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Our aim in this paper is to establish some explicit bounds of the unknown function in a certain
class of nonlinear dynamic inequalities in two independent variables on time scales which are
unbounded above. These on the one hand generalize and on the other hand furnish a handy
tool for the study of qualitative as well as quantitative properties of solutions of partial dynamic
equations on time scales. Some examples are considered to demonstrate the applications of the
results.

1. Introduction

During the past decade, a number of dynamic inequalities have been established by
some authors which are motivated by some applications, for example, when studying the
behavior of solutions of certain classes of dynamic equations, the bounds provided by earlier
inequalities are inadequate in applications and some new and specific type of dynamic
inequalities on time scales are required. The general idea is to prove a result for a dynamic
inequality where the domain of the unknown function is a so-called time scale T, which may
be an arbitrary closed subset of the real numbers R. In [1, Theorem 6.1], it is proved that if
u, f , and p ∈ Crd and p ∈ R+, then

uΔ(t) ≤ f(t) + p(t)u(t), ∀t ∈ [t0,∞)
T
, (1.1)

implies

u(t) ≤ u(t0)ep(t, t0) +
∫ t

t0

ep(t, σ(s))f(s)Δs, ∀t ∈ [t0,∞)
T
, (1.2)
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whereR+ := {f ∈ R : 1+μ(t)f(t) > 0, t ∈ T} andR is the class of rd-continuous and regressive
functions. A function f : T → R is said to be right-dense continuous (rd-continuous)
provided f is continuous at right-dense points and at left-dense points in T, left-hand limits
exist and are finite. The set of all such rd-continuous functions is denoted by Crd(T). The
graininess function μ for a time scale T is defined by μ(t) := σ(t) − t, and, for any function
f : T → R, the notation fσ(t) denotes f(σ(t)), where σ(t) is the forward jump operator
defined by σ(t) := inf{s ∈ T : s > t}. We say that a function f : T → R is regressive provided
1 + μ(t)f(t)/= 0, t ∈ T. The set of all regressive functions on a time scale T forms an Abelian
group under the addition ⊕ defined by p ⊕ q := p + q + μpq. Throughout this paper, we will
assume that supT = ∞ and define the time scale interval [t0,∞)

T
by [t0,∞)

T
:= [t0,∞) ∩ T.

The exponential function ep(t, s) on time scales is defined by

ep(t, s) = exp

(∫ t

s

ξμ(τ)
(
p(τ)

)
Δτ

)
, for t, s ∈ T, (1.3)

where ξh(z) is the cylinder transformation, which is given by

ξh(z) =

⎧⎪⎨
⎪⎩

log(1 + hz)
h

, h /= 0,

z, h = 0.
(1.4)

Alternatively, for p ∈ R, one can define the exponential function ep(·, t0) to be the unique
solution of the IVP xΔ = p(t)x, with x(t0) = 1. If p ∈ R, then ep(t, s) is real-valued and
nonzero on T. If p ∈ R+, then ep(t, t0) is always positive, ep(t, t) = 1, and e0(t, s) = 1. Note that

ep(t, t0) = exp

(∫ t

t0

p(s)ds

)
, if T = R,

ep(t, t0) =
t−1∏
s=t0

(
1 + p(s)

)
, if T = N,

ep(t, t0) =
t−1∏
s=t0

(
1 +
(
q − 1

)
sp(s)

)
, if T = qN0 .

(1.5)

The book on the subject of time scales by Bohner and Peterson [1] summarizes and organizes
much of time scale calculus. The three most popular examples of calculus on time scales
are differential calculus, difference calculus, and quantum calculus (see [2]), that is, when
T = R, T = N, and T = qN0 = {qt : t ∈ N0}, where q > 1.

In this paper, we will refer to the (delta) integral which we can define as follows: If
GΔ(t) = g(t), then the Cauchy (delta) integral of g is defined by

∫ t
a g(s)Δs := G(t) − G(a).

It can be shown (see [1]) that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫ t
t0
g(s)Δs

exists, t0 ∈ T, and satisfies GΔ(t) = g(t), t ∈ T. There are applications of dynamic equations
on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer,
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and combinatorics. A recent cover story article in New Scientist [3] discusses several possible
applications. Also, in [1, Theorem 6.4], it is proved that if u, a, and p ∈ Crd and p ∈ R+, then

u(t) ≤ a(t) +
∫ t

t0

p(s)u(s)Δs, ∀t ∈ [t0,∞)
T
, (1.6)

implies that

u(t) ≤ a(t) +
∫ t

t0

ep(t, σ(s))a(s)p(s)Δs, ∀t ∈ [t0,∞)
T
. (1.7)

Since (1.7) provides an explicit bound to the unknown function u(t) and a tool to the study of
many qualitative as well as quantitative properties of solutions of dynamic equations, it has
become one of the very few classic and most influential results in the theory and applications
of dynamic inequalities. Because of its fundamental importance, over the years, many
generalizations and analogous results of (1.7) have been established. Since the discovery of
the inequalities (1.1)–(1.7), much work has been done, and many papers which deal with
various generalizations and extensions have appeared in the literature, we refer the reader to
[4–9] and the references cited therein. On the other hand, a few authors have focused on the
theory of partial dynamic equations on time scales [10–15]. However, to the best of author’s
knowledge, only [16–19] have studied integral inequalities useful in the theory of partial
dynamic equations on time scales. Before, we give a brief summary of some of the results of
dynamic inequalities in two independent variables, we present some basic definitions about
calculus in two variables on time scales (for more details, we refer to [12]).

