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Based on the theory of a falling shadow which was first formulated by Wang (1985), a theoretical
approach of the ideal structure in d-algebras is established. The notions of a falling d-subalgebra,
a falling d-ideal, a falling BCK-ideal, and a falling d�-ideal of a d-algebra are introduced. Some
fundamental properties are investigated. Relations among a falling d-subalgebra, a falling d-ideal,
a falling BCK-ideal, and a falling d�-ideal are stated. Characterizations of falling d-ideals and falling
d�-ideals are discussed. A relation between a fuzzy d-subalgebra and a falling d-subalgebra is
provided.

1. Introduction

Iséki and Tanaka introduced two classes of abstract algebras BCK-algebras and BCI-algebras
[1, 2]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-
algebras. BCK-algebras have several connections with other areas of investigation, such
as: lattice ordered groups, MV -algebras, Wajsberg algebras, and implicative commutative
semigroups. Font et al. [3] have discussed Wajsberg algebras which are term-equivalent to
MV -algebras. Mundici [4] proved thatMV -algebras are categorically equivalent to bounded
commutative BCK-algebras. Meng [5] proved that implicative commutative semigroups are
equivalent to a class of BCK-algebras. Neggers and Kim [6] introduced the notion of d-
algebras which is another useful generalization of BCK-algebras. They investigated several
relations between d-algebras and BCK-algebras as well as several other relations between
d-algebras and oriented digraphs. After that, some further aspects were studied in [7, 8].
Neggers et al. [9] introduced the concept of d-fuzzy function which generalizes the concept
of fuzzy subalgebra to a much larger class of functions in a natural way. In addition, they
discussed a method of fuzzification of a wide class of algebraic systems onto [0, 1] along with
some consequences.
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In the study of a unified treatment of uncertainty modelled by means of combining
probability and fuzzy set theory, Goodman [10] pointed out the equivalence of a fuzzy
set and a class of random sets. Wang and Sanchez [11] introduced the theory of falling
shadows which directly relates probability concepts with the membership function of fuzzy
sets. Falling shadow representation theory shows us the way of selection relaid on the
joint degrees distributions. It is reasonable and convenient approach for the theoretical
development and the practical applications of fuzzy sets and fuzzy logics. The mathematical
structure of the theory of falling shadows is formulated in [12]. Tan et al. [13, 14] established
a theoretical approach to define a fuzzy inference relation and fuzzy set operations based
on the theory of falling shadows. Jun and Kang [15] established a theoretical approach to
define a fuzzy positive implicative ideal in a BCK-algebra based on the theory of falling
shadows. They provided relations between falling fuzzy positive implicative ideals and
falling fuzzy ideals. They also considered relations between fuzzy positive implicative ideals
and falling fuzzy positive implicative ideals. Jun and Kang [16] considered the fuzzification
of generalized Tarski filters of generalized Tarski algebras and investigated related properties.
They established characterizations of a fuzzy-generalized Tarski filter and introduced the
notion of falling fuzzy-generalized Tarski filters in generalized Tarski algebras based on the
theory of falling shadows. They provided relations between fuzzy-generalized Tarski filters
and falling fuzzy-generalized Tarski filters and established a characterization of a falling
fuzzy-generalized Tarski filter.

In this paper, we establish a theoretical approach to define a falling d-subalgebra, a
falling d-ideal, a falling BCK-ideal, and a falling d�-ideal in d-algebras based on the theory
of falling shadows which was first formulated by Wang [12]. We provide relations among a
falling d-subalgebra, a falling d-ideal, a falling BCK-ideal, and a falling d�-ideal. We consider
characterizations of falling d-ideals and falling d�-ideals and discuss a relation between a
fuzzy d-subalgebra and a falling d-subalgebra.

