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The local fractional Laplace variational iterationmethodwas applied to solve the linear local fractional partial differential equations.
The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace
transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

1. Introduction

Fractional calculus [1] has successfully been used to study the
mathematical and physical problems arising in science and
engineering. Fractional differential equations are applied to
describe the dynamical systems in physics and engineering
(see [2, 3]). It is one of the hot topics for finding the
solutions for the fractional differential equations for scientists
and engineers. There are many analytical and numerical
methods for solving them, such as the spectral Legendre-
Gauss-Lobatto collocation method [4], the shifted Jacobi-
Gauss-Lobatto collocationmethod [5], the variation iteration
method [6], the heat-balance integral method [7], the Ado-
mian decomposition method [8], the finite element method
[9], and the finite difference method [10].

The above methods did not deal with some nondiffer-
entiable problems arising in mathematics and physics (see
[11–13]). Local fractional calculus (see [12–14] and the cited
references) is the best choice to deal with them. Some

methods for solving the local fractional differential equa-
tions were suggested, such as the Cantor-type cylindrical-
coordinate method [15], the local fractional variational iter-
ation method [16, 17], the local fractional decomposition
method [18], the local fractional series expansion method
[19], the local fractional Laplace transform method [20],
and local fractional function decomposition method [21,
22]. More recently, the coupling schemes for local fractional
variational iteration method and Laplace transform were
suggested in [23]. However, the results are very little. In this
paper, our aim is to use the local fractional Laplace variational
iteration method to solve the linear local fractional partial
differential equations.The structure of the paper is suggested
as follows. In Section 2 the basic theory of local fractional cal-
culus and local fractional Laplace transform are introduced.
Section 3 is devoted to the local fractional Laplace variational
iterationmethod. In Section 4, the four examples for the local
fractional partial differential equations are given. Finally, the
conclusions are considered in Section 5.
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2. Local Fractional Calculus and Local
Fractional Laplace Transform

In this section, we present the basic theory of local fractional
calculus and concepts of local fractional Laplace transform.

The local fractional derivative of𝑓(𝑥) of order𝛼 is defined
as [12–15]

𝑑𝛼𝑓 (𝑥
0
)

𝑑𝑥𝛼
=
Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥

0
))

(𝑥 − 𝑥
0
)
𝛼

, (1)

where

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥
0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (2)

The local fractional integral of 𝑓(𝑥) of order 𝛼 in the interval
[𝑎, 𝑏] is defined as [12–14, 16–23]

𝑎
𝐼(𝛼)
𝑏

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑
𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(3)

where the partitions of the interval [𝑎, 𝑏] are (𝑡
𝑗
, 𝑡
𝑗+1
), with

Δ𝑡
𝑗
= 𝑡
𝑗+1
−𝑡
𝑗
, 𝑡
0
= 𝑎, 𝑡
𝑁
= 𝑏, andΔ𝑡 = max{Δ𝑡

0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .},

𝑗 = 0, . . . , 𝑁 − 1.
The local fractional series of nondifferentiable function

used in this paper are presented as follows [12–14]:

𝐸
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

𝑥𝛼𝑘

Γ (1 + 𝑘𝛼)
,

sin
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

(−1)
𝑘

𝑥(2𝑘+1)𝛼

Γ [1 + (2𝑘 + 1) 𝛼]
,

cos
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

(−1)
𝑘

𝑥2𝛼𝑘

Γ (1 + 2𝛼𝑘)
,

sinh
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

𝑥(2𝑘+1)𝛼

Γ [1 + (2𝑘 + 1) 𝛼]
,

cosh
𝛼
(𝑥𝛼) =

∞

∑
𝑘=0

𝑥2𝛼𝑘

Γ (1 + 2𝛼𝑘)
.