Let T1 and T2 be two time scales with at least two points, and consider the time scale
intervals Ω1 = [t0,∞) ∩ T1 and Ω2 = [s0,∞) ∩ T2 for t0 ∈ T1 and s0 ∈ T2. Let σ1, ρ1, Δ1

and σ2, ρ2, Δ2 denote the forward jump operators, backward jump operators, and the delta
differentiation operator, respectively, on T1 and T2. We say that a real valued function f on
T1 × T2 at (t, s) ∈ Ω ≡ Ω1 ×Ω2 has a Δ1 partial derivative fΔ1(t, s) with respect to t if for each
ε > 0 there exists a neighborhood Ut of t such that

∣∣∣f(σ1(t), s) − f
(
η, s
) − fΔ1(t, s)

[
σ1(t) − η

]∣∣∣ ≤ ε
∣∣σ(t) − η

∣∣, ∀η ∈ Ut. (1.8)

In this case, we say fΔ1(t, s) is the (partial delta) derivative of f(t, s) at t. We say that a real
valued function f on T1×T2 at (t, s) ∈ Ω1×Ω2 has aΔ2 partial derivative fΔ2(t, s)with respect
to s if for each ε > 0 there exists a neighborhood Us of s such that

∣∣∣f(t, σ2(s)) − f(t, ξ) − fΔ2(t, s)[σ2(t) − ξ]
∣∣∣ ≤ ε|σ(t) − ξ|, ∀ξ ∈ Us. (1.9)

In this case, we say fΔ2(t, s) is the (partial delta) derivative of f(t, s) at s. The function f is
called rd-continuous in t if for every α2 ∈ T2 the function f(t, α2) is rd-continuous on T1.
The function f is called rd-continuous in s if for every α1 ∈ T1 the function f(α1, s) is rd-
continuous on T2. Now, we are ready to present some results for dynamic inequalities in
two independent variables on times scales which are related to the main results in our paper.
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In [18], the authors proved that if a, f , and u are positive rd-continuous functions and a is
nonnegative and nondecreasing in each of its variables, then

u
(
x, y
) ≤ a

(
x, y
)
+
∫x

x0

∫y

y0

f(s, t)u(s, t)ΔtΔs, (1.10)

for all (x, y) ∈ [x0,∞)
T
× [y0,∞)

T
, implies

u
(
x, y
) ≤ a

(
x, y
)
eF(x, x0), where F =

∫y

y0

f(x, t)Δt. (1.11)

In [19], the author proved that if a, b, g, h, and u are positive continuous real functions defined
on T × T and γ > 1 is a real constant, then

uγ(x, y) ≤ a
(
x, y
)
+ b
(
x, y
) ∫x

x0

∫y

y0

[
g(s, t)uγ(s, t) + h(s, t)u(s, t)

]
ΔtΔs, (1.12)

implies

u
(
x, y
) ≤ [a(x, y) + b

(
x, y
)
m
(
x, y
)
eG(t, t0)

]1/γ
, (1.13)

for all (x, y) ∈ [x0,∞)
T
× [y0,∞)

T
, where

m
(
x, y
)
=
∫x

x0

∫y

y0

[
a(s, t)g(s, t) +

(
γ − 1
γ

+
a(s, t)

γ

)
h(s, t)

]
ΔtΔs,

G(s, t) =
∫y

y0

[
g(x, t) +

h(x, t)
γ

]
b(x, t)Δt.

(1.14)

In this paper, we are concerned with bounds of the double integral nonlinear dynamic
inequality in two independent variables

uγ(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ, (1.15)

for all (t, s) ∈ [t0,∞)
T
× [s0,∞)

T
. For (1.15), we will assume the following hypotheses:

(H)

⎧⎨
⎩
u, a, b, f, and g are rd-continuous positive functions on Ω1 ×Ω2,

α, δ, λ, and γ are positive constants.
(1.16)

The main aim in this paper is to establish some explicit bounds of the unknown
function u(t, s) of the inequality (1.15). Our results not only complement the results in [18, 19]
but also improve the results in [19], in the sense that the results can be applied in the cases
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when γ ≤ 1. The main results will be proved by employing the Bernoulli inequality [20,
Bernoulli’s inequality]:

(1 + x)γ ≤ 1 + γx, for 0 < γ ≤ 1, x > −1, (1.17)

the Young inequality [20]:

ab ≤ ap

p
+
bq

q
, where a, b ≥ 0, p > 1,

1
p
+
1
q
= 1, (1.18)

and the algebraic inequalities [20]:

(a + b)λ ≤ 2λ−1
(
aλ + bλ

)
, for a, b ≥ 0, λ ≥ 1, (1.19)

(a + b)λ ≤ aλ + bλ, for a, b ≥ 0, 0 ≤ λ ≤ 1. (1.20)

Some examples are considered to illustrate the main results.

2. Main Results

Before, we stated and proved the main results and we proved some Lemmas which play
important roles in the proofs of the main results. We will assume that the equations or the
inequalities possess such nontrivial solutions.

Lemma 2.1. Let T be an unbounded time scale with (t0, s0) and (t, s) ∈ T × T. Let gi : R → R for
i = 1, 2, . . . , n be functions with gi(x1(t, s)) ≤ gi(x2(t, s)) for i = 1, 2, . . . , n, where xi(t, s) : T×T →
R for i = 1, 2, whenever x1 ≤ x2. Let v,w : T × T → R be differentiable with

vΔtΔs(t, s) ≤
n∑
i=1

ai(t, s)gi(v(t, s)), wΔtΔs(t, s) ≥
n∑
i=1

ai(t, s)gi(w(t, s)), (2.1)

for all (t, s) ∈ T × T. Then, v(t0, s0) < w(t0, s0) implies v(t, s) ≤ w(t, s) for all (t, s) ∈ [t0,∞)
T
×

[s0,∞)
T
.

Proof. The proof is by induction and similar to the proof of Theorem 6.9 in [1] and hence is
omitted.

