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By considering Melham’s sums (Melham, 2004), we compute various more general nonalternating

sums, alternating sums, and sums that alternate according to (−1)
(
n+1
2

)
involving the generalized

Fibonacci and Lucas numbers.

1. Introduction

Let a, b, and p be assumed to be arbitrary nonzero complex numbers with p(p2+2)(p2+4)/= 0.
Define second-order linear recursion {Wn} by

Wn = pWn−1 +Wn−2, (1.1)

withW0 = a,W1 = b for all integers n. Since Δ = p2 + 4/= 0, the roots α and β of x2 − px − 1 = 0
are distinct.

Also define the sequence {Xn} via the terms of sequence {Wn} as Xn = Wn+1 +Wn−1.
The Binet formulas for the sequences {Wn} and {Xn} are

Wn =
Aαn − Bβn

α − β
, Xn = Aαn + Bβn, (1.2)

where A = b − aβ and B = b − aα.
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For a = 0, b = 1, we denoteWn = Un and soXn = Vn, respectively. When p = 1,Un = Fn

(nth Fibonacci number) and Vn = Ln (nth Lucas number).
Inspired by the well-known identity

j∑
n=1

F2
n = FjFj+1, (1.3)

Clary and Hemenway [1] obtained factored closed-form expressions for all sums of the form∑j

n=1 F
3
mn, where m is an integer. Motivated by the results in [1], Melham [2] computed

all sums of the form
∑j

n=1 (−1)nF4
mn and

∑j

n=1 (−1)nL4
mn. In [3], Melham computed various

nonalternating sums, alternating sums, and sums that alternate according to (−1)
(
n+1
2

)
for

sequences {Wn} and {Xn}. The author gathers his sums in three sets. Here we recall one
example from each set for the reader’s convenience:

j∑
n=i

Wn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
p
V(j−i+1)/2

(
W(j+i+1)/2 +W(j+i−1)/2

)
if j − i ≡ 1 (mod 4),

1
p
U(j−i+1)/2

(
X(j+i+1)/2 +X(j+i−1)/2

)
if j − i ≡ 3 (mod 4),

4j+3∑
n=4i

(−1)
(
n+1
2

)
W2n =

p

Δ − 2
U4j−4i+4X4j+4i+3,

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
UnXn =

p

Δ − 2
V4j−4i+5W4j+4i+3 + 2W0.

(1.4)

We refer to [4] for general expansion formulas for sums of powers of Fibonacci and
Lucas numbers, as considered by Melham, as well as some extensions such that

n∑
k=0

F2m+ε
2k+δ ,

n∑
k=0

L2m+ε
2k+δ , (1.5)

where δ, ε ∈ {0, 1}.
For alternating analogues of the results given by Prodinger, that is,

n∑
k=0

(−1)kF2m+ε
2k+δ ,

n∑
k=0

(−1)kL2m+ε
2k+δ , (1.6)

we refer to [5].
Hendel [6] gave the factorization theorem which exhibits factorizations of sums of the

form
∑n+i−1

j=i Faj−b. The author also introduced a unified proof method based on formulae for
the factorizations of Fq−d + Fq+d.
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In [7], Curtin et al. derived formulae for the shifted summations

d−1∑
j=0

Fn+jFm+j,

d−1∑
j=0

Ln+jLm+j ,
d−1∑
j=0

Fn+jLm+j , (1.7)

and the shifted convolutions

d−1∑
j=0

Fn+jFd−m−j ,
d−1∑
j=0

Ln+jLd−m−j ,
d−1∑
j=0

Fn+jLd−m−j (1.8)

for positive integers d and arbitrary integers n and m.
In this paper, our main purpose is to consider Melham’s sums involving double

products of terms of {Wn},{Xn},{Un}, and {Vn} given in [3] and then compute several
more general nonalternating sums, alternating sums, and sums that alternate according to

(−1)
(
n+1
2

)
.

2. Certain Finite Sums of Double Products of Terms

In this section, we will investigate certain sums consisting of products of at most two terms of

{Wn}: nonalternating sums, alternating sums and sums that alternate according to (−1)
(
n+1
2

)
.

From the Binet forms of {Wn} and {Xn}, we give the following lemma for further use without
proof.