(4)

The properties of local fractional derivatives and integral of
nondifferentiable functions are given by [12, 13]

𝑑𝛼

𝑑𝑥𝛼
𝑥𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
,

𝑑𝛼

𝑑𝑥𝛼
𝐸
𝛼
(𝑥𝛼) = 𝐸

𝛼
(𝑥𝛼) ,

𝑑𝛼

𝑑𝑥𝛼
sin
𝛼
(𝑥𝛼) = cos

𝛼
(𝑥𝛼) ,

𝑑𝛼

𝑑𝑥𝛼
cos
𝛼
(𝑥𝛼) = −sin

𝛼
(𝑥𝛼) ,

𝑑𝛼

𝑑𝑥𝛼
sinh
𝛼
(𝑥𝛼) = cosh

𝛼
(𝑥𝛼) ,

𝑑𝛼

𝑑𝑥𝛼
cosh
𝛼
(𝑥𝛼) = −sinh

𝛼
(𝑥𝛼) ,

0
𝐼(𝛼)
𝑥

𝑥𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥(𝑛+1)𝛼

Γ (1 + (𝑛 + 1) 𝛼)
.

(5)

The local fractional Laplace transform is defined as [12, 20–
22]

�̃�
𝛼
{𝑓 (𝑥)} = 𝑓

�̃�,𝛼

𝑠
(𝑠)

=
1

Γ (1 + 𝛼)

× ∫
∞

0

𝐸
𝛼
(−𝑠𝛼𝑥𝛼) 𝑓 (𝑥) (𝑑𝑥)

𝛼, 0 < 𝛼 ≤ 1,

(6)

where𝑓(𝑥) is local fractional continuous and 𝑠𝛼 = 𝛽𝛼+𝑖𝛼∞𝛼.
The inverse formula of local fractional Laplace transform

is defined as [12, 20–22]

𝑓 (𝑥) = �̃�
−1

𝛼
{𝑓𝐿,𝛼
𝑠

(𝑠)}

=
1

(2𝜋)𝛼
∫
𝛽+𝑖∞

𝛽−𝑖∞

𝐸
𝛼
(𝑠𝛼𝑥𝛼) 𝑓�̃�,𝛼

𝑠
(𝑠) (𝑑𝑠)

𝛼,
(7)

where 𝑠𝛼 = 𝛽𝛼 + 𝑖𝛼∞𝛼 and Re(𝑠𝛼) = 𝛽𝛼.
The local fractional convolution of two functions is

defined as [12, 20–22]

𝑓
1
(𝑥) ∗ 𝑓

2
(𝑥) =

1

Γ (1 + 𝛼)
∫
∞

−∞

𝑓
1
(𝑡) 𝑓
2
(𝑥 − 𝑡) (𝑑𝑡)

𝛼. (8)

The properties for local fractional Laplace transform used in
the paper are given as [12]

�̃�
𝛼
{𝑎𝑓 (𝑥) + 𝑏𝑔 (𝑥)} = 𝑎�̃�

𝛼
{𝑓 (𝑥)} + 𝑏�̃�

𝛼
{𝑔 (𝑥)} ,

�̃�
𝛼
{𝑓(𝑛𝛼) (𝑥)} = 𝑠

𝑛𝛼�̃�
𝛼
{𝑓 (𝑥)}

−
𝑛

∑
𝑘=1

𝑠(𝑘−1)𝛼𝑓(𝑛−𝑘)𝛼 (0) ,

𝐹
𝛼
{𝑓
1
(𝑥) ∗ 𝑓

2
(𝑥)} = 𝑓

𝐹,𝛼

𝜔,1
(𝜔) 𝑓
𝐹,𝛼

𝜔,2
(𝜔) ,

�̃�
𝛼
{sin
𝛼
(𝑐𝛼𝑥𝛼)} =

𝑐𝛼

𝑠2𝛼 + 𝑐2𝛼
,

�̃�
𝛼
{cos
𝛼
(𝑐𝛼𝑥𝛼)} =

𝑠𝛼

𝑠2𝛼 + 𝑐2𝛼
,

�̃�
𝛼
{𝑥𝑘𝛼} =

Γ (1 + 𝑘𝛼)

𝑠(𝑘+1)𝛼
.

(9)

3. Analysis of the Method

In this section, we introduce the idea of local fractional
variational iteration method [16, 17], which is coupled by
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the local fractional variational iteration method and Laplace
transform.

