.3) are continuous functions with respect to ¢, and
then we obtain the following form:

X (1) = x(0)[at) - b(O)x(0) - cOY(0) - [ K@xt-9ds - [ Ty s)ds]
(1.4)

y' ) =y(t) [—d(t) +pt)x(t) —gt)y(t) + L k3 (s)x(t —s)ds — Jo ki(s)y(t - s)ds] ,

where the coefficients a(t),b(t), c(t),d(t), p(t), q(t) are positive continuous functions and
ki(s)ds satisfy [j ki(s)ds =1fori=1,...,4.
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Although much progress on the predator-prey models with discrete or distributed
delays has been made, such models are not sufficiently researched in the sense that most
results are continuous time versions related (see [5-13]). Many authors have argued that the
discrete time models governed by difference equations are more appropriate than the contin-
uous time ones when populations have a short life expectancy, nonoverlapping generations in
the real world (see [14-18]). Meanwhile, discrete time models can provide efficient computa-
tional models of continuous time models for numerical simulations. To the best of our knowl-
edge, no such work has been done for the corresponding discrete version of system (1.4).

In the following, we employ the discretization technique to derive the discrete version
of system (1.4). Throughout this paper, let Z, Z* and R? denote the sets of all integers, non-
negative integers, and two-dimensional vector space, respectively. We begin to approximate
the continuous time system by replacing the integral term with discrete sums of the form

JZ ki(s)x(t-s)ds = B%_(}h( [%] h)x( [%] h- [%] h)w(h) (1.5)

fort € [nh,(n+1)h),s € [rh,(r + 1)h), n,r € Z*,i = 1,...,4, where [-] denotes the greatest
integer function. M = [7/h], w(h) = h + O(h) for h > 0, where the fixed number h denotes
an uniform discretization step size. We approximate system (1.4) by differential equations
with piecewise constant arguments of the form

<=0 o i) () C(i])-<(GeC )
Rt (A I DI (HD(RIR DY
y’(t)=y(t)[—d<[% n)+p( )

= -

IOR(EDR(HRN
R (DG HDE R (BD (B HON

fort € [nh,(n+ 1)h), s € [rh,(r + 1)h), n,r € Z*. Noting that [t/h] = n, [s/h] = r, we
integrate (1.6) over [nh,t), where t < (n + 1)h, then (1.6) can be reformulated as

x'(t) = x(t) [a(nh)—b(nh)x(nh)— c(nh)y(nh) —fkl (rh)x(nh - rh)h—ﬁkz(rh)y(nh—rh)h]
r=0 r=0

y'(t) = y(t) [—d(nh)+p(nh)x(nh)—q(nh)y(nh)+§k3(rh)x(nh —rh)h —ﬁk;; (rh)y(nh—rh)h].
r=0 r=0
(1.7)
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Denoting x(n) = x(nh), y(n) = y(nh), a(n) = a(nh), b(n) = b(nh), c(n) = c(nh),d(n) = d(nh),
p(n) = p(nh), q(n) = q(nh), ki(r) = ki(rh)h,i=1,...,4, then we have

M M
x(t) = x(n) eXP{ [a(n) -b(n)x(n) — c(n)y(n) —Zkl(r)x(n -7) —Zkz(r)y(n _ r)] (t - nh) },
r=0 r=0

M M

y(t) = y(n) eXp{ [—d<n>+ p(n)x(n) —q(m)y(n) + S ks(r)x(n—r) = Sha(r)y(n - r>] (t- nh)}.
r=0 r=0

(1.8)

Setting t — (n +1)h in (1.8) and simplifying, we get a discrete time analogue of continuous
time system (1.4) with the form

M M
x(n+1)=x(n) exp{u(n) -b(n)x(n) - c(n)y(n) - Zkl(r)x(n -r) - Zkz(r)y(n - r)}
r=0 r=0

M M
y(n+1)=y(n) exp{—d(n) +pn)x(n) —g(n)y(n) + Zk3(r)x(n -r)— Zk4(r)y(n - r)}.
r=0 r=0
(1.9)

Our main purpose of this paper is to derive a set of easily verifiable sufficient conditions
concerning the permanence and global attractivity of system (1.9). For convenience, we
introduce the following definitions and notations.