Lemma 2.2. Let T be an unbounded time scale with (t0, s0) and (t, s) ∈ T×T. Suppose that gi : R →
R is nondecreasing for i = 1, 2, . . . , n and y : T × T → R

+ is such that gi(y) is rd-continuous. Let pi
be rd-continuous and positive for i = 1, 2, . . . , n and f : T × T → R

+ differentiable. Then,

y(t, s) ≤ f(t, s) +
n∑
i=1

∫ t

t0

∫ s

s0

pi
(
η, τ
)
gi
(
y
(
η, s
))
ΔηΔτ, ∀(t, s) ∈ T × T, (2.2)
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implies y(t, s) ≤ x(t, s) for all (t, s) ∈ [t0,∞)
T
× [s0,∞)

T
, where x(t, s) solves the initial value

problem

xΔtΔs(t, s) = fΔtΔs(t, s) +
n∑
i=1

pi(t, s)gi(x(t, s)),

x(t0, s0) > f(t0, s0) > 0.

(2.3)

Proof. Let

v(t, s) := f(t, s) +
n∑
i=1

∫ t

t0

∫s

t0

pi
(
τ, η
)
gi
(
y
(
τ, η
))
ΔηΔτ, (2.4)

for all (t, s) ∈ [t0,∞)
T
× [s0,∞)

T
. Then,

vΔtΔs(t, s) := fΔtΔs(t, s) +
n∑
i=1

pi(t, s)gi
(
y(t, s)

)
, (2.5)

for all (t, s) ∈ [t0,∞)
T
× [s0,∞)

T
and y(t, s) ≤ v(t, s) so that

vΔtΔs(t, s) ≤ fΔtΔs(t, s) +
n∑
i=1

pi(t, s)gi(v(t, s)), (2.6)

for all (t, s) ∈ [t0,∞)
T
× [s0,∞)

T
. Since v(t0, s0) = f(t0, s0) < x0 = x(t0, s0), the comparison

Lemma 2.1 yields v(t, s) ≤ x(t, s) for all (t, s) ≥ (t0, s0), where x(t, s) solves the initial value
problem (2.3). Hence, since y(t, s) ≤ v(t, s), we obtain y(t, s) ≤ x(t, s). The proof is complete.

Now, we are ready to state and prove the main results in this paper. First, we consider
the case when λ ≥ 1 and α, δ ≤ γ . For simplicity, we introduce the following notations:

F(t, s) := 22(λ−1)
∫ t

t0

∫s

s0

[
fλ(τ, η)[aδ/γ(τ, η)]λ

]
ΔηΔτ

+ 22(λ−1)
∫ t

t0

∫s

s0

[
gλ(τ, η)[aα/γ(τ, η)]λ

]
ΔηΔτ,

G(t, s) := 22(λ−1)
(
fλ(t, s)

[
δ

γ
a(δ/γ)−1(t, s)

]λ
+ gλ(t, s)

[
α

γ
a(α/γ)−1(t, s)

]λ)
.

(2.7)

Theorem 2.3. Let T be an unbounded time scale with (t0, s0) ∈ T × T. Assume that (H) holds,
λ, γ ≥ 1 and α, δ ≤ γ . Then,

uγ(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫s

s0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ, (2.8)
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for (t, s) ∈ Ω, implies that

u(t, s) ≤ a1/γ(t, s) +
1
γ
a(1/γ)−1(t, s)b(t, s)w(t, s), ∀(t, s) ∈ Ω, (2.9)

where w(t) solves the initial value problem

wΔtΔs(t, s) = FΔtΔs(t, s) + bλ(t, s)G(t, s)wλ(t, s), w(t0, s0) > 0. (2.10)

Proof. Define a function y(t, s) by

y(t, s) :=
∫ t

t0

∫s

t0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ. (2.11)

This reduces (2.8) to

uγ(t, s) ≤ a(t, s) + b(t, s)y(t, s), for (t, s) ∈ Ω. (2.12)

This implies that

u(t, s) ≤ (a(t, s) + b(t, s)y(t, s)
)1/γ

, for (t, s) ∈ Ω. (2.13)

Applying the inequality (1.17) (noting that 1/γ ≤ 1), we see that

u(t, s) ≤ a1/γ(t, s) +
1
γ
a(1/γ)−1(t, s)b(t, s)y(t, s), for (t, s) ∈ Ω. (2.14)

From (2.13), we obtain

uα(t, s) ≤ aα/γ(t, s)
[
1 +

b(t, s)y(t, s)
a(t, s)

]α/γ
, for (t, s) ∈ Ω. (2.15)

Applying inequality (1.17) on (2.15) (where α ≤ γ), we obtain for (t, s) ∈ Ω that

uα(t, s) ≤ aα/γ(t, s)
[
1 +

α

γ

b(t, s)
a(t, s)

y(t, s)
]

= aα/γ(t, s) +
α

γ
a(α/γ)−1(t, s)b(t, s)y(t, s).

(2.16)
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Also, from (2.13), we obtain

uδ(t, s) ≤ aδ/γ(t, s)
[
1 +

b(t, s)y(t, s)
a(t, s)

]δ/γ
, for (t, s) ∈ Ω. (2.17)

Applying inequality (1.17) on (2.17) (where δ ≤ γ), we have for (t, s) ∈ Ω that

uδ(t, s) ≤ aδ/γ(t, s)
[
1 +

δ

γ

b(t, s)
a(t, s)

y(t, s)
]

= aδ/γ(t, s) +
δ

γ
a(δ/γ)−1(t, s)b(t, s)y(t, s).