Let us consider the following nonlinear operator with
local fractional derivative:

𝐿
𝛼
𝑢 − 𝑁

𝛼
𝑢 = 0, (10)

where the linear local fractional differential operator denotes
𝐿
𝛼
= (𝑑𝑘𝛼/𝑑𝑠𝑘𝛼) and 𝑢(𝑥) is a source term of the nondiffer-

ential function.
Following the local fractional Laplace variational itera-

tion method [23], we have the local fractional functional
formula as follows:

𝑢
𝑛+1

(𝑥) = 𝑢
𝑛
(𝑥) +

0
𝐼(𝛼)
𝑥

{
𝜆(𝑡)𝛼

Γ (1 + 𝛼)
[𝐿
𝛼
𝑢
𝑛
(𝑡) − 𝑁

𝛼
𝑢
𝑛
]} ,

(11)

which leads to

𝑢
𝑛+1

(𝑥) = 𝑢
𝑛
(𝑥) +

0
𝐼(𝛼)
𝑥

{
𝜆(𝑥 − 𝑡)𝛼

Γ (1 + 𝛼)
[𝐿
𝛼
𝑢
𝑛
(𝑡) − 𝑁

𝛼
𝑢
𝑛
]} .

(12)

Using the local fractional Laplace transform, from (12), we get

�̃�
𝛼
{𝑢
𝑛+1

(𝑥)} = �̃�
𝛼
{𝑢
𝑛
(𝑥)}

+ �̃�
𝛼
{

𝜆(𝑥)𝛼

Γ (1 + 𝛼)
} �̃�
𝛼
{𝐿
𝛼
𝑢
𝑛
(𝑥) − 𝑁

𝛼
𝑢
𝑛
(𝑥)} .

(13)

Taking the local fractional variation [21], we obtain

𝛿𝛼 {�̃�
𝛼
{𝑢
𝑛+1

(𝑥)}}

= 𝛿𝛼 {�̃�
𝛼
{𝑢
𝑛
(𝑥)}}

+ 𝛿𝛼 {�̃�
𝛼
{

𝜆(𝑥)𝛼

Γ (1 + 𝛼)
} �̃�
𝛼
{𝐿
𝛼
𝑢
𝑛
(𝑥) − 𝑁

𝛼
𝑢
𝑛
(𝑥)}}

(14)

which leads to

𝛿𝛼 {�̃�
𝛼
{𝑢
𝑛+1

(𝑥)}} = 𝛿
𝛼 {�̃�
𝛼
{𝑢
𝑛
(𝑥)}}

+ �̃�
𝛼
{

𝜆(𝑥)𝛼

Γ (1 + 𝛼)
} {𝛿𝛼 {�̃�

𝛼
{𝐿
𝛼
𝑢
𝑛
(𝑥)}}}

= 0,

(15)

where

�̃�
𝛼
{𝐿
𝛼
𝑢
𝑛
(𝑥)} = 𝑠

𝑘𝛼�̃�
𝛼
{𝑢
𝑛
(𝑥)} − 𝑠

(𝑘−1)𝛼𝑢
𝑛
(0)

− 𝑠(𝑘−2)𝛼𝑢(𝛼)
𝑛
(0) − ⋅ ⋅ ⋅ − 𝑢

((𝑘−1)𝛼)

𝑛
(0)

= 𝑠𝑘𝛼�̃�
𝛼
{𝑢
𝑛
(𝑥)} .

(16)

Hence, from (15) and (16) we get

1 + �̃�
𝛼
{

𝜆(𝑥)𝛼

Γ (1 + 𝛼)
} 𝑠𝑘𝛼 = 0, (17)

which yields

�̃�
𝛼
{

𝜆(𝑥)𝛼

Γ (1 + 𝛼)
} = −

1

𝑠𝑘𝛼
. (18)

Hence, we get the new iteration algorithm as follows:

�̃�
𝛼
{𝑢
𝑛+1

(𝑥)} = �̃�
𝛼
{𝑢
𝑛
(𝑥)}

−
1

𝑠𝑘𝛼
�̃�
𝛼
{(𝐿
𝛼
𝑢
𝑛
(𝑥) − 𝑁

𝛼
𝑢
𝑛
(𝑥))}

= �̃�
𝛼
{𝑢
𝑛
(𝑥)} −

1

𝑠𝑘𝛼
�̃�
𝛼
{𝐿
𝛼
𝑢
𝑛
(𝑥)}

+
1

𝑠𝑘𝛼
�̃�
𝛼
{𝑁
𝛼
𝑢
𝑛
(𝑥)} ,

(19)

where the initial value is suggested as

𝑠(𝑘−1)𝛼𝑢 (0) + 𝑠(𝑘−2)𝛼𝑢(𝛼) (0) + ⋅ ⋅ ⋅ + 𝑢((𝑘−1)𝛼) (0)