2. Preliminaries

A d-algebra is a nonempty set X with a constant 0 and a binary operation “∗” satisfying the
following axioms:

(i) x ∗ x = 0,

(ii) 0 ∗ x = 0,

(iii) x ∗ y = 0 and y ∗ x = 0 imply x = y,

for all x, y ∈ X.
A BCK-algebra is a d-algebra (X, ∗, 0) satisfying the following additional axioms:

(iv) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(v) (x ∗ (x ∗ y)) ∗ y = 0,

for all x, y, z ∈ X.
Any BCK-algebra (X, ∗, 0) satisfies the following conditions:

(a1) (for all x, y ∈ X) ((x ∗ y) ∗ x = 0),

(a2) (for all x, y, z ∈ X) (((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0).
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A subset I of a BCK-algebra X is called a BCK-ideal of X if it satisfies

(b1) 0 ∈ I,

(b2) (for all x ∈ X) (for all y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I).

We now display the basic theory on falling shadows. We refer the reader to the papers
[10–14] for further information regarding the theory of falling shadows.

Given a universe of discourse U, let P(U) denote the power set of U. For each u ∈ U,
let

u̇ := {E | u ∈ E and E ⊆ U}, (2.1)

and for each E ∈ P(U), let

Ė := {u̇ | u ∈ E}. (2.2)

An ordered pair (P(U),B) is said to be a hypermeasurable structure on U if B is a σ-field
in P(U) and U̇ ⊆ B. Given a probability space (Ω,A, P) and a hypermeasurable structure
(P(U),B) on U, a random set on U is defined to be a mapping ξ : Ω → P(U) which is A-B
measurable, that is,

(∀C ∈ B)
(
ξ−1(C) = {ω | ω ∈ Ω and ξ(ω) ∈ C} ∈ A

)
. (2.3)

Suppose that ξ is a random set onU. Let

H̃(u) := P(ω | u ∈ ξ(ω)) for each u ∈ U. (2.4)

Then H̃ is a kind of fuzzy set in U. We call H̃ a falling shadow of the random set ξ, and ξ is
called a cloud of H̃.

For example, (Ω,A, P) = ([0, 1],A, m), where A is a Borel field on [0, 1] and m is the
usual Lebesgue measure. Let H̃ be a fuzzy set inU and let H̃t := {u ∈ U | H̃(u) ≥ t} be a t-cut
of H̃. Then

ξ : [0, 1] −→ P(U), t 	−→ H̃t (2.5)

is a random set and ξ is a cloud of H̃. We will call ξ defined above as the cut-cloud of H̃ (see
[10]).

3. Falling d-Subalgebras/Ideals

In what follows let X denote a d-algebra unless otherwise specified.
A nonempty subset S of X is called a d-subalgebra of X (see [8]) if x ∗ y ∈ S whenever

x ∈ S and y ∈ S.
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A subset I of X is called a BCK-ideal of X (see [8]) if it satisfies conditions (b1) and
(b2).

A subset I of X is called a d-ideal of X (see [8]) if it satisfies conditions (b2) and (b3)
(for all x, y ∈ X)(x ∈ I ⇒ x ∗ y ∈ I).

Definition 3.1. Let (Ω,A, P) be a probability space, and let

ξ : Ω −→ P(X) (3.1)

be a random set. If ξ(ω) is a d-subalgebra (resp., BCK-ideal and d-ideal) of X for any ω ∈ Ω
with ξ(ω)/= ∅, then the falling shadow H̃ of the random set ξ, that is,

H̃(x) = P(ω | x ∈ ξ(ω)) (3.2)

is called a falling d-subalgebra (resp., falling BCK-ideal and falling d-ideal) of X.

Example 3.2. Let (Ω,A, P) be a probability space and let

F(X) :=
{
f | f : Ω −→ X is a mapping

}
. (3.3)

Define an operation � on F(X) by

(∀ω ∈ Ω)
((
f � g

)
(ω) = f(ω) ∗ g(ω)

)
(3.4)

for all f, g ∈ F(X). Let θ ∈ F(X) be defined by θ(ω) = 0 for all ω ∈ Ω. It is routine to check
that (F(X);�, θ) is a d-algebra. For any d-subalgebra (resp., BCK-ideal and d-ideal) A of X
and f ∈ F(X), let

Af :=
{
ω ∈ Ω | f(ω) ∈ A

}
,

ξ : Ω −→ P(F(X)), ω 	−→ {
f ∈ F(X) | f(ω) ∈ A

}
.