Definition 1.1. It is said that system (1.9) is permanent if there exist positive constants m;, M;,
i = 1,2 and any positive solution {(x(n), y(n))T} of system (1.9) satisfies

my <lim inf x(n) <lim sup x(n) < M;,
n— +oo 71— +00

(1.10)
my <lim inf y(n) <lim sup y(n) < Mo.

n—+oo n— +00

Definition 1.2. A positive solution {(x(n),y(n))T} of system (1.9) is global attractive if each
other positive solution {(x*(n), y*(n))T} of system (1.9) satisfies

nlin+n |x(n) — x*(n)| =0, nlir{l ly(n) - y*(n)| =0. (1.11)

Let f(n) be a bounded sequence; we denote

fe=sup{f(m)},  f'=inf{f(m)}. (1.12)

nez+ nez*

Meanwhile, we make a convention that [T"=% f(n) = 1 for all m > k.

This paper proceeds as follows. System (1.9) is analyzed to study the permanence and
global attractivity of system (1.9) in the next two sections, respectively. In the final section, we
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give an example, and its numerical simulations are presented to substantiate our theoretical
results.

2. Permanence of System (1.9)

In this section, we devote to investigating the permanence of system (1.9). To do so, we
introduce the following lemmas.

Lemma 2.1 (see [19]). Assume that {x(n)} satisfies x(n) > 0 and

x(n+1) <x(n)exp [r(n)(1-ax(n))] (2.1)
for n € [ny,+o0), where a is a positive constant and ny € Z*. Then
lim sup x(n) < 1 exp(r* - 1). (2.2)
n—+o0 ~oart

Lemma 2.2 (see [19]). Assume that {x(n)} satisfies x(n) > 0 and

x(n+1) > x(n)exp[r(n)(1-ax(n))] (2.3)

for n € [ny,+0), limsup, . x(n) < H and x(ny) > 0, where a is a positive constant such that
aH > 1and ny, € Z*. Then

lim infx(n) > % exp[r*(1-aH)]. (2.4)

n—+oo
For the simplicity of description, we denote

AS = —d'+ [p" + (M + 1KY (M +¢),
As=a —c"(My+e) = (M+1)[K4 (M +¢) + ki (M, +¢)],
£ u 1 1 u (25)
AS = —d" +p(my —€) + (M + 1)[k3(m1 . e +g)],
Aj = limA¢, i=1,2,3,
e—0
where M, M,, my are, respectively, defined in (2.8) and (2.11)—(2.14) and ¢ is a sufficient

small positive constant. Now, we begin to search the conditions for the permanence of (1.9).

Theorem 2.3. If the conditions

min{A;, i=1,2,3} >0 (2.6)

hold, then (1.9) is permanent.
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Proof. 1t is easy to verify that Q = {(x(n),y(n))T | x(n) >0, y(n) > 0} is a positive invariant

set of (1.9) with x(0) > 0, y(0) > 0. Suppose that {(x(n),y(n))T} is any positive solution of
(1.9), we prove Theorem 2.3 by the following two steps.

Step 1. We show that {(x(n), y(n))T} is uniformly ultimately upper bounded.
From the first equation of (1.9), we have

x(n+1) < x(n)expla(n) - b(n)x(n)] < x(n) exp{a(n) [1 - :—ix(n):l } (2.7)

Applying Lemma 2.1, we can obtain that

1) do
lim sup x(n) < M def M;. (2.8)

n—+0o bl
From (2.8), there exists a sufficient large n; € Z* and any constant € > 0 such that

x(n) < My+¢, n>n. (2.9)
It follows from the second equation of (1.9) that

y(n+1) <y(n) exp{—d’ + [p*+ (M + 1)k (M1 +¢€) - qu(n)}

! (2.10)
= y(m) exp{Ai [l - %y(n)] }
1

So by Lemma 2.1 and letting ¢ — 0in (2.10), we have

lim supy(n) <

n—+oo

A -1
Lll) 4f M. (2.11)

Step 2. We prove that {(x(n), y(n))T} is uniformly ultimately lower bounded.