𝑠𝑘𝛼
= 0. (20)

Therefore, we have the local fractional series solution of (10)

�̃�
𝛼
{𝑢} = lim

𝑛→∞

�̃�
𝛼
{𝑢
𝑛
} (21)

so that

𝑢 = lim
𝑛→∞

�̃�−1
𝛼
{�̃�
𝛼
𝑢
𝑛
} . (22)

The above process is called the local fractional variational
iteration method.

4. The Nondifferentiable Solutions for Linear
Local Fractional Differential Equations

In this section, we present the examples for linear local
fractional differential equations of high order.

Example 1. The local fractional differential equation is pre-
sented as

𝜕3𝛼𝑢 (𝑥, 𝑡)

𝜕𝑡3𝛼
=
𝜕2𝛼𝑢 (𝑥, 𝑡)

𝜕𝑥2𝛼
, (23)

subject to the initial value

𝜕𝛼𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (0, 𝑡) = 𝐸

𝛼
(−𝑡𝛼) . (24)
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From (19) and (23) we obtain

�̃�
𝛼
{𝑢
𝑛+1

(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠2𝛼
�̃�
𝛼
{
𝜕2𝛼𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥2𝛼
−
𝜕3𝛼𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑡3𝛼
}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

𝑛
(𝑠, 𝑡) − 𝑠

𝛼𝑢
𝑛
(0, 𝑡) − 𝑢

(𝛼)

𝑛
(0, 𝑡)

−
𝜕3𝛼𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

𝑛
(𝑠, 𝑡) − 𝑠

𝛼𝑢
𝑛
(0, 𝑡) −

𝜕3𝛼𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑡3𝛼
} ,

(25)

where the initial value is given by

�̃�
𝛼
{𝑢
0
(𝑥, 𝑡)} = 𝑢

0
(𝑠, 𝑡) = �̃�

𝛼
{𝐸
𝛼
(−𝑡𝛼)} =

𝐸
𝛼
(−𝑡𝛼)

𝑠𝛼
. (26)

Therefore, the successive approximations are

�̃�
𝛼
{𝑢
1
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
0
(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

0
(𝑠, 𝑡) − 𝑠

𝛼𝑢
0
(0, 𝑡) −

𝜕3𝛼𝑢
0
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(−𝑡𝛼)

𝑠𝛼
−
𝐸
𝛼
(−𝑡𝛼)

𝑠3𝛼

= 𝐸
𝛼
(−𝑡𝛼)

1

∑
𝑘=0

(−1)
𝑘

1

𝑠(2𝑘+1)𝛼
,

�̃�
𝛼
{𝑢
2
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
1
(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

1
(𝑠, 𝑡) − 𝑠

𝛼𝑢
1
(0, 𝑡) −

𝜕3𝛼𝑢
1
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(−𝑡𝛼)

𝑠𝛼
−
𝐸
𝛼
(−𝑡𝛼)

𝑠3𝛼
+
𝐸
𝛼
(−𝑡𝛼)

𝑠5𝛼

= 𝐸
𝛼
(−𝑡𝛼)

2

∑
𝑘=0

(−1)
𝑘

1

𝑠(2𝑘+1)𝛼
,

�̃�
𝛼
{𝑢
3
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
2
(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

2
(𝑠, 𝑡) − 𝑠

𝛼𝑢
2
(0, 𝑡) −

𝜕3𝛼𝑢
2
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(−𝑡𝛼)

𝑠𝛼
−
𝐸
𝛼
(−𝑡𝛼)

𝑠3𝛼
+
𝐸
𝛼
(−𝑡𝛼)

𝑠5𝛼
−
𝐸
𝛼
(−𝑡𝛼)

𝑠7𝛼

= 𝐸
𝛼
(−𝑡𝛼)

3

∑
𝑘=0

(−1)
𝑘

1

𝑠(2𝑘+1)𝛼
,

�̃�
𝛼
{𝑢
4
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
3
(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