(3.5)

Then Af ∈ A and ξ(ω) = {f ∈ F(X) | f(ω) ∈ A} is a d-subalgebra (resp., BCK-ideal and
d-ideal) of F(X). Since

ξ−1
(
ḟ
)
=
{
ω ∈ Ω | f ∈ ξ(ω)

}
=
{
ω ∈ Ω | f(ω) ∈ A

}
= Af ∈ A, (3.6)

ξ is a random set of F(X). Hence the falling shadow H̃(f) = P(ω | f(ω) ∈ A) on F(X) is a
falling d-subalgebra (resp., falling BCK-ideal and falling d-ideal) of F(X).
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Example 3.3. LetX := {0, a, b, c} be a d-algebra which is not a BCK-algebra with the following
Cayley table:

a

a

a aa

b

b bb

c

c c c 0
0

000
0
0

0

0

00

∗

(3.7)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set ξ : [0, 1] → P(X) as follows:

ξ(t) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if t ∈ [0, 0.2),

{0, a, c}, if t ∈ [0.2, 0.6),

X, if t ∈ [0.6, 1].

(3.8)

Then the falling shadow H̃ of ξ is a falling d-subalgebra of X.

Example 3.4. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra with the Cayley
table as follows:

a

c

a ba

b

b cb

c

c c c 0
0

000
0
0

0

0

00

∗

(3.9)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set ξ : [0, 1] → P(X) as follows:

ξ(t) :=

⎧
⎨
⎩
{0, a, b}, if t ∈ [0, 0.9),

X, if t ∈ [0.9, 1].
(3.10)

Then the falling shadow H̃ of ξ is a falling BCK-ideal of X.
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Example 3.5. LetX := {0, a, b, c, d} be a d-algebra which is not a BCK-algebra with the Cayley
table as follows:

a

b

a a aa

b

b bb

c

c c c

a ad

d

c c

c

c0

0 0

0

0

0
00

0
0

0

00

∗

(3.11)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set ξ : [0, 1] → P(X) as follows:

ξ(t) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{0, a}, if t ∈ [0, 0.3),

X, if t ∈ [0.3, 0.8),

∅, if t ∈ [0.8, 1].

(3.12)

Then the falling shadow H̃ of ξ is a falling d-ideal of X.

Note that the falling shadow H̃ of ξ in Example 3.4 is not a falling d-subalgebra of X
because if we take t ∈ [0, 0.9), then ξ(t) = {0, a, b} is not a d-subalgebra of X. This shows that,
in a d-algebra, a falling BCK-ideal need not be a falling d-subalgebra.

The following example shows that a falling d-subalgebra need not be a falling BCK-
ideal in d-algebras.

Example 3.6. Consider the d-algebra X which is given in Example 3.4. Let (Ω,A, P) =
([0, 1],A, m) and define a random set

ξ : [0, 1] −→ P(X), t 	−→
⎧
⎨
⎩
{0, c}, if t ∈ [0, 0.4),

X, if t ∈ [0.4, 1].
(3.13)

Then the falling shadow H̃ of ξ is a falling d-subalgebra ofX, but it is not a falling BCK-ideal
of X since ξ(t) = {0, c} is not a BCK-ideal of X for t ∈ [0, 0.4).

Theorem 3.7. Every falling d-ideal is a falling d-subalgebra.

Proof. It is clear, and we omit the proof.
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The following example shows that the converse of Theorem 3.7 is not true.

Example 3.8. Let X := {0, a, b, c} be a d-algebra which is not a BCK-algebra with the Cayley
table as follows:

a

c

a ba

b

b bb

c

c c c 0
0

000
0
0

0

0

00

∗

(3.14)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set

ξ : [0, 1] −→ P(X), t 	−→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if t ∈ [0, 0.2),

{0, a}, if t ∈ [0.2, 0.5),

X, if t ∈ [0.5, 1].

(3.15)

Then the falling shadow H̃ of ξ is a falling d-subalgebra of X, but not a falling d-ideal of X,
since ξ(t) = {0, a} is not a d-ideal of X for t ∈ [0.2, 0.5).