For any sufficient small € > 0, it follows from (2.6) that A5 > 0. According to (2.11),
there exists an 1y > n; such that y(n) < M, + € for n > ny and the above constant ¢. By the
first equation of (1.9), it gives that

x(n+1) > x(n) exp{ a = c“(My + ) — (M + 1) [K“(M; + £) + k(M + )] - b”x(n)}

=x(n) exp{Ag [1 - Z—Ex(n)] }
(2.12)

Note that

b b* exp(a*-1) _b*exp(a“—-1) exp(a“-1)
I - >
T Y

(2.13)
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where we employ the inequality result that exp(x — 1) > x for x > 0. Therefore, applying
Lemma 2.2 and setting ¢ — 0, one has

lim inf x(n) > % exp [Az (1 - A_Ml>] def m. (2.14)
n— +oo 2

For the above constant £ > 0, it follows from (2.14) that there exists a sufficient large n} € Z*
such that

x(n) >my—¢, n>nj. (2.15)

From the second equation of (1.9), we have

y(n+1)>y(n) exp{—d” + pl(m1 —e)+(M+1) [ké(m1 —€)—kj(M,+ 5)] - q”y(n)}

=y(n) eXP{ A3 [1 - %y(n)] }
3

(2.16)
Clearly,
u u qlexp{—d”+[pl+(M+1)kl]m1—1}
9 g, = TP -D) ° > 1. (2.17)
A3 A3 q [—d“ + <pl +(M+ 1)k13>m1]q1
Thus, applying Lemma 2.2 and letting ¢ — 0, one has
lim inf y(n) > A exp [Ag <1 - q—M2>] det my. (2.18)
n—+00 q Az

Based on the above Step 1 with Step 2, we can see that system (1.9) is permanent. This com-
pletes the proof of Theorem 2.3. O

3. Global Attractivity of Positive Solutions of System (1.9)
In this section, we investigate the global attractivity of positive solutions of system (1.9).
Theorem 3.1. Assume that there exists a positive constant 1 such that

min{bl,Mi - b“} —(M+1)(k + k) —p* 21,

1
(3.1)

min{ql,NIi —q"} - (M+1)(ky+kj)-c">7
2

hold. Then any positive solution {(x(n), y(n))T} of system (1.9) is global attractive.
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Proof. Denote {(x*(n),y* (n))"} be any other positive solution of system (1.9). Let Vy1(n) =
|Inx(n) — In x*(n)|, then it follows from the first equation of (1.9) that

Viin+1)=|Inx(n+1) -Inx*(n+1)|
< |In x(n) —In x*(n) - b(n) (x(n) - x*(n))|
+c(n)|y(n) - y* (n)]

M (3.2)

+ D ki(r)|x(n—r) - x*(n-r)|
r=0
M

+ Zkz(r)|y(n -r) -y (n-r)].
r=0

By the Mean Value theorem, we get
In x(n) - Inx*(n) = ——(x(n) — x*(n)), (3.3)

9()

where 0 (n) lies between x(n) and x*(n). Then we have

[Inx(n) — Inx*(n) — b(n)(x(n) — x*(n))|

=|Inx(n) —Inx*(n)| - |Inx(n) — Inx*(n)| + |Inx(n) — Inx*(n) — b(n)(x(n) — x*(n))|

7 (x(n) = x*(n)) - b(n) (x(n) - x*(n))

=|Inx(n) —Inx*(n)| - ——|x(n) - x*(n)| +

9() 9()

* 1 1 *
= lInx(n) - Inx*(n)]| - (m 5~ b )|x<n) X ().
(3.4)
Combining (3.2) with (3.4), we have
AVii(n) = Vii(n+1) = Vii(n)
1 1 * *
< ‘(M |6 ~ b )|x(n> =3 ()] + cm)|y(m) - y* ()] .
S — ) - x* (=1 + Zkzmly(n -y (n-1).
r=0
Next, we let
M n-1 M n-1
Ve =S S k) - @1+ S S ka(n)|y(s) -y (6)|- (3.6)

r=0 s=n-r r=0 s=n-r
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Then we have