3
(𝑠, 𝑡) − 𝑠

𝛼𝑢
3
(0, 𝑡) −

𝜕3𝛼𝑢
3
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(−𝑡𝛼)

𝑠𝛼
−
𝐸
𝛼
(−𝑡𝛼)

𝑠3𝛼
+
𝐸
𝛼
(−𝑡𝛼)

𝑠5𝛼

−
𝐸
𝛼
(−𝑡𝛼)

𝑠7𝛼
+
𝐸
𝛼
(−𝑡𝛼)

𝑠9𝛼

= 𝐸
𝛼
(−𝑡𝛼)

4

∑
𝑘=0

(−1)
𝑘

1

𝑠(2𝑘+1)𝛼
,

...

�̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
𝑛−1

(𝑥, 𝑡)}

−
1

𝑠2𝛼
{𝑠2𝛼𝑢

𝑛−1
(𝑠, 𝑡) − 𝑠

𝛼𝑢
𝑛−1

(0, 𝑡)

−
𝜕3𝛼𝑢
𝑛−1

(𝑠, 𝑡)

𝜕𝑡3𝛼
}

= 𝐸
𝛼
(−𝑡𝛼)

𝑛

∑
𝑘=0

(−1)
𝑘

1

𝑠(2𝑘+1)𝛼
.

(27)

Hence, we get

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

�̃�−1
𝛼
{�̃�
𝛼
𝑢
𝑛
}

= lim
𝑛→∞

�̃�−1
𝛼
{𝐸
𝛼
(−𝑡𝛼)

𝑛

∑
𝑘=0

(−1)
𝑖

1

𝑠(2𝑘+1)𝛼
}

= 𝐸
𝛼
(−𝑡𝛼)

𝑛

∑
𝑘=0

(−1)𝑘𝑥2𝑘𝛼

Γ (1 + 2𝑘𝛼)

= 𝐸
𝛼
(−𝑡𝛼) cos

𝛼
(𝑥𝛼)

(28)

and its graph is shown in Figure 1.
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Figure 1: Plot of 𝑢(𝑥, 𝑡) with the fractal dimension 𝛼 = ln 2/ ln 3.

Example 2. We report the following local fractional partial
differential equation:

𝜕2𝛼𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
=
𝜕3𝛼𝑢 (𝑥, 𝑡)

𝜕𝑥3𝛼
. (29)

The initial value is given by

𝜕2𝛼𝑢 (0, 𝑡)

𝜕𝑥2𝛼
= 0,

𝜕𝛼𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 𝐸
𝛼
(𝑡𝛼) , 𝑢 (0, 𝑡) = 0. (30)

In view of (19) and (29) the local fractional iteration algo-
rithm can be written as follows:

�̃�
𝛼
{𝑢
𝑛+1

(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠3𝛼
�̃�
𝛼
{
𝜕3𝛼𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥3𝛼
−
𝜕2𝛼𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑡2𝛼
}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

𝑛
(𝑠, 𝑡) − 𝑠

2𝛼𝑢
𝑛
(0, 𝑡) − 𝑠

𝛼𝑢(𝛼)
𝑛
(0, 𝑡)

−𝑢(2𝛼)
𝑛

(0, 𝑡) −
𝜕3𝛼𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

𝑛
(𝑠, 𝑡) − 𝑠

𝛼𝑢(𝛼)
𝑛
(0, 𝑡) −

𝜕3𝛼𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑡3𝛼
} ,

(31)

where the initial value is

�̃�
𝛼
{𝑢
0
(𝑥, 𝑡)} = 𝑢

0
(𝑠, 𝑡)

= �̃�
𝛼
{

𝑥𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(𝑡𝛼)} =

𝐸
𝛼
(𝑡𝛼)

𝑠2𝛼
.