Let (Ω,A, P) be a probability space and H̃ a falling shadow of a random set ξ : Ω →
P(X). For any x ∈ X, let

Ω(x; ξ) := {ω ∈ Ω | x ∈ ξ(ω)}. (3.16)

Then Ω(x; ξ) ∈ A.

Lemma 3.9. If H̃ is a falling d-subalgebra of X, then

(∀x ∈ X) (Ω(x; ξ) ⊆ Ω(0; ξ)). (3.17)

Proof. If Ω(x; ξ) = ∅, then it is clear. Assume that Ω(x; ξ)/= ∅ and let ω ∈ Ω be such that
ω ∈ Ω(x; ξ). Then x ∈ ξ(ω), and so 0 = x ∗ x ∈ ξ(ω) since ξ(ω) is a d-subalgebra of X. Hence
ω ∈ Ω(0; ξ), and therefore Ω(x; ξ) ⊆ Ω(0; ξ) for all x ∈ X.

Combining Theorem 3.7 and Lemma 3.9, we have the following corollary.

Corollary 3.10. If H̃ is a falling d-ideal of X, then (3.17) is valid.

We provide a characterization of a falling d-ideal.
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Theorem 3.11. Let H̃ be a falling shadow of a random set ξ on X. Then H̃ is a falling d-ideal of X if
and only if the following conditions are valid:

(a) (for all x, y ∈ X) (Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ)),

(b) (for all x, y ∈ X) (Ω(x; ξ) ⊆ Ω(x ∗ y; ξ)).

Proof. Assume that H̃ is a falling d-ideal of X. For any x, y ∈ X, if

ω ∈ Ω
(
x ∗ y; ξ) ∩Ω

(
y; ξ

)
, (3.18)

then x ∗ y ∈ ξ(ω) and y ∈ ξ(ω). Since ξ(ω) is a d-ideal of X, it follows from (b2) that x ∈ ξ(ω)
so that ω ∈ Ω(x; ξ). Hence Ω(x ∗ y; ξ) ∩ Ω(y; ξ) ⊆ Ω(x; ξ) for all x, y ∈ X. Now let x, y ∈ X
and ω ∈ Ω be such that ω ∈ Ω(x; ξ). Then x ∈ ξ(ω) and so x ∗ y ∈ ξ(ω) by (b3). Thus
ω ∈ Ω(x ∗ y; ξ), and therefore Ω(x; ξ) ⊆ Ω(x ∗ y; ξ) for all x, y ∈ X.

Conversely, suppose that two conditions (a) and (b) are valid. Let x, y ∈ X and ω ∈ Ω
be such that x ∗ y ∈ ξ(ω) and y ∈ ξ(ω). Then ω ∈ Ω(x ∗ y; ξ) and ω ∈ Ω(y; ξ). It follows from
(a) that ω ∈ Ω(x ∗ y; ξ) ∩ Ω(y; ξ) ⊆ Ω(x; ξ) so that x ∈ ξ(ω). Now, assume that x ∈ ξ(ω) for
every x ∈ X and ω ∈ Ω. Then ω ∈ Ω(x; ξ) ⊆ Ω(x ∗ y; ξ) for all y ∈ X, and so x ∗ y ∈ ξ(ω).
Therefore ξ(ω) is a d-ideal of X for all ω ∈ Ω. Hence H̃ is a falling d-ideal of X.

Proposition 3.12. For a falling shadow H̃ of a random set ξ on X, if H̃ is a falling BCK-ideal of X,
then

(a) (for all x, y ∈ X) (x ∗ y = 0 ⇒ Ω(y; ξ) ⊆ Ω(x; ξ)),

(b) (for all x, y ∈ X) (Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ)),

(c) (for all x ∈ X) (Ω(x; ξ) ⊆ Ω(0; ξ)).