AVlz(n) = Vlz(n + 1) - V12 (1’[)
M n
= > k1(r)IX(S) x*(s)| —Z Z ki(r)|x(s) - x*(s)]
r=0 s=n+1- r=0 s=n-r
M n M n-1
+>, Z ka(M)]y(s) =y ()| = >, D ka(M]y(s) - y*(s)]
r=0 s=n+1- r=0 s=n-r
M  n-1
=> k1(r)IX(S) x*(s)| +Zk1(T)IX(n) x*(n)|
r=0 s=n+1-
M  n-
-, Z ki(r)|x(s) - x*(s)| - Zkl(r)lx(n r)-x'(n-r)]
r=0 s=n+1-
M  n-1
D F@lye) -y G+ Zb(r)ly(n) y' ()]
r=0 s=n+1—
M n-1
-, kz(r)ly(S)—y*(S)I —Zkz(r)ly(n—r)—y*(n—r)l
r=0 s=n+1- r=0
M
= > ki(n)lx(n) - x*(n)] - Zkl(r)IX(n r)—x*(n—r)|
r=0
+ Zkz(r)ly(n) ~y (n)| - Zkz(r)ly(n -r) -y (n-r)|
r=0 r=0
We set

Vi(n) = Vi1 (n) + Via(n),

then it follows from (3.5) and (3.7) that

AVi(n) =

s—<

i(n)

AVH (Tl) + AV12(TI)

1 1

01 (n)

~b(n)

M
zkl(r)> () - x* ()]
r=0

M
' (C(n) + ZkZ(T)> ly(n) - y*(m)].
r=0

Similarly, we define

Va(n) = Vor(n) + Vo (n),

(3.7)

(3.8)

(3.9)

(3.10)
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where

-1

3

M
Vor(n) = D0 D ka(r)|x(s) - x*(s)]
r=0 s=n-r
M n-l 3.11
35 kv -y ol o
r=0s=n-r
Voo (n) = |Iny(n) — Iny*(n)|.
Then we have
AVoi(n) = Vor(n+ 1) = Vi (n)
n M
= Z k3(T)|X(S x*(s) - D, Z ks (r)|x(s) — x*(s)|
+1- r=0 s=n-r
M n M n-1
+Z Z k4(r)|y(5)—y*(S)|—Z > ka(r)|y(s) - y* (s)]
r=0 s=n+ r=0 s=n-r
M n-1 M
=> ks(r)|x(s) — x*(s)| + D ka(r)|x(n) — x*(n)|
r=0 s=n+1-r r=0
M n-1 M
- ks(r)|x(s) = x*(s)| - Zk3(r)|x(n —-r)—x"(n-r)]
r=0 s=n+1-r r=0
n-1
+ Z ka(r)|y(s) -y (s)] + Zk4(r)|y n) -y (n)]
(3.12)

Me 1Mz
i

4(r>|y<s> y(s)|—2k4<r>|y<n r) -y (n-r)|

<
Il

o
H

S=

N

+

M=

ks (r)]x(n) — x™(n)| - st(T)IX(n -r) - x'(n-r)]

r=0

<
Il
[==}

i M
+ D ka(r)|y(n) - y* ()| = Dlka(r)|y(n—1) —y*(n-71)],
r=0 r=0

AVy(n) = Vor(n+1) = Vo (n)

_<921”)

M M
+ > ks(P)lx(n—r) —x*(n—1)|+ D ka(r)|[y(n—1) = y*(n—71)|,
r=0 r=0

IN

-q(n)

Vo) =" ()] + p(n) = ()

92(”)



Discrete Dynamics in Nature and Society 11

where 6,(n) is between y(n) and y*(n). Consequently, one has

AVy(n) = AVai(n) + AV (n)

— 1 —
02(n)

M
+ <P(n) + Zka(r)> |x(n) - x*(n)].

r=0

1 S *
G _q(n)' _§k4(r)>|y(n) -~y ()] (3.13)

Now, we consider a Lyapunov-like discrete function V (n) defined by
V(n) = Vi(n) + Vo(n). (3.14)