Lemma 2.1. Let a, b, and p be as in Section 1, and let r = aW2 − bW1. Then for all integers k,

b2U2k + 2abU2k−1 + a2U2k−2 = WkXk,

b2U2k+1 + 2abU2k + a2U2k−1 = Wk+1Xk + (−1)kr,

b2V2k + 2abV2k−1 + a2V2k−2 = X2
k + (−1)k2r,

b2V2k+1 + 2abV2k + a2V2k−1 = XkXk+1 + (−1)kpr.

(2.1)

Theorem 2.2. Fix integers c, d, and m.

(i) Ifm is even, then for all integers j > i,

j∑
n=i

Umn+cWmn+d =
Um(j−i+1)Xm(j+i)+c+d

ΔUm
− (−1)c(j − i + 1

)
Xd−c

Δ
. (2.2)
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(i) Ifm is odd, then for all integers j > i,

j∑
n=i

Umn+cWmn+d =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Um(j−i+1)Wm(j+i)+c+d

Vm
if j − i ≡ 1 (mod 2),

Vm(j−i+1)Xm(j+i)+c+d

ΔVm
− (−1)c+jXd−c

Δ
if j − i ≡ 0 (mod2).

(2.3)

Proof. Using the Binet formulas, we compute

j∑
n=i

Umn+cWmn+d =
j∑

n=i

(
αmn+c − βmn+c

α − β

)(
Aαmn+d − Bβmn+d

α − β

)

=
1

(
α − β

)2
j∑

n=i

(
Aα2mn+c+d + Bβ2mn+c+d

)
− (−1)mn+c

(
α − β

)2
(
Aαd−c + Bβd−c

)

=
1
Δ

j∑
n=i

X2mn+c+d − (−1)c
Δ

Xd−c
j∑

n=i
(−1)mn.

(2.4)

Since Xn = Wn−1 +Wn+1, we can obtain that for even m

j∑
n=i

X2mn+t =
Um(j−i+1)Xm(j+i)+t

Um
. (2.5)

The result follows.

For example, when i = 2, m = 3, a = 0, b = c = p = 1, and d = 5, we obtain

j∑
n=2

F3n+1F3n+5 =
F3(j−1)F3j+4

4
. (2.6)

Theorem 2.3. Fix integers c, d, and m. Let S =
∑j

n=i(−1)
n
Umn+cWmn+d.

(1) Ifm is odd, then S equals

S =
(−1)jUm(j−i+1)Xm(j+i)+c+d

ΔUm
− (−1)c(j − i + 1

)
Xd−c

Δ
. (2.7)

(2) Ifm is odd and the parities of i and j are the same, then S equals

(−1)jVm(j−i+1)Xm(j+i)+c+d

ΔVm
−

(
(−1)j + (−1)i

)
(−1)cXd−c

2Δ
. (2.8)



Discrete Dynamics in Nature and Society 5

(3) Ifm is odd and the parities of i and j are the different, then S equals

(−1)jUm(j−i+1)Wm(j+i)+c+d

Vm
−

(
(−1)j + (−1)i

)
(−1)cXd−c

2
. (2.9)

Proof. Consider

j∑
n=i

(−1)nUmn+cWmn+d =
j∑

n=i

(
αmn+c − βmn+c

α − β

)(
Aαmn+d − Bβmn+d

α − β

)

=
1

(
α − β

)2
j∑

n=i
(−1)n

(
Aα2mn+c+d+Bβ2mn+c+d

)
− (−1)mn+c

(
α − β

)2
(
Aαd−c+Bβd−c

)

=
1
Δ

j∑
n=i

(−1)nX2mn+c+d − 1
Δ
Xd−c

j∑
n=i

(−1)(m+1)n+c.

(2.10)

Since Xn = Wn−1 +Wn+1, for odd m, we find

j∑
n=i

(−1)nX2mn+c =
(−1)jUm(j−i+1)Xm(i+j)+c

Um
. (2.11)

The result is now obtained by considering the values of
∑j

n=i (−1)(m+1)n+c.