Proof. (a) Let x, y ∈ X and ω ∈ Ω be such that x ∗ y = 0 and ω ∈ Ω(y; ξ). Then y ∈ ξ(ω)
and x ∗ y = 0 ∈ ξ(ω) by (b1). It follows from (b2) that x ∈ ξ(ω) so that ω ∈ Ω(x; ξ). Hence
Ω(y; ξ) ⊆ Ω(x; ξ) for all x, y ∈ X with x ∗ y = 0.

(b) Let x, y ∈ X and ω ∈ Ω be such that ω ∈ Ω(x ∗ y; ξ) ∩ Ω(y; ξ). Then x ∗ y ∈ ξ(ω)
and y ∈ ξ(ω). Since ξ(ω) is a BCK-ideal of X, it follows from (b2) that x ∈ ξ(ω) so that
ω ∈ Ω(x; ξ). Hence Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ) for all x, y ∈ X.

(c) It follows from (ii) and (a).

We give conditions for a falling shadow to be a falling BCK-ideal.

Theorem 3.13. For a falling shadow H̃ of a random set ξ on X, assume that the following conditions
are satisfied:

(a) Ω = Ω(0; ξ),

(b) (for all x, y ∈ X) (Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ)).

Then H̃ is a falling BCK-ideal of X.

Proof. Using (a), we have 0 ∈ ξ(ω) for all ω ∈ Ω. Let x, y ∈ X and ω ∈ Ω be such that
x ∗ y ∈ ξ(ω) and y ∈ ξ(ω). Then ω ∈ Ω(x ∗ y; ξ) ∩ Ω(y; ξ) ⊆ Ω(x; ξ) by (b), and so x ∈ ξ(ω).
Therefore ξ(ω) is a BCK-ideal of X for all ω ∈ Ω. Hence H̃ is a falling BCK-ideal of X.



Discrete Dynamics in Nature and Society 9

Proposition 3.14. If H̃ is a falling d-ideal of X, then

(∀x, y ∈ X
) (

y ∗ x = 0 =⇒ Ω(x; ξ) ⊆ Ω
(
y; ξ

))
. (3.19)

Proof. Let x, y ∈ X be such that y ∗ x = 0. Let ω ∈ Ω(x; ξ). Then x ∈ ξ(ω) and ω ∈ Ω(0; ξ) by
Corollary 3.10. Hence y ∗ x = 0 ∈ ξ(ω). Since ξ(ω) is a d-ideal of X, it follows from (b2) that
y ∈ ξ(ω). Therefore (3.19) holds.

A d-ideal I of X is called a d�-ideal of X (see [8]) if, for arbitrary x, y, z ∈ X, (b4)
x ∗ z ∈ I whenever x ∗ y ∈ I and y ∗ z ∈ I.

Definition 3.15. Let (Ω,A, P) be a probability space, and let

ξ : Ω −→ P(X) (3.20)

be a random set. If ξ(ω) is a d�-ideal ofX for anyω ∈ Ωwith ξ(ω)/= ∅, then the falling shadow
H̃ of the random set ξ is called a falling d�-ideal of X.

Example 3.16. LetX be a d-algebra as in Example 3.8. Let (Ω,A, P) = ([0, 1],A, m) and define
a random set

ξ : Ω −→ P(X), ω 	−→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{0, a, b}, if ω ∈ [0, 0.3),

X, if ω ∈ [0.3, 0.8),

∅, if ω ∈ [0.8, 1].

(3.21)

Then the falling shadow H̃ of ξ is a falling d�-ideal of X, and it is represented as follows:

H̃(x) =

⎧
⎨
⎩
0.8, if x ∈ {0, a, b},
0.5, if x = c.

(3.22)

Theorem 3.17. Every falling d�-ideal is a falling d-ideal.

Proof. Straightforward.

We provide an example to show that the converse of Theorem 3.17 is not true.

Example 3.18. Consider the falling d-ideal H̃ of X which is given in Example 3.5. For t ∈
[0, 0.3), ξ(t) = {0, a} is not a d�-ideal of X since b ∗ d = 0 ∈ ξ(t), d ∗ c = a ∈ ξ(t), but
b ∗ c = c /∈ ξ(t). Hence H̃ is not a falling d�-ideal of X.
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In the above discussion, we can see the following relations:

Falling d�-ideal

Falling d-ideal

Falling d-subalgebra Falling BCK-ideal

(3.23)

In this diagram, the reverse implications are not true, and we need additional conditions for
considering the reverse implications.