According to (2.8) and (2.11), there exists an n* € Z* such that x(n) < Mi+¢, y(n) < My +¢ for
n > n* and any positive constant €. Obviously, V(n) > 0 foralln € Z* and V(n* + M) < +c0.
In view of (3.1), we choose a sufficient small £ > 0 such that

min{bl, M2+£ - b”} — (M +1) (K +k3) —p" 21,
! (3.15)
min{ql,M s ”}—(M+1)(k;‘+kfl‘)—c”211.
Therefore, combining (3.9) with (3.13) for all n > n* + M, we obtain
AV (n) = AVi(n) + AV, (n)
1 1 M M
_<_61(n) NE) —b(n) g)kl(r)—g)ka(r)—r’(n)>|x(n)—x ()]
(g~ g —a ka = Stk et Y (o) - )|
02(n) | 02(n) =0 (3.16)

< —(min{b’, M12+ - - b”} — (M +1) (kI + kY) —p”)lx(n) - x*(n)|

—(min{ql, M22+£—q”}—(M+1 (ky + k) - )|y(n) vy (n)|
< —n(lx(n) = x* ()| + |y(n) - y* (n)]).

Summing both sides of (3.16) from n* + M to n, it derives that

DAV = 3 (Vs+D)=V(s) <1 3, (Ix(s) - x"G)+ |y(s) -y ()]),  (317)
s=n*+M

s=n*+M s=n*+M
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Figure 1: Permanence of (1.9) with {(x(-1),y(-1))"} = {(1.0,0.29)"} and {(x(0),y(0))"} = {(0.95,0.3)"}.
(a) Time series of x for n € [0,40]. (b) Time series of y for n € [0,40].

which implies that

Vin+1)+7 zn: (Ix(s) = x*(s)| + |y (s) —y*(s)|) < V(n*+ M), forany n>n*+M,

s=n*+M
too Vin*+ M
S () - x )]+ [y -y m)]) < LM oy,
n=n*+M Tl
(3.18)
from which we conclude that
Tim (Jx(n) = x*(m)| + |y(m) = y*(m)]) =0, (3.19)
that is,
lim [x(n) - x"()] =0, lim |y(n) -y ()] = 0. (320)

According to Definition 1.2, this result implies that {(x(n), y(n))T} is global attractive. The
proof is complete. O

4. An Example and Its Numerical Simulations

In this paper, we have investigated the asymptotic behaviors of a delayed nonautonomous
predator-prey difference system. Sufficient conditions which guarantee the permanence of
system and global attractivity of positive solutions of system are obtained, respectively. The
theoretical results are substantiated by the following example and numerical results.
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Figure 2: Dynamic behaviors of (1.9) with different initial values. (al) and (a2) show x*, x with x*(-1) =
1.06, x*(0) = 1.0, x(-1) = 1.04, x(0) = 1.03 for k € [0,800] and k € [700,720], respectively. (b1) and (b2)
show y*, y with y*(-1) = 0.32, y*(0) = 0.315, y(-1) = 0.315, y(0) = 0.31 for k € [0,800] and k € [700,720],

respectively.

Example 4.1. Consider the following system:

x(n+1) = x(n) exp{0.5 +0.01sin n — (0.38 + 0.02 sin n)x(n) — (0.02 + 0.01 sin n)y(n)
-0.024[x(n) + x(n - 1)] = 0.001[y(n) + y(n-1)] },

y(n+1) = y(n) exp{-0.015 — 0.005sin 7 + (0.26 + 0.03 sin n)x(n) — (0.97 + 0.02 sin n)y(n)
+0.01[x(n) + x(n—1)] - 0.02[y(n) + y(n—1)] }.

Obviously,

A1 =0.5175> 0,

Ay = 0.3875 > 0,

(4.1)

As =~ 0.1347 > 0. (4.2)
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It is easy to verify that the assumptions of Theorem 2.3 are satisfied, so system (4.1) is perma-
nent (see Figure 1). Furthermore, a calculation shows that

min{b’, Mi - b”} — (M +1) (K" + k*) - p* = 0.0020 > 0.001,
1
(4.3)

min{q’, Mi - q”} — (M +1) (k¥ + kK¥) - ¢* = 0.8780 > 0.001.
2

According to Theorem 3.1, any positive solution {(x(n),y(n))"} of system (4.1) is global
attractive (see Figure 2). From Figures 2(al) and 2(a2), we see that x with x(0) = 1.03 tends
to x* with x*(0) = 1.0. Similarly, from Figures 2(b1) and 2(b2), we see that y with y(0) = 0.31
tends to y* with y*(0) = 0.315.