(2.18)

Combining (2.11), (2.16), and (2.18) and applying the inequality (1.19) (noting that λ ≥ 1),
we have

y(t, s) =
∫ t

t0

∫ s

t0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ

≤ 2λ−1
∫ t

t0

∫ s

t0

[
f
(
τ, η
)
uδ(τ, η)]λΔηΔτ

+ 2λ−1
∫ t

t0

[
g
(
τ, η
)
uα(τ, η)]λΔηΔτ

≤ 2λ−1
∫ t

t0

∫ s

t0

fλ(τ, η)
[
aδ/γ(τ, η) + δ

γ
a(δ/γ)−1(τ, η)b(τ, η)y(τ, η)

]λ
ΔηΔτ

+ 2λ−1
∫ t

t0

∫ s

t0

gλ(τ, η)
[
aα/γ(τ, η) + α

γ
a(α/γ)−1(τ, η)b(τ, η)y(τ, η)

]λ
ΔηΔτ.

(2.19)

This implies that

y(t, s) ≤ 22(λ−1)
∫ t

t0

∫s

t0

fλ(τ, η)[a(δ/γ)(τ, η)]λΔηΔτ

+ 22(λ−1)
∫ t

t0

∫s

t0

fλ(τ, η)
[
δ

γ
a(δ/γ)−1(τ, η)b(τ, η)

]λ
yλ(τ, η)ΔηΔτ

+ 22(λ−1)
∫ t

t0

∫s

t0

gλ(τ, η)[aα/γ(τ, η)]λΔηΔτ

+ 22(λ−1)
∫ t

t0

∫s

t0

gλ(τ, η)
[
α

γ
a(α/γ)−1(τ, η)b(τ, η)

]λ
yλ(τ, η)ΔηΔτ

= F(t, s) +
∫ t

t0

∫s

t0

G
(
τ, η
)
yλ(τ, η)ΔηΔτ, for (t, s) ∈ Ω.

(2.20)
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Now an application of Lemma 2.2 (with n = 1 and g(y) = yλ) gives that

y(t, s) < w(t, s), for (t, s) ∈ Ω, (2.21)

wherew(t, s) solves the initial value problem (2.10). Substituting (2.21) into (2.14), we obtain
the desired inequality (2.9). The proof is complete.

Theorem 2.4. Let T be an unbounded time scale with (t0, s0) ∈ T × T. Assume that (H) holds,
λ, γ ≥ 1 and α, δ ≤ γ . Then, (2.8) implies

u(t, s) ≤ a1/γ(t, s) + b1/γ(t, s)w1/γ(t, s), ∀(t, s) ∈ Ω, (2.22)

where w(t) solves the initial value problem

wΔtΔs(t, s) = FΔtΔs(t, s) +G1(t, s)wλ(δ/γ)(t, s) +G2(t, s)wλ(α/γ)(t, s),

w(t0, s0) > 0,
(2.23)

where F(t) is defined as in (2.7) and

G1(t, s) := 22(λ−1)fλ(t, s)bλδ/γ(t, s), G2 := 22(λ−1)gλ(t, s)bλα/γ(t, s). (2.24)

Proof. Define a function y(t, s) by (2.11) and proceed as in the proof of Theorem 2.3 to obtain

u(t, s) ≤ (a(t, s) + b(t, s)y(t, s)
)1/γ

, for (t, s) ∈ Ω. (2.25)

Applying the inequality (1.20), we see that

u(t, s) ≤ a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s), for (t, s) ∈ Ω. (2.26)

From (2.25), we obtain

uα(t, s) ≤ (a(t, s) + b(t, s)y(t, s)
)α/γ

, for (t, s) ∈ Ω. (2.27)

Applying inequality (1.20) on (2.27) (where α ≤ γ), we obtain for (t, s) ∈ Ω that

uα(t, s) ≤ aα/γ(t, s) + bα/γ(t, s)yα/γ(t, s). (2.28)

Also, from (2.25), we have by (1.20) that

uδ(t, s) ≤ aδ/γ(t, s) + bδ/γ(t, s)yδ/γ(t, s), for (t, s) ∈ Ω. (2.29)
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Combining (2.11), (2.28), and (2.29) and applying the inequality (1.19) (noting that λ ≥ 1),
we have

y(t, s) =
∫ t

t0

∫s

t0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ

≤ 2λ−1
∫ t

t0

∫s

t0

[
f
(
τ, η
)
uδ(τ, η)]λΔηΔτ

+ 2λ−1
∫ t

t0

[
g
(
τ, η
)
uα(τ, η)]λΔηΔτ

≤ 2λ−1
∫ t

t0

∫s

t0

fλ(τ, η)[aδ/γ(τ, η) + bδ/γ
(
τ, η
)
yδ/γ(τ, η)]λΔηΔτ

+ 2λ−1
∫ t

t0

∫s

t0

gλ(τ, η)[aα/γ(τ, η) + bα/γ
(
τ, η
)
yα/γ(τ, η)]λΔηΔτ.

(2.30)

This implies that

y(t, s) ≤ 22(λ−1)
∫ t

t0

∫ s

t0

fλ(τ, η)[aδ/γ(τ, η)]λΔηΔτ

+ 22(λ−1)
∫ t

t0

∫ s

t0

gλ(τ, η)[aα/γ(τ, η)]λΔηΔτ

+ 22(λ−1)
∫ t

t0

∫ s

t0

fλ(τ, η)[bδ/γ(τ, η)]λyλ(δ/γ)(τ, η)ΔηΔτ

+ 22(λ−1)
∫ t

t0

∫ s

t0

gλ(τ, η)[bα/γ(τ, η)]λyλ(α/γ)(τ, η)ΔηΔτ

= F(t, s) +
∫ t

t0

∫ s

t0

[
G1
(
τ, η
)
yλ(δ/γ)(τ, η) +G2

(
τ, η
)
yλ(α/γ)(τ, η)]ΔηΔτ,

(2.31)

for (t, s) ∈ Ω. Now, an application of Lemma 2.2 (with n = 2, g1(y) = yλ(δ/γ), and g2(y) =
yλ(α/γ)) gives that

y(t, s) < w(t, s), for (t, s) ∈ Ω, (2.32)

wherew(t, s) solves the initial value problem (2.23). Substituting (2.32) into (2.26), we obtain
the desired inequality (2.22). The proof is complete.
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As in the proof of Theorem 2.3 by employing the inequality (1.20) instead of the
inequality (1.19), we can obtain an explicit bound for u(t) when 0 ≤ λ ≤ 1. This will be
presented below in Theorem 2.5 without proof since the proof is similar to the proof of
Theorem 2.3. For simplicity, we introduce the following notations:

F1(t, s) :=
∫ t

t0

∫s

s0

[
fλ(τ, η)aλ(δ/γ)(τ, η)]ΔηΔτ

+
∫ t

t0

∫s

s0

[
gλ(τ, η)aλ(α/γ)(τ, η)]ΔηΔτ,

G3(t, s) :=

(
fλ(t, s)

[
δ

γ
a(δ/γ)−1(t, s)

]λ
+ gλ(t, s)

[
α

γ
a(α/γ)−1(t, s)

]λ)
.

(2.33)

Theorem 2.5. Let T be an unbounded time scale with (t0, s0) ∈ T × T. Assume that (H) holds,
γ ≥ 1, 0 < λ ≤ 1, δ ≤ γ , and α ≤ γ . Then, (2.8) implies that

u(t, s) ≤ a1/γ(t, s) +
1
γ
a(1/γ)−1(t, s)b(t, s)z(t, s), for (t, s) ∈ Ω, (2.34)

where z(t) solves the initial value problem

zΔtΔt(t) = FΔtΔs

1 (t) +G3(t, s)bλ(t, s)zλ(t, s), z(t0, s0) > 0. (2.35)

In the following, we apply the Young inequality (1.18) to find a new explicit upper
bound for u(t) of (2.8) when λ ≥ 1 and 0 ≤ λ ≤ 1. First, we consider the case when λ ≥ 1 and
assume that λ(α/γ) < 1 and λ(δ/γ) < 1.

Theorem 2.6. Let T be an unbounded time scale with (t0, s0) ∈ T × T. Assume that (H) holds,
γ, λ ≥ 1 and α, δ ≤ γ such that (λα/γ) < 1 and (λδ/γ) < 1. Then, (2.8) implies that

u(t, s) ≤ a1/γ(t, s) + b1/γ(t, s)F1/γ
3 (t, s), ∀(t, s) ∈ Ω, (2.36)

where

F3(t, s) := F0(t, s) + eβ(s−s0)(t, t0), β = λ

[
α

γ
+
δ

γ

]
,

F0(t, s) := F(t, s) +

(
γ − λδ

)
γ

∫ t

t0

(
G1
(
τ, η
))γ/(γ−λδ)ΔηΔτ

+

(
γ − λα

)
γ

∫ t

t0

(
G2
(
τ, η
))γ/(γ−λα)ΔηΔτ,

(2.37)

and F, G1, and G2 are defined as in (2.7) and (2.24).
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Proof. Define a function y(t, s) by (2.11) and proceed as in the proof of Theorem 2.4 to obtain

u(t, s) ≤ a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s), for (t, s) ∈ Ω, (2.38)

y(t, s) ≤ F(t, s) +
∫ t

t0

∫ s

t0

[
G1
(
τ, η
)
yλ(δ/γ)(τ, η) +G2

(
τ, η
)
yλ(α/γ)(τ, η)]ΔηΔτ, (2.39)

where F, G1, and G2 are defined as in (2.7) and (2.24). Applying the Young inequality (1.18)
on the term G1y

λ(δ/γ) with q = γ/λδ > 1 and p = γ/(γ − λδ) > 1, we see that

G1y
λ(δ/γ) ≤

(
γ − λδ

)
γ

(G1)γ/(γ−λδ) +
(
λδ

γ

)
y. (2.40)

Again applying the Young inequality (1.18) on the term G2y
λ(α/γ) with q = γ/λα > 1 and

p = γ/(γ − λα) > 1, we see that

G2y
λ(α/γ) ≤

(
γ − λα

)
γ

(G2)γ/(γ−λα) +
(
λα

γ

)
y. (2.41)

Substituting (2.40) and (2.41) into (2.39), we have

y(t, s) ≤ F(t, s) +

(
γ − λδ

)
γ

∫ t

t0

∫s

t0

(
G1
(
τ, η
))γ/(γ−λδ)ΔηΔτ

+

(
γ − λα

)
γ

∫ t

t0

∫ s

t0

(
G2
(
τ, η
))γ/(γ−λα)ΔηΔτ

+
[
λα

γ
+
λδ

γ

] ∫ t

t0

∫s

s0

y
(
τ, η
)
ΔηΔτ, ∀(t, s) ∈ Ω.

(2.42)

From the definitions of F0(t) and β, we get that

y(t, s) ≤ F0(t, s) + β

∫ t

t0

∫ s

t0

y
(
τ, η
)
ΔηΔτ, for (t, s) ∈ Ω. (2.43)

Applying the inequality (1.10)with f(t, s) = β, we have

y(t, s) < F0(t, s) + eβ(s−s0)(t, t0), ∀(t, s) ∈ Ω. (2.44)

Substituting (2.44) into (2.38), we get the desired inequality (2.36). The proof is complete.

Theorem 2.7. Let T be an unbounded time scale with (t0, s0) ∈ T × T. Assume that (H) holds,
γ ≥ 1, 0 < λ ≤ 1, and α, δ ≤ γ . Then, (2.8) implies that

u(t, s) ≤ a1/γ(t, s) +
1
γ
a(1/γ)−1(t, s)b(t, s)F4(t, s), for (t, s) ∈ Ω, (2.45)
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where

F4(t, s) := F2(t, s) + eλ(s−s0)(t, t0),

F2(t, s) := F1(t, s) + (1 − λ)
∫ t

t0

∫ s

s0

(
G3
(
τ, η
))1/(1−λ)ΔηΔτ,

(2.46)

and F1 and G3 are defined as in (2.33).