A d-algebra X is called a d∗-algebra (see [8]) if it satisfies the identity (x ∗ y) ∗ x = 0 for
all x, y ∈ X.

Theorem 3.19. In a d∗-algebra, every falling BCK-ideal is a falling d-ideal.

Proof. Let H̃ be a falling BCK-ideal of a d∗-algebra X. Then Ω(x ∗ y; ξ) ∩Ω(y; ξ) ⊆ Ω(x; ξ) for
all x, y ∈ X by Proposition 3.12. Let x, y ∈ X and ω ∈ Ω(x; ξ). Then x ∈ ξ(ω). Since X is a
d∗-algebra, we have (x ∗ y) ∗ x = 0 ∈ ξ(ω) and so x ∗ y ∈ ξ(ω) by (b2). Hence ω ∈ Ω(x ∗ y; ξ),
which shows thatΩ(x; ξ) ⊆ Ω(x ∗ y; ξ) for all x, y ∈ X. Using Theorem 3.11, we conclude that
H̃ is a falling d-ideal of X.

Corollary 3.20. In a d∗-algebra, every falling BCK-ideal is a falling d-subalgebra.

Proof. It follows from Theorems 3.7 and 3.19.

The following example shows that, in a d∗-algebra, any falling d-subalgebra is neither
a falling BCK-ideal nor a falling d-ideal.

Example 3.21. Let X := {0, a, b, c} be a d∗-algebra which is not a BCK-algebra with the
following Cayley table:

a

a

aa

b

b bb

c

c c c 0
0

0
0

00
0
0

0

0

00

∗

(3.24)

Let (Ω,A, P) = ([0, 1],A, m) and define a random set ξ : [0, 1] → P(X) as follows:

ξ(t) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if t ∈ [0, 0.3),

{0, a, c}, if t ∈ [0.3, 0.7),

X, if t ∈ [0.7, 1].

(3.25)
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Then the falling shadow H̃ of ξ is a falling d-subalgebra of X, but it is neither falling BCK-
ideal nor a falling d-ideal of X since ξ(t) = {0, a, c} is neither a BCK-ideal nor a d-ideal of X
for t ∈ [0.3, 0.7).

Hence, in a d∗-algebra, we have the following relations among falling d-ideals, falling
d-subalgebras, and falling BCK-ideals:

Falling d-ideal

Falling d-subalgebra Falling BCK-ideal

(3.26)

We now establish a characterization of a falling d�-ideal.

Theorem 3.22. For a falling shadow H̃ of a random set ξ on X, the followings are equivalent.

(a) H̃ is a falling d�-ideal of X.

(b) H̃ is a falling d-ideal of X that satisfies the following inclusion:

(∀x, y, z ∈ X
) (

Ω
(
x ∗ y; ξ) ∩Ω

(
y ∗ z; ξ) ⊆ Ω(x ∗ z; ξ)). (3.27)

Proof. Assume that H̃ is a falling d�-ideal ofX. Then H̃ is a falling d-ideal ofX. Let x, y, z ∈ X
and ω ∈ Ω be such that ω ∈ Ω(x ∗ y; ξ) ∩Ω(y ∗ z; ξ). Then x ∗ y ∈ ξ(ω) and y ∗ z ∈ ξ(ω), and
so x ∗ z ∈ ξ(ω) since ξ(ω) is a d�-ideal of X. Hence ω ∈ Ω(x ∗ z; ξ), and therefore Ω(x ∗ y; ξ) ∩
Ω(y ∗ z; ξ) ⊆ Ω(x ∗ z; ξ) for all x, y, z ∈ X.

Conversely, let H̃ be a falling d-ideal of X satisfying the condition (3.27). Then ξ(ω) is
a d-ideal of X. Let x, y, z ∈ X and ω ∈ Ω be such that x ∗ y ∈ ξ(ω) and y ∗ z ∈ ξ(ω). Then
ω ∈ Ω(x ∗ y; ξ) ∩Ω(y ∗ z; ξ) ⊆ Ω(x ∗ z; ξ) by (3.27), and thus x ∗ z ∈ ξ(ω). Hence H̃ is a falling
d�-ideal of X.