(32)

Making use of (31) and (32), the successive approximate
solutions are shown as follows:

�̃�
𝛼
{𝑢
1
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
0
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

0
(𝑠, 𝑡) − 𝑠

𝛼𝑢(𝛼)
0
(0, 𝑡) −

𝜕3𝛼𝑢
0
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

= �̃�
𝛼
{𝑢
0
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

0
(𝑠, 𝑡) − 𝑠

𝛼𝐸
𝛼
(𝑡𝛼) −

𝜕3𝛼𝑢
0
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠2𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠5𝛼

= 𝐸
𝛼
(𝑡𝛼)
1

∑
𝑘=0

1

𝑠(3𝑘+2)𝛼
,

�̃�
𝛼
{𝑢
2
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
1
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

1
(𝑠, 𝑡) − 𝑠

𝛼𝑢(𝛼)
1
(0, 𝑡) −

𝜕3𝛼𝑢
1
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠2𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠5𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼

= 𝐸
𝛼
(𝑡𝛼)
2

∑
𝑘=0

1

𝑠(3𝑘+2)𝛼
,

�̃�
𝛼
{𝑢
3
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
2
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

2
(𝑠, 𝑡) − 𝑠

𝛼𝑢(𝛼)
2
(0, 𝑡) −

𝜕3𝛼𝑢
2
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠2𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠5𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠11𝛼

= 𝐸
𝛼
(𝑡𝛼)
3

∑
𝑘=0

1

𝑠(3𝑘+2)𝛼
,

�̃�
𝛼
{𝑢
4
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
3
(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

3
(𝑠, 𝑡) − 𝑠

𝛼𝑢(𝛼)
3
(0, 𝑡) −

𝜕3𝛼𝑢
3
(𝑠, 𝑡)

𝜕𝑡3𝛼
}
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=
𝐸
𝛼
(𝑡𝛼)

𝑠2𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠5𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠11𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠14𝛼

= 𝐸
𝛼
(𝑡𝛼)
4

∑
𝑘=0

1

𝑠(3𝑘+2)𝛼
,

...

�̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
𝑛−1

(𝑥, 𝑡)}

−
1

𝑠3𝛼
{𝑠3𝛼𝑢

𝑛−1
(𝑠, 𝑡) −

𝜕3𝛼𝑢
𝑛−1

(𝑠, 𝑡)

𝜕𝑡3𝛼
}

= 𝐸
𝛼
(𝑡𝛼)
𝑛

∑
𝑘=0

1

𝑠(2𝑘+1)𝛼
.

(33)
Therefore, the nondifferentiable solution of (29) reads

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

�̃�−1
𝛼
{�̃�
𝛼
𝑢
𝑛
}

= lim
𝑛→∞

�̃�−1
𝛼
{𝐸
𝛼
(𝑡𝛼)
𝑛

∑
𝑘=0

1

𝑠(3𝑘+2)𝛼
}

= 𝐸
𝛼
(𝑡𝛼)
𝑛

∑
𝑘=0

𝑥(3𝑘+2)𝛼

Γ (1 + (3𝑘 + 2) 𝛼)

(34)

and its plot is presented in Figure 2.

Example 3. The following local fractional partial differential
equation

𝜕2𝛼𝑢 (𝑥, 𝑡)

𝜕𝑡2𝛼
−
𝜕4𝛼𝑢 (𝑥, 𝑡)

𝜕𝑥4𝛼
= 0 (35)

is considered and its initial value is
𝜕3𝛼𝑢 (0, 𝑡)

𝜕𝑥3𝛼
= 𝐸
𝛼
(𝑡𝛼) ,

𝜕2𝛼𝑢 (0, 𝑡)

𝜕𝑥2𝛼
= 0,

𝜕𝛼𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝑢 (0, 𝑡) = 0.

(36)
Making use of (19) and (35) the local fractional iteration
algorithm reads

�̃�
𝛼
{𝑢
𝑛+1

(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠4𝛼
�̃�
𝛼
{
𝜕4𝛼𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥4𝛼
−
𝜕2𝛼𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑡2𝛼
}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢
𝑛
(𝑠, 𝑡) − 𝑠

3𝛼𝑢
𝑛
(0, 𝑡) − 𝑠

2𝛼𝑢(𝛼)
𝑛
(0, 𝑡)}

−
1

𝑠4𝛼
{−𝑠𝛼𝑢(2𝛼)

𝑛
(0, 𝑡) − 𝑢

(3𝛼)

𝑛
(0, 𝑡) −

𝜕3𝛼𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

= �̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢

𝑛
(𝑠, 𝑡) − 𝑢

(3𝛼)

𝑛
(0, 𝑡) −

𝜕3𝛼𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑡3𝛼
} ,

(37)
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Figure 2: Plot of 𝑢(𝑥, 𝑡) with the parameters 𝛼 = ln 2/ ln 3 and 𝑘 =
50.

where the initial value is suggested as

�̃�
𝛼
{𝑢
0
(𝑥, 𝑡)} = 𝑢

0
(𝑠, 𝑡)

= �̃�
𝛼
{

𝑥3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(𝑡𝛼)} =

𝐸
𝛼
(𝑡𝛼)

𝑠4𝛼
.