Proof. Define a function y(t, s) by (2.11) and proceed as in the proof of Theorem 2.3 to obtain

u(t, s) ≤ a1/γ(t, s) +
1
γ
a(1/γ)−1(t, s)b(t, s)y(t, s), for (t, s) ∈ Ω, (2.47)

y(t, s) ≤ F1(t, s) +
∫ t

t0

∫ s

s0

G3(s)yλ(τ, η)ΔηΔτ, for (t, s) ∈ Ω, (2.48)

where F1 andG3 are defined in (2.33). Applying the Young inequality (1.18) on the termG3y
λ

with q = 1/λ > 1 and p = 1/(1 − λ) > 1, we see that

G3y
λ ≤ (1 − λ)(G3)1/1−λ + λy. (2.49)

This and (2.48) imply that

y(t, s) ≤ F1(t, s) + (1 − λ)
∫ t

t0

∫s

s0

(
G3
(
τ, η
))1/(1−λ)ΔηΔτ

+
∫ t

t0

∫s

s0

λy
(
τ, η
)
ΔηΔτ.

(2.50)

Using the definition of F2(t, s), we get that

y(t, s) ≤ F2(t, s) + λ

∫ t

t0

∫s

s0

y
(
τ, η
)
ΔηΔτ, for (t, s) ∈ Ω. (2.51)

Applying the inequality (1.10)with f(t, s) = λ, we have

y(t, s) < F2(t, s) + eλ(s−s0)(t, t0), ∀(t, s) ∈ Ω. (2.52)

Substituting (2.52) into (2.47), we get the desired inequality (2.45). The proof is complete.
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Next in the following, we consider the case when γ ≤ 1 and establish some new explicit
bounds of the unknown function u(t, s) of (2.8).

Theorem 2.8. Let T be an unbounded time scale with (t0, s0) ∈ T × T. Assume that (H) holds,
λ ≤ 1, γ ≤ 1, and αλ, δλ ≤ γ . Then, (2.8) implies that

uγ(t, s) ≤ a(t, s) + b(t, s)
[
H(t, s) + eβ1(s−s0)(t, t0)

]
, for (t, s) ∈ Ω, (2.53)

where β1 = (λα/γ) + (λδ/γ) and

H(t, s) = 2λδ((1/γ)−1)
∫ t

t0

∫s

t0

fλ(τ, η)aλδ/γ(τ, η)ΔηΔτ

+ 2λα((1/γ)−1)
∫ t

t0

∫s

t0

gλ(τ, η)aλα/γ(τ, η)ΔηΔτ

+ 2λδ((1/γ)−1)
(
γ − λδ

)
γ

∫ t

t0

∫s

t0

(
fλ(τ, η)bλδ/γ(τ, η))γ/(γ−λδ)ΔηΔτ

+ 2λα((1/γ)−1)
(
γ − λα

)
γ

∫ t

t0

∫s

t0

(
gλ(τ, η)bλα/γ(τ, η))γ/(γ−λα)ΔηΔτ.

(2.54)

Proof. Define a function y(t, s) by

y(t, s) :=
∫ t

t0

∫s

t0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ. (2.55)

This reduces (2.8) to

uγ(t, s) ≤ a(t, s) + b(t, s)y(t, s), for (t, s) ∈ Ω. (2.56)

This implies that

u(t, s) ≤ (a(t, s) + b(t, s)y(t, s)
)1/γ

, for (t, s) ∈ Ω. (2.57)

Applying the inequality (1.19) (noting that γ ≤ 1), we see that

u(t, s) ≤ 2(1/γ)−1
[
a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s)

]
, for (t, s) ∈ Ω. (2.58)

From (2.58), we obtain

uα(t, s) ≤ 2α((1/γ)−1)
[
a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s)

]α
, for (t, s) ∈ Ω. (2.59)
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Also, from (2.58), we obtain

uδ(t, s) ≤ 2δ((1/γ)−1)
[
a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s)

]δ
, for (t, s) ∈ Ω. (2.60)

Combining (2.55), (2.59), and (2.60) and applying the inequality (1.19) (noting that λ ≤ 1),
we have

y(t, s) =
∫ t

t0

∫s

t0

[
f
(
τ, η
)
uδ(τ, η) + g

(
τ, η
)
uα(τ, η)]λΔηΔτ

≤
∫ t

t0

∫s

t0

[
f
(
τ, η
)
uδ(τ, η)]λΔηΔτ

+
∫ t

t0

[
g
(
τ, η
)
uα(τ, η)]λΔηΔτ

≤ 2λδ((1/γ)−1)
∫ t

t0

∫s

t0

fλ(τ, η)[a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s)
]λδ

ΔηΔτ

+ 2λα((1/γ)−1)
∫ t

t0

∫s

t0

gλ(τ, η)[a1/γ(t, s) + b1/γ(t, s)y1/γ(t, s)
]αλ

ΔηΔτ.

(2.61)

This implies (noting that αλ ≤ 1 and δλ ≤ 1) that

y(t, s) ≤ 2λδ((1/γ)−1)
∫ t

t0

∫s

t0

fλ(τ, η)aλδ/γ(τ, η)ΔηΔτ

+ 2λδ((1/γ)−1)
∫ t

t0

∫s

t0

fλ(τ, η)bλδ/γ(τ, η)yλδ/γ(τ, η)ΔηΔτ

+ 2λα((1/γ)−1)
∫ t

t0

∫s

t0

gλ(τ, η)aλα/γ(τ, η)ΔηΔτ

+ 2λα((1/γ)−1)
∫ t

t0

∫s

t0

gλ(τ, η)bλα/γ(τ, η)yλα/γ(τ, η)ΔηΔτ.