We now discuss relations between a falling d-subalgebra and a fuzzy d-subalgebra. As
a result, we can make a statement that the notion of a falling d-subalgebra is a generalization
of the notion of a fuzzy d-subalgebra.

A fuzzy set μ on X is called a fuzzy d-subalgebra of X (see [7]) if μ(x ∗ y) ≥
min{μ(x), μ(y)} for all x, y ∈ X.

Lemma 3.23 (see [7]). A fuzzy set μ of X is a fuzzy d-subalgebra of X if and only if, for every
λ ∈ [0, 1], μλ := {x ∈ X | μ(x) ≥ λ} is a d-subalgebra of X when it is nonempty.

Theorem 3.24. If one takes the probability space (Ω,A, P) = ([0, 1],A, m), where A is a Borel
field on [0, 1] and m is the usual Lebesgue measure, then every fuzzy d-subalgebra of X is a falling
d-subalgebra of X.
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Proof. Let μ be a fuzzy d-subalgebra of X. Then μλ is a d-subalgebra of X for all λ ∈ [0, 1] by
Lemma 3.23. Let

ξ : [0, 1] −→ P(X) (3.28)

be a random set and ξ(λ) = μλ for every λ ∈ [0, 1]. Then μ is a falling d-subalgebra of X.

We provide an example to show that the converse of Theorem 3.24 is not true.

Example 3.25. LetX be a d-algebra as in Example 3.4. Let (Ω,A, P) = ([0, 1],A, m) and define
a random set

ξ : Ω −→ P(X), ω 	−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0, c}, if t ∈ [0, 0.2),

∅, if t ∈ [0.2, 0.3),

{0, b}, if t ∈ [0.3, 0.6),

{0, a}, if t ∈ [0.6, 0.85),

X, if t ∈ [0.85, 1].

(3.29)

Then the falling shadow H̃ of ξ is a falling d-subalgebra ofX, and it is represented as follows:

H̃(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.9, if x = 0,

0.4, if x = a,

0.45, if x = b,

0.35, if x = c.

(3.30)

We know that H̃ is not a fuzzy d-subalgebra of X since

H̃(b ∗ a) = H̃(c) = 0.35 /≥ 0.4 = min
{
H̃(b), H̃(a)

}
. (3.31)

Theorem 3.26. Every falling d-subalgebra of X is a Tm-fuzzy d-subalgebra of X; that is, if H̃ is a
falling d-subalgebra of X, then

(∀x, y ∈ X
) (

H̃
(
x ∗ y) ≥ Tm

(
H̃(x), H̃

(
y
)))

, (3.32)

where Tm(s, t) = max{s + t − 1, 0} for any s, t ∈ [0, 1].
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Proof. By Definition 3.1, ξ(ω) is a d-subalgebra of X for any ω ∈ Ωwith ξ(ω)/= ∅. Hence

{ω ∈ Ω | x ∈ ξ(ω)} ∩ {
ω ∈ Ω | y ∈ ξ(ω)

} ⊆ {
ω ∈ Ω | x ∗ y ∈ ξ(ω)

}
, (3.33)

which implies that

H̃
(
x ∗ y) = P

(
ω | x ∗ y ∈ ξ(ω)

)

≥ P
({ω | x ∈ ξ(ω)} ∩ {

ω | y ∈ ξ(ω)
})

≥ P(ω | x ∈ ξ(ω)) + P
(
ω | y ∈ ξ(ω)

)

− P
(
ω | x ∈ ξ(ω) or ω | y ∈ ξ(ω)

)

≥ H̃(x) + H̃
(
y
) − 1.

(3.34)

Hence

H̃
(
x ∗ y) ≥ max

{
H̃(x) + H̃

(
y
) − 1, 0

}
= Tm

(
H̃(x), H̃

(
y
))

. (3.35)

This completes the proof.
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