Acknowledgments

This work is supported by the Key Project of Chinese Ministry of Education (no. 210134),
the Innovation Term of Educational Department of Hubei Province of China (no. T200804),
and the Project of Key Laboratory of Biological Resources Protection and Utilization of Hubei
Province. The authors would like to thank the anonymous referees for their helpful comments
which improved the presentation of this work.

References

[1] J. M. Cushing, “Periodic solutions of two species interaction models with lags,” Mathematical Bioscien-
ces, vol. 31, no. 1-2, pp. 143-156, 1976.

[2] J. K. Hale, Functional Differential Equations, Springer, New York, NY, USA, 1971.

[3] J.J. Levin and J. A. Nohel, “On a nonlinear delay equation,” Journal of Mathematical Analysis and Appli-
cations, vol. 8, pp. 31-44, 1964.

[4] A.Leung, “Conditions for global stability concerning a prey-predator model with delay effects,” SI-
AM Journal on Applied Mathematics, vol. 36, no. 2, pp. 281-286, 1979.

[5] S.Q.Liu, E. Beretta, and D. Breda, “Predator-prey model of Beddington-DeAngelis type with matura-
tion and gestation delays,” Nonlinear Analysis. Real World Applications, vol. 11, no. 5, pp. 4072—4091,
2010.

[6] W. Zuo and J. Wei, “Stability and Hopf bifurcation in a diffusive predatory-prey system with delay
effect,” Nonlinear Analysis. Real World Applications, vol. 12, no. 4, pp. 1998-2011, 2011.

[7] Z.]. Liu, R. H. Tan, and L. S. Chen, “Global stability in a periodic delayed predator-prey system,”
Applied Mathematics and Computation, vol. 186, no. 1, pp. 389-403, 2007.

[8] C.-H. Zhang, X.-P. Yan, and G.-H. Cui, “Hopf bifurcations in a predator-prey system with a discrete
delay and a distributed delay,” Nonlinear Analysis. Real World Applications, vol. 11, no. 5, pp. 41414153,
2010.

[9] Z. Luo, B. Dai, and Q. Zhang, “Existence of positive periodic solutions for an impulsive semi-ratio-
dependent predator-prey model with dispersion and time delays,” Applied Mathematics and Computa-
tion, vol. 215, no. 9, pp. 3390-3398, 2010.

[10] Z.-P. Ma, H.-F. Huo, and C.-Y. Liu, “Stability and Hopf bifurcation analysis on a predator-prey model
with discrete and distributed delays,” Nonlinear Analysis. Real World Applications, vol. 10, no. 2, pp.
1160-1172, 2009.

[11] L. Chen and F. Chen, “Dynamic behaviors of the periodic predator-prey system with distributed time
delays and impulsive effect,” Nonlinear Analysis. Real World Applications, vol. 12, no. 4, pp. 24672473,
2011.

[12] W. Yan and J. R. Yan, “Periodicity and asymptotic stability of a predator-prey system with infinite
delays,” Computers & Mathematics with Applications, vol. 60, no. 5, pp. 1465-1472, 2010.



Discrete Dynamics in Nature and Society 15

[13] X. X. Liu, “A note on the existence of periodic solutions in discrete predator-prey models,” Applied
Mathematical Modelling, vol. 34, no. 9, pp. 2477-2483, 2010.

[14] R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Application, Marcel Dekker,
New York, NY, USA, 2000.

[15] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York,
NY, USA, 1980.

[16] W. Qin and Z. Liu, “Asymptotic behaviors of a delay difference system of plankton allelopathy,”
Journal of Mathematical Chemistry, vol. 48, no. 3, pp. 653675, 2010.

[17] W.].Qin, Z.]. Liu, and Y. P. Chen, “Permanence and global stability of positive solutions of a discrete
competitive system,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 830537, 13 pages,
2009.

[18] J. D. Murray, Mathematical Biology, vol. 19, Springer, Berlin, Germany, 1989.

[19] X. T. Yang, “Uniform persistence and periodic solutions for a discrete predator-prey system with de-
lays,” Journal of Mathematical Analysis and Applications, vol. 316, no. 1, pp. 161-177, 2006.



Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