(2.62)

Applying the Young inequality (1.18) on the term H1y
λ(δ/γ) with q = γ/λδ > 1 and p =

γ/(γ − λδ) > 1, we see that

H1y
λ(δ/γ) ≤

(
γ − λδ

)
γ

(H1)γ/(γ−λδ) +
(
λδ

γ

)
y, (2.63)

where H1 = fλbλδ/γ . Again applying the Young inequality (1.18) on the term H2y
λ(α/γ) with

q = γ/λα > 1 and p = γ/(γ − λα) > 1, we see that

H2y
λ(α/γ) ≤

(
γ − λα

)
γ

(H2)γ/(γ−λα) +
(
λα

γ

)
y, (2.64)
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where H2 = gλbλα/γ . Combining (2.62)–(2.64), we have

y(t, s) ≤ H(t, s) + β1

∫ t

t0

∫ s

t0

y
(
τ, η
)
ΔηΔτ. (2.65)

Applying the inequality (1.10) on (2.65) with f(t, s) = β1, we have

y(t, s) < H(t, s) + eβ1(s−s0)(t, t0), ∀(t, s) ∈ Ω. (2.66)

Substituting (2.66) into (2.56), we get the desired inequality (2.45). The proof is complete.

Remark 2.9. The above results can be extended to the general inequality

uγ(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫s

s0

L
(
τ, η, u

(
τ, η
))
ΔηΔτ, (2.67)

when

L
(
τ, η, u

) − L
(
τ, η, v

) ≤ [L1
(
τ, η, v

)
(u − v)δ + L2

(
τ, η, v

)
(u − v)α

]λ
. (2.68)

In fact, by using the new substitution

y(t, s) =
∫ t

t0

∫ s

s0

L
(
τ, η, u

(
τ, η
))
ΔηΔτ, (2.69)

the inequality (2.67) can be written as

uγ(t, s) ≤ a(t, s) + b(t, s)y(t, s), (2.70)

and then, since γ ≥ 1, we have

u(t, s) ≤ A(t, s) + B(t, s)y(t, s), (2.71)

where A(t, s) = a1/γ(t, s) and B(t, s) = a(1/γ)−1(t, s)b(t, s). This implies that

y(t, s) =
∫ t

t0

∫s

s0

L
(
τ, η, u

(
τ, η
))
ΔηΔτ

≤
∫ t

t0

∫s

s0

[
L
(
τ, η,A

(
τ, η
)
+ B
(
τ, η
)
y
(
τ, η
)) − L

(
τ, η,A

(
τ, η
))]

ΔηΔτ

+
∫ t

t0

∫s

s0

L
(
τ, η,A

(
τ, η
))
ΔηΔτ.

(2.72)
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Using (2.68) in the last inequality, we get an inequality similar to the inequality (2.8) and then
follow the proof of the above results to find some explicit bounds of (2.8). The details are left
to the reader.

3. Applications

In this section, we present some applications of our main results.

Example 3.1. Consider the partial dynamic equation on time scales

(uγ(t, s))ΔtΔs = H(t, s, u(t, s)) + h(t, s), (t, s) ∈ Ω ≡ [t0,∞)
T
× [s0,∞)

T
, (3.1)

with initial boundary conditions

u(t, s0) = a(t) >, u(t0, s) = b(s) >, a(t0) = b(s0) = 0, (3.2)

where γ ≥ 1 is a constant and H and h are rd-continuous functions on Ω, a : [t0,∞)
T

→ R
+

and b : [t0,∞)
T
→ R

+ are rd-continuous functions. Assume that

|H(t, s, u)| ≤ f(t, s)|u(t, s)|δ + g(t, s)|u(t, s)|α, (3.3)

where f(t, s) and g(t, s) are nonnegative rd-continuous functions for (t, s) ∈ Ω and α, δ < γ .
If u(t, s) is a solution of (3.1)-(3.2), then u(t, s) satisfies

|u(t, s)| ≤ a1/γ(t, s) +A1/γ(t, s), ∀(t, s) ∈ Ω, (3.4)

where

a(t, s) = aγ(t) + bγ(s) +
∫ t

t0

∫ s

s0

∣∣h(τ, η)∣∣ΔηΔτ,

A(t, s) := H0(t, s) + eβ(s−s0)(t, t0), β =
[
α

γ
+
δ

γ

]
,

H0(t, s) =
∫ t

t0

∫s

s0

[
f
(
τ, η
)
aδ/γ(τ, η)]ΔηΔτ

+
∫ t

t0

∫s

s0

[
g
(
τ, η
)
aα/γ(τ, η)]ΔηΔτ

+

(
γ − δ

)
γ

∫ t

t0

∫ s

s0

(
f(τ, s)

)γ/(γ−δ)ΔηΔτ

+

(
γ − α

)
γ

∫ t

t0

∫ s

s0

(
g
(
τ, η
))γ/(γ−α)ΔηΔτ.

(3.5)
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In fact, the solution of (3.1)-(3.2) satisfies

|u(t, s)|γ = aγ(t) + bγ(t) +
∫ t

t0

∫ s

s0

h
(
τ, η
)
ΔηΔτ +

∫ t

t0

∫s

s0

H
(
τ, η, u

(
τ, η
))
ΔηΔτ, (3.6)

for (t, s) ∈ Ω. Therefore,

|u(t, s)|γ ≤ a(t, s) +
∫ t

t0

∫s

s0

∣∣H(τ, η, u(τ, η))∣∣ΔηΔτ, for (t, s) ∈ Ω. (3.7)

It follows from (3.3) and (3.7) that

|u(t, s)|γ ≤ a(t, s) +
∫ t

t0

∫ s

s0

f(τ, s)
∣∣u(τ, η)∣∣δ + g

(
τ, η
)∣∣u(τ, η)∣∣αΔηΔτ, (3.8)

for (t, s) ∈ Ω. Applying Theorem 2.6 on (3.8)with λ = 1 and b(t, s) = 1, we obtain (3.4).