Theorem 2.4. Fix integers c, d, and m. For all integers j > i,

4j∑
n=4i+1

(−1)
(
n+1
2

)
Umn+cWmn+d =

U4m(j−i)
V2m

⎧
⎪⎨
⎪⎩

VmWs+m if m is even,

UmXs+m if m is odd,
(2.12)

4j+3∑
n=4i

(−1)
(
n+1
2

)
Umn+cWmn+d

=
U4m(j−i+1)

V2m

⎧
⎪⎨
⎪⎩

UmXs+3m if m is even,

VmWs+3m if m is odd,



6 Discrete Dynamics in Nature and Society

4j∑
n=4i+3

(−1)
(
n+1
2

)
Umn+cWmn+d

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

VmV2m(2(j−i)−1)Xs+3m

ΔV2m
− 2(−1)cXd−c

Δ
if m is even,

UmV2m(2(j−i)−1)Ws+3m

V2m
if m is odd,

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
Umn+cWmn+d

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

UmV2m(2(j−i)+1)Ws+5m

V2m
if m is even,

VmVm(4(j−i+1)−2)Xs+5m

ΔV2m
+
2(−1)cXd−c

Δ
if m is odd,

(2.13)

where s = m(4(j + i)) + c + d.

Proof. Consider

4j∑
n=4i+1

(−1)
(
n+1
2

)
Umn+cWmn+d

=
4j∑

n=4i+1

(−1)
(
n+1
2

)(
αmn+c − βmn+c

α − β

)(
Aαmn+d − Bβmn+d

α − β

)

=
1

(
α − β

)2
4j∑

n=4i+1

(−1)
(
n+1
2

)(
Aα2mn+c+d + Bβ2mn+c+d

)
− (−1)mn+c

(
α − β

)2
(
Aαd−c + Bβd−c

)

=
1
Δ

4j∑
n=4i+1

(−1)
(
n+1
2

)
X2mn+c+d − 1

Δ
Xd−c(−1)c

4j∑
n=4i+1

(−1)
(
n+1
2

)
.

(2.14)

Here we have that
∑4j

n=4i+1 (−1)
(
n+1
2

)
= 0 and, by Xn = Wn−1 +Wn+1,

4j∑
n=4i+1

(−1)
(
n+1
2

)
X2mn+c+d =

ΔVmU4m(j−i)Wm(4(j+i)+1)+c+d

V2m
, (2.15)

for even m. Now formula (2.12) follows. The remaining formulas are proven in a similar
manner.

Notice that in (2.12)-(2.13), one limit of summation is even while the other is odd.
Accordingly we have observed that each of (2.12)-(2.13) has a dual sum that is obtained with
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the use of the rule below. We highlight this rule since it also applies to get certain groups of
sums in Section 2.

From [3], we recall the rule for the formation of the dual sum.

(1) Replace the even limit by the even limit corresponding to the other residue class
modulo 4 and the odd limit by the odd limit corresponding to the other residue
class modulo 4.

(2) Calculate the subscripts on the right in accordance with the paragraph following
(2.13).

(3) Multiply the right side by −1.

For example, for odd integer m, the dual of (2.13) is

4j+1∑
n=4i

(−1)
(
n+1
2

)
Umn+cWmn+d = − 1

Δ

(
VmV2m(2(j−i)+1)Xs+m

V2m
+ 2(−1)cXd−c

)
, (2.16)

where s is defined as before.

Theorem 2.5. Fix integers c, d, and m.

(i) If c and d have the same parities, then

4j∑
n=4i+1

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
U2m+1U4(2m+1)(j−i)

V2(2m+1)
×
(
X2(2m+1)(j+i)+tX2(2m+1)(j+i)+t+1 + pr(−1)t

)
,

4j∑
n=4i+1

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
V2mU8m(j−i)

V4m
× (Wm(4j+4i)+tXm(4j+4i)+t

)
,

4j∑
n=4i+3

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
U2m+1V2(2m+1)(2(j−i)−1)

V2(2m+1)
×
(
W(2m+1)(2(j+i)+1)+t+1X(2m+1)(2(j+i)+1)+t − r(−1)t

)
,
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4j∑
n=4i+3

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
V2mV4m(2(j−i)−1)

ΔV4m
×
(
X2

m(4(j+i)+2)+t + 2r(−1)t
)
+
2r(−1)cVd−c

Δ
,

4j+3∑
n=4i

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
V2m+1U4(2m+1)(j−i+1)

V2(2m+1)
×
(
W(2m+1)(2(j+i)+1)+t+1X(2m+1)(2(j+i)+1)+t − r(−1)t

)
,

4j+3∑
n=4i

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
U2mU8m(j−i+1)

V4m
×
(
X2

m(4(j+i)+2)+t + 2r(−1)t
)
,

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
V2m+1V2(2m+1)(2(j−i)+1)

ΔV2(2m+1)
×
(
X2(2m+1)(j+i+1)+t+1X2(2m+1)(j+i+1)+t + pr(−1)t

)
− 2r(−1)cVd−c

Δ
,

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
1

V4m

(
U2mV4m(2(j−i)+1)W4m(j+i+1)+tX4m(j+i+1)+t

)
,

(2.17)

where t = (c + d)/2 +m.