(38)

From (38) we have the successive approximations as follows:

�̃�
𝛼
{𝑢
1
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
0
(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢

0
(𝑠, 𝑡) − 𝑢

(3𝛼)

0
(0, 𝑡) −

𝜕3𝛼𝑢
0
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠4𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼

= 𝐸
𝛼
(𝑡𝛼)
1

∑
𝑘=0

1

𝑠4(𝑘+1)𝛼
,

�̃�
𝛼
{𝑢
2
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
1
(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢

1
(𝑠, 𝑡) − 𝑢

(3𝛼)

1
(0, 𝑡) −

𝜕3𝛼𝑢
1
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠4𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠12𝛼

= 𝐸
𝛼
(𝑡𝛼)
2

∑
𝑘=0

1

𝑠4(𝑘+1)𝛼
,



Discrete Dynamics in Nature and Society 7

�̃�
𝛼
{𝑢
3
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
2
(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢

2
(𝑠, 𝑡) − 𝑢

(3𝛼)

2
(0, 𝑡) −

𝜕3𝛼𝑢
2
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠4𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠12𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠16𝛼

= 𝐸
𝛼
(𝑡𝛼)
3

∑
𝑘=0

1

𝑠4(𝑘+1)𝛼
,

�̃�
𝛼
{𝑢
4
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
3
(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢

3
(𝑠, 𝑡) − 𝑢

(3𝛼)

3
(0, 𝑡) −

𝜕3𝛼𝑢
3
(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠4𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠12𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠16𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠20𝛼

= 𝐸
𝛼
(𝑡𝛼)
4

∑
𝑘=0

1

𝑠4(𝑘+1)𝛼
,

...

�̃�
𝛼
{𝑢
𝑛
(𝑥, 𝑡)}

= �̃�
𝛼
{𝑢
𝑛−1

(𝑥, 𝑡)}

−
1

𝑠4𝛼
{𝑠4𝛼𝑢

𝑛−1
(𝑠, 𝑡) − 𝑢

(3𝛼)

𝑛−1
(0, 𝑡) −

𝜕3𝛼𝑢
𝑛−1

(𝑠, 𝑡)

𝜕𝑡3𝛼
}

=
𝐸
𝛼
(𝑡𝛼)

𝑠4𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠8𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠12𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠16𝛼
+
𝐸
𝛼
(𝑡𝛼)

𝑠20𝛼

= 𝐸
𝛼
(𝑡𝛼)
𝑛

∑
𝑘=0

1

𝑠4(𝑘+1)𝛼
.

(39)

Hence, the approximate solution of (35) is given by

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

�̃�−1
𝛼
{�̃�
𝛼
𝑢
𝑛
}

= lim
𝑛→∞

�̃�−1
𝛼
{𝐸
𝛼
(𝑡𝛼)
𝑛

∑
𝑘=0

1

𝑠4(𝑘+1)𝛼
}

= 𝐸
𝛼
(𝑡𝛼)
4

∑
𝑘=0

𝑥4(𝑘+1)𝛼

Γ (1 + 4 (𝑘 + 1) 𝛼)

(40)

and its graph is presented in Figure 3.

5. Conclusions

Local fractional calculus was successfully applied to deal
with the nondifferentiable problems arising in mathematical
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Figure 3: Plot of 𝑢(𝑥, 𝑡) with the parameters 𝛼 = ln 2/ ln 3 and 𝑘 =
50.

physics. In this work we considered the coupling method
of the local fractional variational iteration method and
Laplace transform to solve the linear local fractional partial
differential equations and their nondifferentiable solutions
were obtained.The results are efficient implement of the local
fractional Laplace variational iteration method to solve the
partial differential equations with local fractional derivative.
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