Example 3.2. Consider the equation

uγ(t, s) = H(t, s, u(t, s)) + h(t, s), (t, s) ∈ Ω ≡ [t0,∞)
T
× [s0,∞)

T
, (3.9)

where γ ≥ 1 is a constant and H and h are rd-continuous on Ω, a : [t0,∞)
T

→ R
+ and

b : [t0,∞)
T
→ R

+ are rd-continuous functions. Assume that

|H(t, s, u)| ≤ f(t, s)|u(t, s)|δ + g(t, s)|u(t, s)|α, (3.10)

where f(t, s) and g(t, s) are nonnegative rd-continuous functions for (t, s) ∈ Ω and α, δ < γ .
If u(t, s) is a solution of (3.1)-(3.2), then u(t, s) satisfies

|u(t, s)| ≤ |h(t, s)|1/γ + 1
γ
|h(t, s)|(1/γ)−1B1/γ(t, s), ∀(t, s) ∈ Ω, (3.11)

where

B(t, s) := F∗(t, s) + (1 − λ)
∫ t

t0

∫ t

s0

(
G∗(τ, η))1/(1−λ)ΔηΔτ + eλ(s−s0)(t, t0),

F∗(t, s) :=
∫ t

t0

∫s

s0

[
fλ(τ, η)aλ(δ/γ)(τ, η) + gλ(τ, η)aλ(α/γ)(τ, η)]ΔηΔτ,

G∗(t, s) :=

(
fλ(t, s)

[
δ

γ
a(δ/γ)−1(t, s)

]λ
+ gλ(t, s)

[
α

γ
a(α/γ)−1(t, s)

]λ)
.

(3.12)
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In fact, the solution of (3.9) satisfies

|u(t, s)|γ ≤ |h(t, s)| +
∫ t

t0

∫s

s0

∣∣H(τ, η, u(τ, η))∣∣ΔηΔτ, for (t, s) ∈ Ω. (3.13)

It follows from (3.10) and (3.13) that

|u(t, s)|γ ≤ |h(t, s)| +
∫ t

t0

∫s

s0

[
f(τ, s)

∣∣u(τ, η)∣∣δ + g
(
τ, η
)∣∣u(τ, η)∣∣α]λΔηΔτ, (3.14)

for (t, s) ∈ Ω. Applying Theorem 2.7 on (3.14) with b(t, s) = 1, we obtain (3.11).

Example 3.3. Assume that T = R and consider the partial differential equation

∂

∂s

(
uγ−1(t, s)

∂

∂t
u(t, s)

)
+H(t, s, u(t, s)) = h(t, s), (t, s) ∈ Ω∗, (3.15)

where Ω∗ = [0,∞) × [0,∞), with initial boundary conditions

u(t, 0) = a(t) > 0, u(0, s) = b(s) > 0, a(0) = b(0) = 0. (3.16)

Assume that γ ≥ 1 is a constant andH : [0,∞)×[0,∞)×R → R and h : [0,∞)
R
× [0,∞)

R
→ R,

a : R → R
+ and b : R → R

+ are continuous functions. Also, we assume that

|H(t, s, u)| ≤ f(t, s)|u(t, s)|δ + g(t, s)|u(t, s)|α, (3.17)

where f(t, s) and g(t, s) are nonnegative continuous functions for (t, s) ∈ Ω∗ and α, δ < γ . If
u(t, s) is a solution of (3.1)-(3.2), then u(t, s) satisfies

|u(t, s)| ≤ a1/γ(t, s) + γ1/γB1/γ(t, s), ∀(t, s) ∈ Ω∗, (3.18)

where

a(t, s) = aγ(t) + bγ(s) + γ

∫ t

t0

∫s

s0

∣∣h(τ, η)∣∣ΔηΔτ,

B(t, s) := H0(t, s) + eβ(s−s0)(t, t0), β =
[
α

γ
+
δ

γ

]
,

H0(t, s) =
∫ t

t0

∫s

s0

[
f
(
τ, η
)
aδ/γ(τ, η)]ΔηΔτ +

∫ t

t0

∫ s

s0

[
g
(
τ, η
)
aα/γ(τ, η)]ΔηΔτ

+

(
γ − δ

)
γ

∫ t

t0

∫s

s0

(
f(τ, s)

)γ/(γ−δ)ΔηΔτ

+

(
γ − α

)
γ

∫ t

t0

∫s

s0

(
g
(
τ, η
))γ/(γ−α)ΔηΔτ.

(3.19)
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In fact, the solution formula of (3.15)-(3.16), after integration twice, is given by

|u(t, s)|γ − aγ(t) − bγ(t) + γ

∫ t

t0

∫s

s0

H
(
τ, η, u

(
τ, η
))
ΔηΔτ

= γ

∫ t

t0

∫s

s0

h
(
τ, η
)
ΔηΔτ, for (t, s) ∈ Ω∗.

(3.20)

Therefore,

|u(t, s)|γ ≤ a(t, s) + γ

∫ t

t0

∫s

s0

∣∣H(τ, η, u(τ, η))∣∣ΔηΔτ, for (t, s) ∈ Ω∗. (3.21)

It follows from (3.17) and (3.21) that

|u(t, s)|γ ≤ a(t, s) + γ

∫ t

t0

∫ s

s0

[
f(τ, s)

∣∣u(τ, η)∣∣δ + g
(
τ, η
)∣∣u(τ, η)∣∣α]ΔηΔτ, (3.22)

for (t, s) ∈ Ω∗. Applying Theorem 2.6 on (3.22) with λ = 1 and b(t, s) = γ , we obtain (3.18).
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