(ii) If c and d have different parities, then

4j∑
n=4i+1

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
U2m+1U4(2m+1)(j−i)

V2(2m+1)

(
X2

2(2m+1)(j+i)+v + 2r(−1)v
)
,
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4j∑
n=4i+1

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
V2mU8m(j−i)

V4m

(
X4m(j+i)+v−1W4m(j+i)+v − r(−1)v),

4j∑
n=4i+3

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
1

V2(2m+1)
×U2m+1V2(2m+1)(2(j−i)−1)W(2m+1)(2(j+i)+1)+vX(2m+1)(2(j+i)+1)+v,

4j∑
n=4i+3

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
V2mV4m(2(j−i)−1)

ΔV4m
× (Xm(4(j+i)+2)+vXm(4(j+i)+2)+v−1 + pr(−1)v) + 2r(−1)cVd−c

Δ
,

4j+3∑
n=4i

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

=
V2m+1U4(2m+1)(j−i+1)

V2(2m+1)
×X(2m+1)(2(j+i)+1)+vW(2m+1)(2(j+i)+1)+v,

4j+3∑
n=4i

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
U2mU8m(j−i+1)

V4m
× (Xm(4(j+i)+2)+vXm(4(j+i)+2)+v−1 − pr(−1)v),

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W(2m+1)n+cW(2m+1)n+d

= −2r(−1)
cVd−c

Δ
+
V2m+1V2(2m+1)(2(j−i)+1)

ΔV2(2m+1)

(
X2

2(2m+1)(j+i+1)+v + 2r(−1)v
)
,

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
U2mV4m(2(j−i)+1)

V4m
× (W4m(j+i+1)+vX4m(j+i+1)+v−1 − r(−1)v),

(2.18)

where r is defined as before and v = (c + d + 1)/2 +m.
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Proof. Suppose that c and d have the same parities. Consider

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
1
Δ

4j+3∑
n=4i+2

(−1)
(
n+1
2

)(
A2α4mn+c+d + B2β4mn+c+d −ABα2mn+cβ2mn+d −ABβ2mn+cα2mn+d

)

=
1
Δ

(
b2

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
V4mn+c+d + 2ab

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
V4mn+c+d−1

+a2
4j+3∑

n=4i+2

(−1)
(
n+1
2

)
V4mn+c+d−2

)

+
1
Δ
(−1)crVd−c

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
.

(2.19)

From the definition of {Vn}, we obtain

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
V4mn+c =

ΔU2mV4m(2(j−i)+1)U2m(4(j+i+1)+1)+c

V4m
. (2.20)

Since
4j+3∑

n=4i+2

(−1)
(
n+1
2

)
= 0, (2.21)

we get

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
U2mV4m(2(j−i)+1)

V4m

(
b2U2m(4(j+i+1)+1)+c+d + 2abU2m(4(j+i+1)+1)+c+d−1 + a2U2m(4(j+i+1)+1)+c+d−2

)

(2.22)

Taking 2k = 2m(4(j + i + 1) + 1) + c + d in Lemma 2.1, we write

4j+3∑
n=4i+2

(−1)
(
n+1
2

)
W2mn+cW2mn+d

=
U2mV4m(2(j−i)+1)Wm(4(j+i+1)+1)+(d+c)/2Xm(4(j+i+1)+1)+(d+c)/2

ΔV4m
.

(2.23)

Thus the result follows. Similar arguments yield the remaining formulas, where we must
consider the parities of c, d.
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For example, the dual of (2.17) is given by if c and d have the same parities,

4j+1∑
n=4i

(−1)
(
n+1
2

)
W2mn+cW2mn+d = −U2mV4m(2(j−i)+1)W4m(j+i)+tX4m(j+i)+t

V4m
, (2.24)

and the dual of (2.18) is given by if c and d have different parities,

4j+1∑
n=4i

(−1)
(
n+1
2

)
W2mn+cW2mn+d

= −U2mV4m(2(j−i)+1)
V4m

× (W4m(j+i)+vX4m(j+i)+v−1 − r(−1)v),
(2.25)

where t and v are defined as before.
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